Nothing Special   »   [go: up one dir, main page]

JP3335725B2 - Exhaust gas treatment method and apparatus - Google Patents

Exhaust gas treatment method and apparatus

Info

Publication number
JP3335725B2
JP3335725B2 JP23614193A JP23614193A JP3335725B2 JP 3335725 B2 JP3335725 B2 JP 3335725B2 JP 23614193 A JP23614193 A JP 23614193A JP 23614193 A JP23614193 A JP 23614193A JP 3335725 B2 JP3335725 B2 JP 3335725B2
Authority
JP
Japan
Prior art keywords
exhaust gas
absorption
absorption zone
magnesium hydroxide
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23614193A
Other languages
Japanese (ja)
Other versions
JPH0788325A (en
Inventor
義彦 工藤
良一 渡辺
Original Assignee
呉羽化学工業株式会社
呉羽テクノエンジ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 呉羽化学工業株式会社, 呉羽テクノエンジ株式会社 filed Critical 呉羽化学工業株式会社
Priority to JP23614193A priority Critical patent/JP3335725B2/en
Priority to CN94115846A priority patent/CN1102792A/en
Priority to TW083108416A priority patent/TW256783B/zh
Priority to KR1019940023660A priority patent/KR0136645B1/en
Publication of JPH0788325A publication Critical patent/JPH0788325A/en
Application granted granted Critical
Publication of JP3335725B2 publication Critical patent/JP3335725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/346Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/402Alkaline earth metal or magnesium compounds of magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、塩化水素等の酸性物質
及び煤塵などの有害物質を含む排ガスを湿式洗浄除害す
る方法及び装置に関し、特に焼却炉排ガスの処理方法及
び処理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for wet-cleaning and removing exhaust gas containing acidic substances such as hydrogen chloride and harmful substances such as dust, and more particularly to a method and an apparatus for treating exhaust gas from an incinerator. is there.

【0002】[0002]

【従来の技術】産業廃棄物等を焼却する焼却炉から排出
される排ガスには、多量の塩化水素をはじめとして、硫
黄酸化物、フッ化水素及び煤塵等の有害物質が含まれる
ことが多い。従来、このような有害物質を排ガスより除
去する方法として、苛性ソーダ(NaOH)を中和剤と
して用いる湿式除害方法が知られている。この方法で
は、除去された有害物質は、水溶液中に塩化ナトリウ
ム、硫酸ナトリウム、フッ化ナトリウムなどの反応生成
物となって溶解し、排水されるのが通例であり、煤塵は
この排水中より分離され、別途処理される。このような
湿式法は、炉内または煙道中に消石灰等の中和剤を吹き
込む乾式法に比べ、有害物質を高い効率で除去すること
ができる利点がある。
2. Description of the Related Art Exhaust gas discharged from an incinerator for incinerating industrial wastes and the like often contains harmful substances such as a large amount of hydrogen chloride, sulfur oxides, hydrogen fluoride and dust. Conventionally, as a method for removing such harmful substances from exhaust gas, a wet detoxification method using caustic soda (NaOH) as a neutralizing agent is known. In this method, the removed harmful substances are usually dissolved in aqueous solution as a reaction product such as sodium chloride, sodium sulfate, sodium fluoride, etc., and are discharged. The dust is separated from the discharged water. And processed separately. Such a wet method has an advantage that harmful substances can be removed with higher efficiency than a dry method in which a neutralizing agent such as slaked lime is blown into a furnace or a flue.

【0003】しかし、この方法は高価な苛性ソーダを使
用するため処理費が高いという難点がある。このため、
近年、中和剤として苛性ソーダに代えて、特開昭63−
242322号記載のように、安価な水酸化マグネシウ
ムを使用する方法が提案されるようになってきた。水酸
化マグネシウムを中和剤とする方法においては排ガス中
の成分と中和剤との反応によって生成する塩化マグネシ
ウム、硫酸マグネシウムなどがナトリウム塩と同様に無
害であり、且つ溶解度が高いため水溶液として排水でき
るので、手間を要せず、また環境上問題がない。更に、
苛性ソーダ法では生成するフッ化ナトリウムが水溶性で
あるために、有害なフッ素イオンが排水中に混入してく
るが、水酸化マグネシウムを中和剤とする場合には生成
するフッ化マグネシウムが難溶性であるため、排水中に
溶解する有害なフッ化物の濃度を低くすることができる
という利点もある。
[0003] However, this method has a disadvantage that the processing cost is high because expensive caustic soda is used. For this reason,
In recent years, instead of caustic soda as a neutralizing agent,
As described in 242322, a method using inexpensive magnesium hydroxide has been proposed. In the method using magnesium hydroxide as a neutralizing agent, magnesium chloride, magnesium sulfate, and the like generated by the reaction between the components in the exhaust gas and the neutralizing agent are harmless like sodium salts and have high solubility. Because it can be done, there is no need for trouble and there is no environmental problem. Furthermore,
In the caustic soda method, harmful fluoride ions enter the wastewater because the generated sodium fluoride is water-soluble, but when magnesium hydroxide is used as a neutralizing agent, the generated magnesium fluoride is hardly soluble. Therefore, there is also an advantage that the concentration of harmful fluoride dissolved in the wastewater can be reduced.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、水酸化
マグネシウムは水への溶解度が極めて低く、苛性ソーダ
法に比べて酸性物質との中和反応速度が遅いためガス吸
収の効率が低いという難点がある。このため、前記提案
においても中和剤の全量を水酸化マグネシウムに転換し
得ず、吸収を2段階に分け、前段階において、水酸化マ
グネシウムで塩化水素を除去し、後段階において、苛性
ソーダで硫黄酸化物を除去する方法をとっている。
However, magnesium hydroxide has the disadvantage that its solubility in water is extremely low, and the rate of neutralization reaction with acidic substances is slower than that of the caustic soda method, so that the efficiency of gas absorption is low. For this reason, even in the above proposal, the entire amount of the neutralizing agent cannot be converted to magnesium hydroxide, and the absorption is divided into two stages. In the previous stage, hydrogen chloride is removed with magnesium hydroxide, and in the later stage, sulfuric acid is removed with caustic soda. The method of removing oxides is adopted.

