Nothing Special   »   [go: up one dir, main page]

JP3314826B2 - Thermoplastic composite sheet - Google Patents

Thermoplastic composite sheet

Info

Publication number
JP3314826B2
JP3314826B2 JP16470093A JP16470093A JP3314826B2 JP 3314826 B2 JP3314826 B2 JP 3314826B2 JP 16470093 A JP16470093 A JP 16470093A JP 16470093 A JP16470093 A JP 16470093A JP 3314826 B2 JP3314826 B2 JP 3314826B2
Authority
JP
Japan
Prior art keywords
fiber
fibers
discontinuous
thermoplastic matrix
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16470093A
Other languages
Japanese (ja)
Other versions
JPH0718098A (en
Inventor
修 小野
俊明 北洞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP16470093A priority Critical patent/JP3314826B2/en
Publication of JPH0718098A publication Critical patent/JPH0718098A/en
Application granted granted Critical
Publication of JP3314826B2 publication Critical patent/JP3314826B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は強化繊維中に熱可塑性マ
トリックス樹脂が均一に含浸した熱可塑性コンポジット
用シートに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoplastic composite sheet in which a reinforcing matrix fiber is uniformly impregnated with a thermoplastic matrix resin.

【0002】[0002]

【従来の技術】従来から本分野の商品として連続強化繊
維に熱硬化性樹脂もしくは熱可塑性樹脂を含浸させたシ
ート状のプレプリグが存在する。しかし、これらの成形
材料を積層しある構造体に成形して得られる成形品の層
間剥離強度は強化繊維の強化方向に比べて極めて低いと
いう問題が存在する。このため成形品を長期にわたって
使用する場合等、層間からの剥離が生じ強度の低下、信
頼性の低下等の問題が生じ、優れた機械特性を有する繊
維強化複合材料の特徴が十分活かされていない現状にあ
る。
2. Description of the Related Art Conventionally, as a product in this field, there has been a sheet-shaped prepreg obtained by impregnating a continuous reinforcing fiber with a thermosetting resin or a thermoplastic resin. However, there is a problem that a molded product obtained by laminating these molding materials into a certain structure has an extremely low delamination strength as compared with the reinforcing direction of the reinforcing fibers. For this reason, when a molded product is used for a long period of time, peeling between layers occurs, causing problems such as a decrease in strength and a decrease in reliability, and the characteristics of a fiber-reinforced composite material having excellent mechanical properties are not sufficiently utilized. In the current situation.

【0003】[0003]

【発明が解決しようとする課題】本発明は前記事情を考
慮してなされたものであり、その目的は成形して得られ
る成形品の層間および/または層内剥離強度が改善され
た熱可塑性コンポジット用シートを提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above circumstances, and has as its object to provide a thermoplastic composite having improved interlayer and / or intralamellar peel strength of a molded product obtained by molding. To provide a sheet for use.

【0004】上記課題を解決するため鋭意研究を行った
結果本発明を完成するに至った。
As a result of intensive studies to solve the above problems, the present invention has been completed.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明は、下
記の(I)〜(III)の要件を満たすコンポジット用ヤ
ーンからなり、且つ臨界歪エネルギー解放率が1. 0K
J/m2以上であることを特徴とする熱可塑性コンポジ
ット用シート、(I)非連続強化繊維、非連続熱可塑性
マトリックス繊維及び連続熱可塑性マトリックス繊維か
らなり、(II)前記両非連続繊維が共に実質的に無撚で
あり、且つ混繊度が20%以上で混繊されており、(II
I)前記混繊されたものを、前記コンポジット用ヤーン
に対し重量比で1%以上10%以下の前記連続熱可塑性
マトリックス繊維で捲回被覆されている及び上記の
(I)〜(III)の要件を満たすコンポジット用ヤーン
をテキスタイル加工した後、前記非連続及び連続熱可塑
性マトリックス繊維の融点よりも高い温度で加圧し、前
記非連続及び連続熱可塑性マトリックス繊維を強化繊維
に含浸させることを特徴とする前記熱可塑性コンポジッ
ト用シートの製造方法を提供するものである。
That is, the present invention comprises a composite yarn satisfying the following requirements (I) to (III) and has a critical strain energy release rate of 1.0K.
J / m 2 or more, comprising: (I) a discontinuous reinforcing fiber, a discontinuous thermoplastic matrix fiber, and a continuous thermoplastic matrix fiber; and (II) the two discontinuous fibers are: Both are substantially non-twisted and are blended at a blending degree of 20% or more (II
I) The mixed fiber is wound and coated with the continuous thermoplastic matrix fiber in a weight ratio of 1% or more and 10% or less with respect to the composite yarn, and the above-mentioned (I) to (III) After textile processing a composite yarn satisfying the requirements, pressurizing at a temperature higher than the melting point of the discontinuous and continuous thermoplastic matrix fibers, impregnating the discontinuous and continuous thermoplastic matrix fibers into reinforcing fibers. To provide a method for producing the thermoplastic composite sheet.

【0006】なお、ここで混繊度は式1により定義す
る。
Here, the degree of blending is defined by Equation 1.

【数1】 但し、上記式に於いて、Nは非連続強化繊維の総本数、
NcXは非連続強化繊維がいくつかの群に分割されてい
るときのその群の個数、Xはある特定な1個の群内のフ
ィラメント数を示す。また、100(N−X)/(N−
1)は混繊状態を意味し、Xが小さい程混繊状態が良好
であり、NcX/(N/X)はフィラメントが混繊糸全
体の中で、視覚効果上どの程度の重要性を持つかを意味
する。
(Equation 1) However, in the above formula, N is the total number of discontinuous reinforcing fibers,
NcX indicates the number of discontinuous reinforcing fibers when the group is divided into several groups, and X indicates the number of filaments in one specific group. Also, 100 (NX) / (N-
1) means a mixed fiber state, and the smaller X is, the better the mixed fiber state is, and NcX / (N / X) indicates how important the filament is to the visual effect in the whole mixed fiber. Or mean.

【0007】本発明に用いられる非連続強化繊維(以
下、繊維A)としては炭素繊維、アラミド繊維、ガラス
繊維等が挙げられる。但し、本発明に用いられる強化繊
維は上記の繊維に限定されるわけではない。
The discontinuous reinforcing fibers (hereinafter referred to as fiber A) used in the present invention include carbon fibers, aramid fibers, glass fibers and the like. However, the reinforcing fibers used in the present invention are not limited to the above fibers.

【0008】本発明に用いられる非連続及び連続熱可塑
性マトリックス繊維(以下、それぞれ繊維B、繊維C)
としてはポリエチレン、ポリプロピレン及びその共重合
体や変性体を含むポリオレフィン系繊維、ナイロン6、
ナイロン66、ナイロン12等のポリアミド繊維、ポリ
エチレンテレフタレート、ポリブチレンテレフタレート
等のポリエステル系繊維、ポリカーボネート繊維、ポリ
エーテルイミド繊維、ポリフェニレンサルファイド繊
維、ポリエーテルケトン繊維等が挙げられる。但し、本
発明に用いられる熱可塑性マトリックス繊維は上記の繊
維に限定されるわけではない。
[0008] Discontinuous and continuous thermoplastic matrix fibers used in the present invention (hereinafter referred to as fiber B and fiber C, respectively)
Polyolefin fibers including polyethylene, polypropylene and copolymers and modified products thereof, nylon 6,
Examples include polyamide fibers such as nylon 66 and nylon 12, polyester fibers such as polyethylene terephthalate and polybutylene terephthalate, polycarbonate fibers, polyetherimide fibers, polyphenylene sulfide fibers, and polyether ketone fibers. However, the thermoplastic matrix fibers used in the present invention are not limited to the above fibers.

【0009】本発明に用いられる繊維Aの重量比は、特
に限定されないが、熱可塑性コンポジット用ヤーンに対
して30〜80%の範囲が好ましい。
The weight ratio of the fiber A used in the present invention is not particularly limited, but is preferably in the range of 30 to 80% with respect to the thermoplastic composite yarn.