【0005】従って、反応性の低い水酸化マグネシウム
のみを中和剤として使用し、且つコンパクトな装置で排
ガス中の有害物質を効率良く除害する方法は未だ知られ
ていない。本発明者等は、苛性ソーダに比べて、反応性
の劣る水酸化マグネシウムを効率良く使用する方法を種
々検討した結果、排ガスと吸収液とを接触させる方式に
よってこの効率が大きく異なることを見出し、本発明に
至った。
[0005] Therefore, there has not yet been known a method of using only low-reactivity magnesium hydroxide as a neutralizing agent and efficiently removing harmful substances in exhaust gas with a compact device. The present inventors have studied various methods for efficiently using magnesium hydroxide having lower reactivity than caustic soda, and as a result, have found that the efficiency greatly differs depending on the method of contacting the exhaust gas with the absorbing solution. Invented the invention.

【0006】[0006]

【問題点を解決するための手段】すなわち、本発明によ
れば、酸性物質及び煤塵などの有害物質を含む排ガスを
水酸化マグネシウムを含む吸収液と接触させて、排ガス
中の前記有害物質を吸収除去する排ガスの処理方法にお
いて、無堰の多孔板を複数段に設けた吸収帯域で排ガス
と吸収液とを向流にて接触させるとともに、吸収帯域最
下段より流下する吸収液pHが一定となるように吸収帯
域に供給される吸収液への水酸化マグネシウムの供給量
を調整することを特徴とする排ガスの処理方法が提供さ
れる。
That is, according to the present invention, exhaust gas containing harmful substances such as acidic substances and dust is brought into contact with an absorbing solution containing magnesium hydroxide to absorb the harmful substances in the exhaust gas. In the treatment method of the exhaust gas to be removed, the exhaust gas and the absorbent are brought into contact with each other in the absorption zone provided with a plurality of stages of non-weired perforated plates in counterflow, and the pH of the absorption fluid flowing down from the lowermost stage of the absorption zone becomes constant. Thus, there is provided a method for treating exhaust gas, characterized in that the supply amount of magnesium hydroxide to the absorption liquid supplied to the absorption zone is adjusted.

【0007】また、本発明によれば、排ガスと水酸化マ
グネシウムを含む吸収液とを向流接触させるための無堰
の多孔板を複数段配設した吸収帯域と、吸収帯域に供給
される吸収液中に含まれる水酸化マグネシウム量を制御
して吸収帯域最下段より流下する吸収液pHを所定値に
制御するpH制御手段とを有することを特徴とする排ガ
ス処理装置が提供される。
Further, according to the present invention, there is provided an absorption zone in which a plurality of non-weired perforated plates for bringing exhaust gas and an absorbing solution containing magnesium hydroxide into countercurrent contact are arranged, and an absorption zone supplied to the absorption zone. An exhaust gas treatment device is provided, comprising: pH control means for controlling the amount of magnesium hydroxide contained in the solution to control the pH of the absorbing solution flowing down from the lowermost stage of the absorption zone to a predetermined value.

【0008】[0008]

【作用】以下、本発明を詳細に説明する。本発明の構成
上の特徴は、少なくとも塩化水素、硫黄酸化物、フッ化
水素等の酸性ガス(物質)、及び煤塵などの有害物質を
含む排ガスに、水酸化マグネシウムを含む吸収液を接触
させるに際し、無堰の多孔板を複数段に設けた吸収帯域
において排ガスと吸収液とを向流にて接触させることに
ある。水酸化マグネシウムが苛性ソーダと異なる点は、
水酸化マグネシウムは水に難溶性であるためスラリー状
で吸収反応をさせる必要があり、そのため、排ガス中の
酸性物質の種類により反応性に差が生じる結果となるこ
とである。そこで、この点が酸性物質の吸収効率とどの
ように関係するのかを説明する。
Hereinafter, the present invention will be described in detail. A structural feature of the present invention is that an absorbent solution containing magnesium hydroxide is brought into contact with exhaust gas containing at least acidic gases (substances) such as hydrogen chloride, sulfur oxides and hydrogen fluoride, and harmful substances such as dust. Another object of the present invention is to make the exhaust gas and the absorbing liquid come into contact with each other in counterflow in an absorption zone provided with a plurality of non-weired perforated plates. The difference between magnesium hydroxide and caustic soda is that
Since magnesium hydroxide is hardly soluble in water, it is necessary to cause an absorption reaction in a slurry state, and as a result, a difference in reactivity occurs depending on the type of acidic substance in the exhaust gas. Therefore, how this point relates to the absorption efficiency of the acidic substance will be described.