【0010】本発明に用いられる繊維Aと繊維Bは共に
実質的に無撚の繊維であることが必要である。これはテ
キスタイル加工した後に成形しコンポジット用シートを
作成する場合、成形時に繊維Aがずれることによりその
繊維の両端が三次元方向に配向してコンポジット用シー
トの機械特性を向上させるためである。
The fibers A and B used in the present invention need to be substantially non-twisted fibers. This is because, when a composite sheet is prepared by forming the composite sheet after the textile processing, the fibers A are displaced at the time of molding, and both ends of the fiber are oriented in a three-dimensional direction, thereby improving the mechanical properties of the composite sheet.

【0011】本発明に用いられる繊維Aと繊維Bの平均
繊維長は特に限定されないが、共に50mm以上であるこ
とが好ましい。
The average fiber length of the fibers A and B used in the present invention is not particularly limited, but it is preferable that both of them are 50 mm or more.

【0012】本発明に用いられる繊維Aと繊維Bは混繊
度20%以上で混繊されていることが必要である。これ
は混繊度が20%以上であれば溶融時に繊維Aへの繊維
Bの含浸が短時間に行われるが、混繊度が20%未満に
なると含浸に時間が掛かり不経済であり、また含浸が不
十分になるため成形品の機械的特性が低下するためであ
る。
The fibers A and B used in the present invention must be blended at a blending degree of 20% or more. This is because if the degree of mixing is 20% or more, impregnation of the fiber A into the fiber A is performed in a short time at the time of melting, but if the degree of mixing is less than 20%, the impregnation takes time and is uneconomical. This is because the mechanical properties of the molded product are reduced due to insufficient molding.

【0013】なお、混繊する手段としては、連続な強化
繊維と熱可塑性マトリックス繊維を別々に牽切しスライ
バーを得た後、それらのスライバーを混合、牽切し混合
スライバーを得る方法、あるいは連続な強化繊維を牽切
し、スライバーを得た後カード工程などにより得た熱可
塑性マトリックス繊維の非連続スライバーと連条工程あ
るいは粗紡工程で混合し、混合スライバーあるいは混合
粗糸を得る方法などいずれの手段でもよい。
[0013] As a means for mixing, a continuous reinforcing fiber and a thermoplastic matrix fiber are separately cut out to obtain a sliver, and then the slivers are mixed and cut out to obtain a mixed sliver, or a continuous sliver is obtained. Any of the methods such as a method of drawing a reinforced fiber, mixing a discontinuous sliver of a thermoplastic matrix fiber obtained by a card process or the like with a continuous process or a roving process after obtaining a sliver, and obtaining a mixed sliver or a mixed roving yarn Means may be used.

【0014】本発明に用いられる混繊糸は繊維Cにより
捲回被覆されており、繊維Cは熱可塑性コンポジット用
ヤーンに対し重量比が1%以上10%以下であることが
必要である。このようにすることによりテキスタイル加
工性とコンポジット物性を両立させることができるため
である。以下詳細に説明する。
The mixed fiber used in the present invention is wound and covered with the fiber C. The fiber C must have a weight ratio of 1% to 10% with respect to the thermoplastic composite yarn. By doing so, it is possible to achieve both textile processing properties and composite physical properties. This will be described in detail below.

【0015】なお、ここで言う重量比は式2により定義
する。 重量比={c/(a+b+c)}×100(%) (式2) a:繊維Aの量(g/m) b:繊維Bの量(g/m) c:繊維Cの量(g/m)
Incidentally, the weight ratio referred to here is defined by equation (2). Weight ratio = {c / (a + b + c)} × 100 (%) (Equation 2) a: Amount of fiber A (g / m) b: Amount of fiber B (g / m) c: Amount of fiber C (g / m) m)