【0009】本発明において除害の対象とする主な有害
物質は、塩化水素(HCl)、硫黄酸化物(SO2 、S
3 )、フッ化水素(HF)、煤塵などである。この内
HCl、SO2 及びHFはガス状であり、強酸を生成
するHClは水に対して最も吸収され易く、次いでSO
2、HFの順に吸収され難くなる。すなわち、HClを
吸収するためには吸収液のpHが2以上に維持されてい
れば十分であるが、SO2 、HFを吸収するためには、
pHを4以上に維持する必要がある。一方SO3 、煤塵
はガス状ではないため、排ガスと吸収液との物理的衝突
のみによって除去率が決定され、吸収液のpHには関係
がない。
In the present invention, the main harmful substances to be eliminated are hydrogen chloride (HCl), sulfur oxides (SO 2 , S
O 3 ), hydrogen fluoride (HF), dust, and the like. Of these, HCl, SO 2 and HF are gaseous, and HCl, which produces strong acids, is most easily absorbed by water,
2 , HF becomes difficult to be absorbed in order. That is, it is sufficient that the pH of the absorbing solution is maintained at 2 or more in order to absorb HCl, but in order to absorb SO 2 and HF,
It is necessary to maintain the pH above 4. On the other hand, since SO 3 and dust are not in a gaseous state, the removal rate is determined only by physical collision between the exhaust gas and the absorbent, and has no relation to the pH of the absorbent.

【0010】このような吸収特性の違いをもつ各成分を
同時に吸収する際、中和剤が苛性ソーダであれば溶解度
が大きいため、全成分を吸収するために必要なpH域に
維持することは容易であり、吸収方式の種類によって除
去効率に差を生じることは殆どない。しかし、中和剤が
水酸化マグネシウムである場合には溶解度が低いため、
各成分を同時に吸収するためには、適切な吸収方式を選
択する必要がある。すなわち水酸化マグネシウムは、吸
収液中ではスラリーとして存在するが、酸性ガスの中和
のためには水に溶解する必要があり、その溶解のために
ある程度の時間を要する。このため、酸性ガスの吸収の
場において水酸化マグネシウムをできるだけ溶解させる
ようにすることが好ましく、吸収方式としては吸収液の
吸収帯域内での滞留時間を長くとれるものが好ましい。
When simultaneously absorbing each component having such a difference in absorption characteristics, if the neutralizing agent is caustic soda, the solubility is large, and it is easy to maintain the pH range necessary for absorbing all components. Thus, there is almost no difference in the removal efficiency depending on the type of absorption system. However, when the neutralizing agent is magnesium hydroxide, the solubility is low,
In order to simultaneously absorb each component, it is necessary to select an appropriate absorption method. That is, although magnesium hydroxide exists as a slurry in the absorbing solution, it must be dissolved in water to neutralize the acid gas, and it takes a certain amount of time to dissolve it. For this reason, it is preferable to dissolve the magnesium hydroxide as much as possible in the place of absorption of the acidic gas, and it is preferable that the absorption method be such that the residence time of the absorption liquid in the absorption zone can be long.

【0011】排ガスの吸収方式は、スプレー塔、充填塔
または段塔を用いる方式に大別されるが、この順に吸収
液の吸収帯域内滞留時間が長くなり、吸収帯域内での水
酸化マグネシウムの溶解量を多くすることができる。一
方、排ガス中の煤塵も吸収液に捕集され、吸収液は煤塵
のスラリーとなるが、この煤塵が装置内で沈積、固着す
るのを回避する必要がある。この場合、バブルキャップ
トレイ塔などの段上滞留液層を確保するための堰及びダ
ウンカマーを持つ段塔、またはテラレットなどの充填材
を使用した充填塔では、煤塵の沈積、固着が起こり易
く、長期安定運転には問題がある。
The exhaust gas absorption system is roughly classified into a system using a spray tower, a packed tower or a column tower. In this order, the residence time of the absorbing solution in the absorption zone becomes longer, and the magnesium hydroxide in the absorption zone becomes longer. The amount of dissolution can be increased. On the other hand, dust in the exhaust gas is also collected by the absorbing liquid, and the absorbing liquid becomes a dust slurry. However, it is necessary to prevent the dust from depositing and sticking in the apparatus. In this case, in a column tower having a weir and a downcomer to secure a stagnant liquid layer on the stage such as a bubble cap tray tower, or a packed tower using a filler such as terraret, the deposition of dust is likely to occur, There is a problem with long-term stable operation.

【0012】以上の観点を基礎にして種々の吸収方式を
比較検討した結果、本発明者等は、無堰の多孔板を複数
段に設けた吸収帯域において排ガスと吸収液とを向流に
て接触させる(上部から下方に吸収液を、下部から上方
へ排ガスを送入する)方式には下記の特徴があり、最も
好ましいことを見出したのである。 (1)吸収液の吸収帯域内滞留時間を比較的長くとれる
ので、吸収帯域内での水酸化マグネシウムの溶解量が多
く、酸性ガス(物質)の吸収に伴う吸収液のpH低下が
少ない。 (2)このため、HClはもとよりSO2 、HFを同時
に吸収除去することができる。すなわち、吸収帯域下部
では主としてHClを、吸収帯域上部では主としてSO
2 、HFを吸収除去するように、吸収帯域出口における
吸収液のpHを2〜6、好ましくは4〜5.5の範囲の
特定な値に制御することにより、一塔でコンパクトな装
置により水酸化マグネシウムを吸収剤とする場合でもす
べての有害物質の除去が可能となる。吸収帯域出口で吸
収液のpHを2以下とすると、吸収帯域下部でHClの
吸収が不十分となり、吸収帯域上部の方まで吸収液のp
Hが低下し、SO2 ガスが吸収し切れなくなることが起
こる。一方、吸収帯域最下部での吸収液pHを6以上に
高くすると、貯留槽内での吸収液中の未溶解の水酸化マ
グネシウムの量が多くなり、吸収液の一部を排水として
系外に抜き出したときに、そこに含まれている水酸化マ
グネシウムが無駄に系外に抜き出されてしまう。 (3)さらに図2に示すように、各多孔板5上ではスラ
リー状の吸収液6が常に流動状態にあり、部分的にも滞
留することがないので、煤塵の沈積、固着を生じないと
考えられる。
As a result of comparing and examining various absorption systems based on the above viewpoints, the present inventors have found that exhaust gas and absorption liquid are countercurrently flowing in an absorption zone in which non-weired perforated plates are provided in a plurality of stages. The method of contacting (feeding the absorbing liquid from the upper part to the lower part and the exhaust gas from the lower part to the upper part) has the following characteristics and has been found to be the most preferable. (1) Since the residence time of the absorbing solution in the absorption zone can be made relatively long, the amount of magnesium hydroxide dissolved in the absorption zone is large, and the pH of the absorbing solution due to the absorption of acidic gas (substance) does not decrease much. (2) Therefore, not only HCl but also SO 2 and HF can be simultaneously absorbed and removed. That is, HCl is mainly in the lower part of the absorption band, and SO2 is mainly in the upper part of the absorption band.
2. By controlling the pH of the absorbing solution at the outlet of the absorption zone to a specific value in the range of 2 to 6, preferably 4 to 5.5 so as to absorb and remove HF, water can be collected in a single tower with a compact device. Even when magnesium oxide is used as an absorbent, all harmful substances can be removed. If the pH of the absorbing solution is 2 or less at the outlet of the absorbing zone, the absorption of HCl at the lower portion of the absorbing zone becomes insufficient, and the p of the absorbing solution reaches the upper portion of the absorbing zone.
H decreases, and SO 2 gas may not be completely absorbed. On the other hand, when the pH of the absorbing solution at the bottom of the absorbing zone is increased to 6 or more, the amount of undissolved magnesium hydroxide in the absorbing solution in the storage tank increases, and part of the absorbing solution is drained out of the system. When extracted, the magnesium hydroxide contained therein is unnecessarily extracted out of the system. (3) Further, as shown in FIG. 2, the slurry-like absorbing liquid 6 is always in a flowing state on each perforated plate 5 and does not stay even partially, so that the deposition and fixation of dust do not occur. Conceivable.