【0016】実際の工程においては、熱可塑性コンポジ
ット用ヤーンは熱と圧力を加えられることにより繊維B
及びCが溶融し、繊維Aに含浸され、冷却過程を経て熱
可塑性コンポジット用シートとなる。従って、熱可塑性
コンポジット用シートの物性及び外観を支配する要因と
して上記2種(繊維B及びC)の熱可塑性マトリックス
繊維の溶融状態が上げられる。上記連続熱可塑性マトリ
ックス繊維の主たる役割はテキスタイル加工性にある。
すなわちテキスタイル加工時に繊維Aを損傷させること
なく得ることができ、さらに成形に供するための材料と
して所定の形状に裁断し、予備賦形することが満足にな
されることである。いったん予備賦形がなされたならば
その後は極力スムースに溶融し捲回被覆の痕跡を残さな
いことが重要である。繊維Cの痕跡が残っているとレジ
ンリッチ部が存在し成形品の表面外観を損なうのみなら
ず、成形品の機械的物性も低下する。また繊維Cによる
拘束力が成形中に働いて繊維A間のバラケが不十分とな
り繊維束間の物性も低下する。これらの欠点を発生させ
ないために繊維Cの重量比が10%以下であることが必
要となり、一方前記のテキスタイル加工性を満足させる
ためにその重量比が1%以上であることが必要となる。
In the actual process, the thermoplastic composite yarn is subjected to heat and pressure so that the fiber B
And C are melted and impregnated into the fiber A, and after a cooling process, become a thermoplastic composite sheet. Therefore, as a factor that governs the physical properties and appearance of the thermoplastic composite sheet, the molten state of the above two types of fibers (fibers B and C) is raised. The main role of the continuous thermoplastic matrix fibers is in textile processability.
That is, the fibers A can be obtained without damaging the fibers during the textile processing, and it is satisfactory that the fibers A are cut into a predetermined shape as a material to be subjected to molding and preformed. It is important that once the pre-shaping has been performed, it melts as smoothly as possible and leaves no trace of the wound coating. If traces of the fiber C remain, a resin-rich portion exists and not only impairs the surface appearance of the molded product, but also deteriorates the mechanical properties of the molded product. In addition, the binding force of the fibers C acts during molding, so that the dispersion between the fibers A becomes insufficient, and the physical properties between the fiber bundles also decrease. In order to avoid these drawbacks, the weight ratio of the fiber C needs to be 10% or less, and on the other hand, in order to satisfy the above-mentioned textile workability, the weight ratio needs to be 1% or more.

【0017】また、テキスタイル加工性を向上させるた
めには、繊維Cを前記混繊糸の糸軸方向に実質的に均一
分散させた状態で捲回被覆させることが好ましい。実質
的に均一分散させる手法としては、繊維Cを電気開繊装
置で開繊後該混繊糸に重ね合わせオシレーティングエプ
ロンローラーに供給することにより可能であるが、この
方法に限定されるわけではない。
Further, in order to improve the textile workability, it is preferable that the fiber C is wound and coated while being substantially uniformly dispersed in the yarn axis direction of the mixed fiber. As a method of substantially uniformly dispersing the fibers, the fibers C can be spread by an electric fiber spreader and then superimposed on the mixed fiber and supplied to an oscillating apron roller. However, the method is not limited to this method. Absent.

【0018】さらに、熱可塑性コンポジット用シートの
表面外観を向上させる手段として繊維Cの融点及び溶融
粘度を繊維Bよりも低くし、成形時の繊維Cの流動性を
良くすることも有効である。
Further, as a means for improving the surface appearance of the thermoplastic composite sheet, it is effective to lower the melting point and the melt viscosity of the fiber C than that of the fiber B to improve the fluidity of the fiber C during molding.

【0019】熱可塑性マトリックス繊維の表面処理剤と
しては、繊維製造工程及び後工程通過性を維持するた
め、いわゆる紡糸オイルが一般的に使用される。しか
し、この種の処理剤はコンポジットの強化繊維とマトリ
ックス界面の接着力を阻害するので本発明では極力用い
ない方が好ましい。
As a surface treating agent for the thermoplastic matrix fiber, a so-called spinning oil is generally used in order to maintain the fiber production process and the post-process passability. However, since this type of treating agent inhibits the adhesive force between the reinforcing fiber of the composite and the matrix interface, it is preferable not to use it as much as possible in the present invention.

【0020】このようにして得られたコンポジット用ヤ
ーンは、テキスタイル加工時、強化繊維の損傷を受ける
ことなく、ブレード、織物および編物などに加工され、
強化すべき方向に強化繊維を配列させることができる。
The composite yarn thus obtained is processed into a braid, a woven fabric, a knitted fabric or the like without damaging the reinforcing fibers during textile processing.
The reinforcing fibers can be arranged in the direction to be reinforced.