【0013】本発明においては、吸収帯域に設ける多孔
板は無堰であることが必要である。前述のように、堰を
有する多孔板やバブルキャップトレイなどを用いると、
煤塵の沈積、固着が生じ長期安定運転が困難となり好ま
しくない。多孔板は吸収帯域内に複数段設ける。その段
数は特に限定されるものではなく、吸収帯域の塔径、上
下多孔板間の距離にもよるが、通常3〜10段設置され
ることが好ましい。多孔板の開口率も特に制限されるも
のではないが、通常25〜50%が好ましい。また、多
孔板の孔径も制限されるものではなく、通常4〜15m
mが好ましい。本発明の方法及び装置で処理される排ガ
スは、焼却炉排ガスなどの高温排ガスの場合が多い。本
発明では吸収帯域の材質などが十分に高温且つその雰囲
気に耐えられるものであれば、特に制限はない。しか
し、ガス吸収は温度が低い方が効率がよいこと、高温酸
性湿潤雰囲気に耐える材料は高価であることなどから、
通常は高温ガスは吸収帯域に導入される前に冷却され
る。有害物質の吸収液による吸収除去処理に先だって、
高温排ガスの冷却方法は、従来ある技術のいずれでも良
い。このような冷却方法として、垂直煙道部を高温ガス
が流下するようにし、その頂部より冷却水をガス流れ方
向に噴霧または散水し、煙道内壁には濡れ壁を形成する
ように冷却水を流すようにした断熱型冷却法が好ましく
採用できる。この場合の濡れ壁形成用冷却水として有害
物吸収液と同じまたは類似の流体を使用することができ
る。冷却の程度は、吸収塔の材質や吸収操作条件に関連
し、選択される。本発明では100℃以下、好ましくは
80℃以下に冷却してから、吸収部に導くのが望まし
い。
In the present invention, the perforated plate provided in the absorption zone needs to be a weir-free. As described above, when using a perforated plate or a bubble cap tray having a weir,
Dust deposition and sticking occur, making long-term stable operation difficult, which is not preferable. A plurality of perforated plates are provided in the absorption zone. The number of stages is not particularly limited, and although it depends on the tower diameter of the absorption zone and the distance between the upper and lower porous plates, usually three to ten stages are preferably installed. Although the aperture ratio of the perforated plate is not particularly limited, it is usually preferably 25 to 50%. Also, the hole diameter of the perforated plate is not limited, and is usually 4 to 15 m.
m is preferred. The exhaust gas treated by the method and apparatus of the present invention is often a high-temperature exhaust gas such as an incinerator exhaust gas. In the present invention, there is no particular limitation as long as the material and the like of the absorption zone are sufficiently high in temperature and can withstand the atmosphere. However, gas absorption is more efficient at lower temperatures, and materials that can withstand high-temperature acidic humid atmosphere are expensive.
Normally, the hot gas is cooled before being introduced into the absorption zone. Prior to the absorption and removal treatment with the harmful substance absorbing solution,
The method for cooling the high-temperature exhaust gas may be any of the conventional techniques. As such a cooling method, a high-temperature gas flows down the vertical flue, and cooling water is sprayed or sprinkled from the top in the gas flow direction, and cooling water is formed on the inner wall of the flue so as to form a wet wall. An adiabatic cooling method in which the fluid flows is preferably employed. In this case, the same or similar fluid as the harmful substance absorbing liquid can be used as the cooling water for forming the wetted wall. The degree of cooling is selected in relation to the material of the absorption tower and the absorption operation conditions. In the present invention, it is desirable that the solution is cooled to 100 ° C. or lower, preferably 80 ° C. or lower, and then guided to the absorbing section.