【0021】本発明に於いて、前記コンポジット用ヤー
ンはテキスタイル加工した後、成形工程に供される。そ
の際、繊維B及びCの融点以上の温度に加熱し、溶融状
態で加圧することにより繊維A間に含浸させて、熱可塑
性コンポジット用シートを成形する。ここで、テキスタ
イル加工とは、本発明のコンポジット用ヤーンからブレ
ード等を作製すること、本発明のコンポジット用ヤーン
を所望する厚さになるように配列及び/叉は積層するこ
と、あるいはこれらを組み合わせること等をいう。
In the present invention, the composite yarn is subjected to a textile processing and then subjected to a molding step. At this time, the fibers B and C are heated to a temperature equal to or higher than the melting point of the fibers, and the fibers A are impregnated by applying pressure in a molten state to form a thermoplastic composite sheet. Here, the textile processing refers to fabricating a blade or the like from the composite yarn of the present invention, arranging and / or laminating the composite yarn of the present invention to a desired thickness, or combining these. It means things.

【0022】本発明の熱可塑性コンポジット用シートの
臨界歪エネルギー解放率(以下、G1c)は1. 0kJ
/m2以上であることが必要である。これはG1cが1.
0kJ/m2未満では、得られた成形品を長期にわたっ
て使用する場合、特に層間からの剥離が生じ強度の低
下、信頼性の低下等の問題が生じるためである。よっ
て、本発明ではG1cを向上させるために強化繊維とし
て無撚の非連続繊維を用いる。これは、強化繊維が無撚
の非連続繊維であれば、熱可塑性マトリックス繊維の溶
融、加圧、含浸の過程で、連続強化繊維の場合に比べ、
強化繊維がコンポジット用ヤーンの周方向に容易に移動
することができると共にその両端が三次元方向に配向
し、熱可塑性コンポジット用シートの機械特性、つまり
G1cが向上するためである。
The critical strain energy release rate (G1c) of the thermoplastic composite sheet of the present invention is 1.0 kJ.
/ M 2 or more. This is G1c 1.
If it is less than 0 kJ / m 2 , when the obtained molded article is used for a long period of time, peeling off between layers occurs, and problems such as a decrease in strength and a decrease in reliability occur. Therefore, in the present invention, a non-twisted discontinuous fiber is used as the reinforcing fiber in order to improve G1c. This is because if the reinforcing fibers are non-twisted discontinuous fibers, the process of melting, pressing and impregnating the thermoplastic matrix fibers, compared with the case of continuous reinforcing fibers,
This is because the reinforcing fibers can easily move in the circumferential direction of the composite yarn, and both ends thereof are oriented in the three-dimensional direction, thereby improving the mechanical properties of the thermoplastic composite sheet, that is, G1c.

【0023】なお、G1c値は次のように求める。ま
ず、熱可塑性コンポジット用ヤーンを一方向に引き揃え
て積層し、金型の中で温度250℃、圧力10kg/c
2、保持時間10分の条件で加圧を行い、その後冷却
して金型から取り出し厚さ3mmの平板を作成する。な
お層間剥離部を作るために、金型への投入時に厚さ20
μmのアルミ箔を積層中央部に挿入する。成形された平
板を幅25mm、長さ150mmに切り出しダブルカン
チレバービーム(以下、DCB)試験片を作成し、この
DCB試験片を用いて引っ張り試験機により応力- 歪曲
線を求める。負荷速度は1mm/分とする。G1c値は
式3及び式4により算出する。 G1c=(3P12λ11/3)/(4A1BH) (式3) (a/2H)=A1λ11/3+A0 (式4) 但し、次の通りである。 P1:初期限界荷重(N) λ1:応力- 歪曲線における初期の弾性部分のコンプラ
イアンス(mm/N) H :板厚の半分(mm) A1:式4における直線の傾き((N/mm)1/3) A0:式4における直線の切片(無次元) B :試験片幅(mm) a :亀裂長さ(mm)
The G1c value is obtained as follows. First, the thermoplastic composite yarns are aligned in one direction and laminated, and a temperature of 250 ° C. and a pressure of 10 kg / c are set in a mold.
Pressurization is performed under the conditions of m 2 and a holding time of 10 minutes, then cooled and taken out of the mold to form a flat plate having a thickness of 3 mm. In addition, in order to form a delamination part, when the mold is put into a mold, the thickness is 20 mm.
A μm aluminum foil is inserted into the center of the stack. The formed flat plate is cut into a width of 25 mm and a length of 150 mm to prepare a double cantilever beam (hereinafter, DCB) test piece, and a stress-strain curve is obtained using the DCB test piece by a tensile tester. The load speed is 1 mm / min. The G1c value is calculated by Expressions 3 and 4. G1c = (3P1 2 λ1 1/3 ) / (4A1BH) (Equation 3) (a / 2H) = A1λ1 1/3 + A0 (Equation 4) However, it is as follows. P1: Initial limit load (N) λ1: Compliance of initial elastic part in stress-strain curve (mm / N) H: Half of plate thickness (mm) A1: Slope of straight line in equation 4 ((N / mm) 1 / 3 ) A0: Straight intercept in equation 4 (dimensionless) B: Specimen width (mm) a: Crack length (mm)