【0014】[0014]

【実施例】次に、本発明の具体的な実施態様を図示例に
基づいて説明するが、本発明は図示例に限定されるもの
ではない。図1において、4は吸収塔で、2は吸収塔4
の排ガス上流側に設置する冷却塔を示す。本発明で吸収
除去の対象とする排ガス1は、主として焼却炉から発生
するものであり、その温度は700〜1000℃と比較
的高温である。そのため、ガス吸収に先立ち排ガスを冷
却することが好ましい。この冷却には種々の方法が知ら
れているが、図1に示すように、冷却塔2内の水スプレ
ー3と、冷却塔2の内壁に水又は吸収液6を流下させる
濡れ壁方式とを併用して排ガスを断熱冷却する方法が好
ましい。この結果排ガスの温度は通常80℃以下とな
る。
Next, specific embodiments of the present invention will be described based on illustrated examples, but the present invention is not limited to the illustrated examples. In FIG. 1, 4 is an absorption tower, 2 is an absorption tower 4
1 shows a cooling tower installed on the upstream side of exhaust gas. The exhaust gas 1 to be absorbed and removed in the present invention is mainly generated from an incinerator, and has a relatively high temperature of 700 to 1000 ° C. Therefore, it is preferable to cool the exhaust gas before absorbing the gas. Various methods are known for this cooling. As shown in FIG. 1, a water spray 3 in the cooling tower 2 and a wet wall method in which water or the absorbing solution 6 flows down on the inner wall of the cooling tower 2 are used. A method of adiabatic cooling of exhaust gas in combination is preferable. As a result, the temperature of the exhaust gas is usually 80 ° C. or less.

【0015】冷却と共に増湿もされた排ガスは吸収塔4
下部の吸収帯域下部に導入され、多段の無堰多孔板5を
配した吸収帯域を上昇する間に、上部から流下してくる
水酸化マグネシウムを含む吸収液6と向流接触して有害
成分は除去され、有害物質を除去された排ガス7は、図
示しないデミスター及び電気集塵装置を通り煙突より排
出される。吸収液6は後述の循環ライン9より循環され
て散液装置11の散布により吸収塔4の最上段の多孔板
5上に略均一に供給され、吸収塔4の吸収帯域内を流下
しつつ酸性ガス(物質)を吸収する。
The exhaust gas which has been humidified with cooling is supplied to the absorption tower 4
The harmful component is introduced into the lower absorption zone lower part, while coming up in the absorption zone where the multi-stage perforated plate 5 is arranged, and coming into countercurrent contact with the absorbing solution 6 containing magnesium hydroxide flowing down from the upper part. The exhaust gas 7 from which harmful substances have been removed is discharged from a chimney through a demister and an electric dust collector (not shown). The absorption liquid 6 is circulated from a circulation line 9 described later, is supplied substantially uniformly onto the uppermost porous plate 5 of the absorption tower 4 by spraying with a liquid spraying device 11, and flows down in the absorption zone of the absorption tower 4 while being acidic. Absorbs gas (substance).

【0016】吸収塔4には水酸化マグネシウムを含む吸
収液6が供給される。吸収帯域では、多孔板5の段数、
開口率、孔径、塔径などを適宜選択して吸収液6の吸収
帯域内滞留時間が調節される。吸収帯域から出た吸収液
6は、pH検知装置10にてそのpHが検知され、その
値が2〜6の範囲内の特定値となるように、吸収液6の
循環ライン9に必要量の水酸化マグネシウムスラリー1
4が制御されて添加されることにより、調節される。こ
の水酸化マグネシウムスラリー14は通常30〜40重
量%のスラリーとして入手できる。このようにして吸収
帯域を通過した吸収液6は、貯留槽12(撹拌機付)に
入り、ポンプ13により、循環ライン9を経て、吸収塔
4上部の散液装置11から多孔板5上に循環供給され
る。
An absorption liquid 6 containing magnesium hydroxide is supplied to the absorption tower 4. In the absorption zone, the number of stages of the perforated plate 5,
The residence time of the absorbing solution 6 in the absorption zone is adjusted by appropriately selecting the aperture ratio, the pore diameter, the tower diameter, and the like. The required amount of the absorbent 6 coming out of the absorption zone is supplied to the circulation line 9 of the absorbent 6 so that the pH thereof is detected by the pH detector 10 and the value thereof becomes a specific value in the range of 2 to 6. Magnesium hydroxide slurry 1
4 is regulated by the controlled addition. The magnesium hydroxide slurry 14 is usually available as a slurry of 30 to 40% by weight. The absorbent 6 having passed through the absorption zone in this manner enters the storage tank 12 (with a stirrer), and is pumped by the pump 13 through the circulation line 9 from the liquid dispersion device 11 above the absorption tower 4 onto the perforated plate 5. Circulated supply.

【0017】吸収帯域最上段に供給される吸収液6中に
含まれる水酸化マグネシウムは、吸収帯域内を流下する
間に大部分が溶解し、酸性物質と反応して消費される
が、吸収帯域最下段を通過しても一部は溶解せずに残留
しているので、攪拌機付きの吸収液貯留槽12内で溶解
させる。また、焼却炉排ガスの特性として、これに含ま
れる酸性ガスの流量は急激に変動することが多い。この
変動に対し水酸化マグネシウムスラリー14の供給量を
スムーズに追従させるため、吸収液6のpHの検知は吸
収帯域最下段を通過した吸収帯域出口で行うことが好ま
しい。吸収液6のpHの検知を貯留槽12以降のライン
で行うと、時間遅れが生じ、的確なpH制御が困難とな
る。
Most of the magnesium hydroxide contained in the absorption liquid 6 supplied to the uppermost stage of the absorption zone is dissolved while flowing down in the absorption zone, and is consumed by reacting with the acidic substance. Even after passing through the lowermost stage, a part remains without being dissolved, so that it is dissolved in the absorption liquid storage tank 12 with a stirrer. Further, as a characteristic of the incinerator exhaust gas, the flow rate of the acidic gas contained therein often fluctuates rapidly. In order to smoothly follow the supply amount of the magnesium hydroxide slurry 14 with respect to this fluctuation, it is preferable to detect the pH of the absorbing solution 6 at the outlet of the absorption zone that has passed the lowermost stage of the absorption zone. If the detection of the pH of the absorbing liquid 6 is performed in a line after the storage tank 12, a time delay occurs, and it becomes difficult to perform accurate pH control.