【0024】[0024]

【実施例】以下実施例を挙げて、本発明を具体的に説明
するが、本発明はこれらに何ら限定されるものではな
い。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0025】[0025]

【実施例1】繊維Aとして炭素繊維、繊維Bとしてナイ
ロン6繊維を用いた。両繊維は共に無撚で、平均繊維長
は共に70mmであった。これらの混繊糸に繊維Cとし
て40デニール/24フィラメントのナイロン6フィラ
メントをS方向とZ方向に捲回被覆し、コンポジット用
ヤーンを作製した。作成方法の詳細は次の通りである。
まず、繊維A及びBの牽切スライバーを得た後に練条機
にて混合しドラフトをかけることにより236ゲレン/
6ヤードの混繊糸とした。次に、該混合スライバーをド
ラフトした後に中空スピンドルによりナイロン6フィラ
メントを260t/mの条件にてS方向とZ方向に捲回
被覆し、Nm1.7のコンポジット用ヤーンを得た。該
ヤーン中の繊維Aの重量比は58%、繊維Cの重量比は
2%、混繊糸の混繊度は65%であった。前記のコンポ
ジット用ヤーンを一方向に引き揃えて積層し、金型の中
で温度250℃、圧力10kg/cm2、保持時間10
分の条件で加圧を行い、その後冷却して金型から取り出
し厚さ3mmの平板を作成した。なお層間剥離部を作る
ために、金型への投入時に厚さ20μmのアルミ箔を積
層中央部に挿入した。成形された平板を幅25mm、長
さ150mmに切り出しDCB試験片を作成し、引っ張
り試験機を用いてG1C を求めた。G1C 値は1. 8k
J/m2であった。
Example 1 Carbon fiber was used as fiber A and nylon 6 fiber was used as fiber B. Both fibers were untwisted and the average fiber length was 70 mm. These mixed yarns were wound and coated with nylon 6 filaments of 40 denier / 24 filaments as the fiber C in the S direction and the Z direction to prepare a composite yarn. Details of the creation method are as follows.
First, traction slivers of fibers A and B were obtained, mixed with a drawing machine and drafted to obtain 236 gel /
The mixed yarn was 6 yards. Next, after drafting the mixed sliver, a nylon 6 filament was wound and coated in a S direction and a Z direction by a hollow spindle under a condition of 260 t / m to obtain a composite yarn of Nm 1.7. The weight ratio of the fiber A in the yarn was 58%, the weight ratio of the fiber C was 2%, and the degree of mixing of the mixed fiber was 65%. The above-described composite yarns are aligned in one direction and laminated, and in a mold, the temperature is 250 ° C., the pressure is 10 kg / cm 2 , and the holding time is 10 minutes.
Min., And then cooled and taken out of the mold to form a flat plate having a thickness of 3 mm. In addition, in order to form an interlayer peeling part, an aluminum foil having a thickness of 20 μm was inserted into the center of the lamination at the time of charging into a mold. The formed flat plate was cut into a width of 25 mm and a length of 150 mm to prepare a DCB test piece, and G1C was determined using a tensile tester. G1C value is 1.8k
J / m 2 .

【0026】[0026]

【比較例1】繊維Aの代わりに12Kの連続炭素繊維、
繊維Bの代わりに6000デニール/580フィラメン
トの連続ナイロン6繊維を用いて混繊糸を作成した。作
成方法は炭素繊維とナイロン6繊維