【0018】さらに、貯留槽12から出た吸収液6の一
部は系外へ排水8として抜き出される。排水8の抜き出
し流量は、酸性ガスと吸収液6中の水酸化マグネシウム
が反応して生成した吸収液6中の塩化マグネシウム又は
硫酸マグネシウムが飽和値を越えて析出しないように、
または煤塵スラリー濃度が高くなり過ぎないような範囲
に設定する。
Further, a part of the absorbing liquid 6 which has come out of the storage tank 12 is drawn out as drainage 8 outside the system. The extraction flow rate of the drainage 8 is set so that the magnesium chloride or magnesium sulfate in the absorbing solution 6 generated by the reaction between the acidic gas and the magnesium hydroxide in the absorbing solution 6 does not exceed the saturation value.
Alternatively, the concentration is set so that the dust slurry concentration does not become too high.

【0019】以下、本発明のさらに具体的な実施結果を
説明する。 (実施例)産業廃棄物焼却炉より発生した温度750℃
の排ガス1(組成…O2 :10%、 CO2 :8%、H
2O :15%、 HCl:4000ppm(乾量基
準)、SO2 :500ppm(乾量基準)、 HF:4
5ppm(乾量基準)、 煤塵:2.5g/Nm3(乾
量基準))10,000Nm3/Hを、図1に示す構造
の排ガス処理装置の冷却塔2に導入した。冷却塔2にお
いて排ガス1を、5m3 /Hの水スプレー3及び循環ラ
イン9からの吸収液6による液量15m3 /Hの濡れ壁
によって75℃に断熱冷却した後、塔径1.3m、多孔
板5の孔径8mm,多孔板開口率30%、多孔板の段数
が7段で構成される吸収帯をもつ吸収塔4の下部に導入
した。
Hereinafter, more specific results of the present invention will be described. (Example) The temperature generated from an industrial waste incinerator is 750 ° C.
Exhaust gas 1 (composition: O 2 : 10%, CO 2 : 8%, H
2 O: 15%, HCl: 4000 ppm (dry basis), SO 2 : 500 ppm (dry basis), HF: 4
5 ppm (dry basis), dust: 2.5 g / Nm 3 a (dry basis)) 10,000 nM 3 / H, and introduced into the cooling tower 2 of the exhaust gas processing device having the structure shown in FIG. The exhaust gas 1 in the cooling tower 2, after adiabatic cooling to 75 ° C. by the liquid amount 15 m 3 / H wetted wall by the absorbing liquid 6 from 5 m 3 / H of the water spray 3 and the circulation line 9, column diameter 1.3 m, The perforated plate 5 was introduced into the lower part of the absorption tower 4 having an absorption band composed of 7 stages with a hole diameter of 8 mm, an aperture ratio of the perforated plate of 30%, and seven stages of perforated plates.

【0020】一方、吸収帯域出口10における吸収液6
のpHコントロール設定値を5.0とし、容量4m3
攪拌機付き貯留槽12以降の循環ライン9に30重量%
の水酸化マグネシウムスラリー14を添加しつつpH調
節した吸収液6を17m3 /Hの供給量にて、散液装置
11より吸収塔4の最上段の多孔板5上に給液し、吸収
帯域において吸収液6と排ガス1を向流接触させた。吸
収帯域の圧損は約130mmH2O であった。なお、循
環ライン9中の吸収液6の一部を排水8として310K
g/Hで系外に抜き出した。以上の排ガス処理を1ヶ月
行った。この結果、吸収塔4から排出された浄化ガスの
組成および系外に排出された排水8の性状は下記の通り
であった。
On the other hand, the absorption liquid 6 at the absorption zone outlet 10
PH control set value of 5.0, 30% by weight in the circulation line 9 after the storage tank 12 with a stirrer having a capacity of 4 m 3
The absorption liquid 6 whose pH has been adjusted while adding the magnesium hydroxide slurry 14 is supplied from the liquid dispersion device 11 onto the uppermost porous plate 5 of the absorption tower 4 at a supply amount of 17 m 3 / H, and the absorption band is supplied. , The absorbent 6 and the exhaust gas 1 were brought into countercurrent contact. Pressure loss of the absorption band was about 130mmH 2 O. A part of the absorbent 6 in the circulation line 9 is drained 8
It was extracted out of the system at g / H. The above exhaust gas treatment was performed for one month. As a result, the composition of the purified gas discharged from the absorption tower 4 and the properties of the wastewater 8 discharged outside the system were as follows.

【0021】(浄化ガス7の組成) (Composition of Purified Gas 7)

【0022】(排水8の組成) (Composition of drainage 8)

【0023】上記の結果から明らかなように、排ガスか
らのHCl、SO2 、HF及び煤塵の浄化率は高く、ま
た1ヵ月間の試験中、吸収塔の圧損上昇や除去性能の低
下は見られず、安定した運転が継続できた。更に、この
試験後吸収塔の内部点検をおこなったが、スケーリング
や煤塵の堆積、詰まりは認められなかった。
As is clear from the above results, the purification rate of HCl, SO 2 , HF and dust from the exhaust gas is high, and during the one-month test, an increase in the pressure drop of the absorption tower and a decrease in the removal performance are observed. And stable operation could be continued. Further, after the test, the inside of the absorption tower was inspected, but no scaling, accumulation of dust and clogging were observed.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
塩化水素、硫黄酸化物、フッ化水素及び煤塵等の有害物
質を含む排ガスの処理に当り、安価な水酸化マグネシウ
ムのみを用い、スラリー、煤塵等の沈積、固着を生ずる
ことなく、排ガスを効率的に処理することができる。
As described above, according to the present invention,
In the treatment of exhaust gas containing harmful substances such as hydrogen chloride, sulfur oxide, hydrogen fluoride and dust, only inexpensive magnesium hydroxide is used, and the exhaust gas is efficiently removed without depositing and sticking of slurry and dust. Can be processed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る排ガス処理装置の一実施例を示す
概略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of an exhaust gas treatment apparatus according to the present invention.

【図2】本発明の無堰の多孔板上における排ガスと吸収
液との接触状況を示す説明図である。
FIG. 2 is an explanatory diagram showing a contact state between exhaust gas and an absorbent on a non-weird perforated plate of the present invention.

【符号の説明】[Explanation of symbols]

1 排ガス、2 冷却塔、3 水スプレー、4 吸収
塔、5 多孔板、6 吸収液、7 浄化ガス、8 排
水、9 循環ライン、10 pH検知装置、11散液装
置、12 貯留槽、13 ポンプ、14 水酸化マグネ
シウムスラリー
Reference Signs List 1 exhaust gas, 2 cooling tower, 3 water spray, 4 absorption tower, 5 perforated plate, 6 absorption liquid, 7 purification gas, 8 drainage, 9 circulation line, 10 pH detection device, 11 liquid dispersion device, 12 storage tank, 13 pump , 14 magnesium hydroxide slurry

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01D 53/77 B01D 53/34 134D (56)参考文献 特開 平3−26316(JP,A) 特開 昭61−157329(JP,A) 特開 平3−4919(JP,A) 特開 平5−111615(JP,A) 特開 昭51−39463(JP,A) 特開 昭50−104436(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/34 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification symbol FI B01D 53/77 B01D 53/34 134D (56) References JP-A-3-26316 (JP, A) JP-A-61-157329 ( JP, A) JP-A-3-4919 (JP, A) JP-A-5-111615 (JP, A) JP-A-51-39463 (JP, A) JP-A-50-104436 (JP, A) (58) ) Surveyed field (Int.Cl. 7 , DB name) B01D 53/34

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 塩化水素、硫黄酸化物、フッ化水素及び
煤塵を含む焼却炉排ガスを水酸化マグネシウムを含む吸
収液と接触させて、排ガス中の有害物質を吸収除去する
排ガスの処理方法において、無堰の多孔板を複数段に設
けた吸収帯域で排ガスと吸収液とを向流にて接触させ
接触後の吸収液を循環ラインにより前記吸収帯域に循環
させるとともに、吸収帯域最下段より流下する吸収液の
pHを吸収帯域出口において検知し、当該pHが一定
範囲となるように循環ラインに水酸化マグネシウムを供
給し、当該水酸化マグネシウムの供給量を、検知された
pHに基づいて調整することを特徴とする焼却炉排ガス
の処理方法。
1. Hydrogen chloride, sulfur oxide, hydrogen fluoride and
The incinerator exhaust gas containing dust is contacted with the absorption liquid containing magnesium hydroxide, in the processing method of an exhaust gas to remove absorbed harmful substances in the exhaust gas, the exhaust gas in the absorption band having a perforated plate Museki in a plurality of stages And the absorbent in contact with each other in countercurrent ,
The absorbent after contact is circulated to the absorption zone by the circulation line
It is allowed Rutotomoni, the pH of the absorption liquid flowing down from the absorption zone bottom to detect the absorption zone outlet, of the pH is constant
Subjected magnesium hydroxide into the circulation line to be in the range
A method for treating incinerator exhaust gas , wherein the amount of magnesium hydroxide supplied is adjusted based on the detected pH.
【請求項2】 排ガスを冷却帯域で予め水スプレー及び
濡れ壁により冷却した後、吸収帯域に送入して吸収液と
接触させる請求項1記載の排ガスの処理方法。
2. The method for treating exhaust gas according to claim 1, wherein the exhaust gas is cooled in advance by a water spray and a wetting wall in a cooling zone and then sent to an absorption zone to be brought into contact with an absorbing liquid.
【請求項3】 吸収帯域最下段より流下する吸収液pH
が2〜6の範囲内の特定値とする請求項1または請求項
2記載の排ガスの処理方法。
3. The pH of the absorbent flowing down from the lowermost stage of the absorption zone.
The exhaust gas treatment method according to claim 1 or 2, wherein is a specific value within a range of 2 to 6.
【請求項4】 塩化水素、硫黄酸化物、フッ化水素及び
煤塵を含む焼却炉排ガスを処理する焼却炉排ガス処理装
置であって、前記焼却炉排ガスと水酸化マグネシウムを
含む吸収液とを向流接触させるための無堰の多孔板を複
数段配設した吸収帯域と、接触後の吸収液を吸収帯域に
循環させる循環ラインと、吸収帯域最下段を通過した吸
収液のpHを吸収帯域出口で検知する検知手段と、前記
検知手段により検知されたpHに基づいて、循環ライン
に水酸化マグネシウムを供給することにより吸収帯域に
供給される吸収液中に含まれる水酸化マグネシウム量
御して吸収帯域最下段を流下する吸収液pHを制御す
るpH制御手段とを有することを特徴とする排ガス処理
装置。
4. Hydrogen chloride, sulfur oxide, hydrogen fluoride and
Incinerator exhaust gas treatment equipment for treating incinerator exhaust gas containing dust
An absorption zone in which a plurality of non-weired perforated plates for countercurrently contacting the incinerator exhaust gas and the absorption solution containing magnesium hydroxide are arranged, and the absorption solution after contact is used as the absorption zone.
A circulation line for circulating a detecting means for detecting the pH of the absorbing liquid which has passed through the absorption zone bottom at the absorption zone outlet, the
Circulation line based on the pH detected by the detection means.
The amount of magnesium hydroxide contained in the absorption liquid supplied to the absorption zone by supplying magnesium hydroxide to
Control exhaust gas treatment apparatus characterized by having a pH control means for controlling the absorption liquid pH to control to flowing down the absorption zone bottom.
JP23614193A 1993-09-22 1993-09-22 Exhaust gas treatment method and apparatus Expired - Fee Related JP3335725B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23614193A JP3335725B2 (en) 1993-09-22 1993-09-22 Exhaust gas treatment method and apparatus
CN94115846A CN1102792A (en) 1993-09-22 1994-08-24 Method and apparatus for treating waste gas
TW083108416A TW256783B (en) 1993-09-22 1994-09-13
KR1019940023660A KR0136645B1 (en) 1993-09-22 1994-09-16 Method and apparatus for treating waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23614193A JP3335725B2 (en) 1993-09-22 1993-09-22 Exhaust gas treatment method and apparatus

Publications (2)

Publication Number Publication Date
JPH0788325A JPH0788325A (en) 1995-04-04
JP3335725B2 true JP3335725B2 (en) 2002-10-21

Family

ID=16996371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23614193A Expired - Fee Related JP3335725B2 (en) 1993-09-22 1993-09-22 Exhaust gas treatment method and apparatus

Country Status (4)

Country Link
JP (1) JP3335725B2 (en)
KR (1) KR0136645B1 (en)
CN (1) CN1102792A (en)
TW (1) TW256783B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030010207A (en) * 2001-07-26 2003-02-05 김영택 Waste gas treatment system
ITMI20030476A1 (en) * 2003-03-13 2004-09-14 Nicola Riccardi DEVICE AND WET CHILLING PROCEDURE.
JP5222242B2 (en) * 2009-07-10 2013-06-26 株式会社クレハ環境 Incinerator exhaust gas removal method
JP5660771B2 (en) * 2009-10-26 2015-01-28 千代田化工建設株式会社 Exhaust gas treatment equipment
CN102631833A (en) * 2012-03-30 2012-08-15 无锡市盛力达机械工程有限公司 Multistage acid mist treatment tower
CN105154693A (en) * 2015-09-10 2015-12-16 蒋艳 Efficient smelting device
CN108246078A (en) * 2016-12-28 2018-07-06 天津普洛仙科技有限公司 A kind of absorption plant for handling sulfurous gas
CN108636064A (en) * 2018-06-01 2018-10-12 青海盐湖工业股份有限公司 One kind is to containing HCl and MgCl2The method and system that is handled of exhaust gas
CN109200764B (en) * 2018-10-17 2020-03-10 杨松 Use method for preparing electronic-grade hydrogen fluoride washing and absorbing device
JP7196575B2 (en) * 2018-12-03 2022-12-27 住友金属鉱山株式会社 Method for detoxifying exhaust gas containing sulfur dioxide
CN115253606A (en) * 2022-08-16 2022-11-01 无锡雪浪环境科技股份有限公司 Comprehensive hazardous waste incineration flue gas treatment method
CN115608135B (en) * 2022-10-08 2023-05-12 湖北泰盛化工有限公司 Self-consistent recycling treatment method for salt-containing wastewater and hydrochloric acid-containing waste gas

Also Published As

Publication number Publication date
KR0136645B1 (en) 1998-04-25
KR950007929A (en) 1995-04-15
CN1102792A (en) 1995-05-24
TW256783B (en) 1995-09-11
JPH0788325A (en) 1995-04-04

Similar Documents

Publication Publication Date Title
EP0139802B1 (en) Flue gas desulfurization process
KR100382444B1 (en) Flue gas cleaning device
US6534024B2 (en) Exhaust gas treatment process
JP3335725B2 (en) Exhaust gas treatment method and apparatus
JP5000557B2 (en) Wet flue gas desulfurization equipment
JPS61178022A (en) Simultaneous treatment of so2, so3 and dust
JPH0852323A (en) Application of regenerating type scrubber by condensation type heat exchanger
JPH10290919A (en) Stack gas treatment equipment and treatment of stack gas
US6863875B1 (en) Flue gas treating system and process
US4487748A (en) Process for treating exhaust gases
JP4587197B2 (en) Wet flue gas desulfurization method and apparatus
JP2740533B2 (en) Wet exhaust gas desulfurization method
JP3337382B2 (en) Exhaust gas treatment method
CN109550338A (en) A kind of flue gas desulfurization denitration dust-removing technique
JP3572188B2 (en) Exhaust gas treatment method
CN207856650U (en) A kind of spray scattering tower
EP0853971A1 (en) Apparatus and method for wet type simultaneous decontaminating and dust-removing gas treatment
JPH08299754A (en) Wet flue gas desulfurization method and device therefor
JP3305001B2 (en) Method for removing carbon dioxide and sulfur oxides from flue gas
JP3174665B2 (en) Flue gas desulfurization method
JP3358904B2 (en) Exhaust gas treatment method
JPH10216473A (en) Wet stack gas desurfurizing device
JP2805497B2 (en) Treatment of wet flue gas desulfurization wastewater
JPH06210126A (en) Method and device for treating waste gas
JPS61181519A (en) Treatment of waste liquid in waste gas treating apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020723

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130802

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130802

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130802

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees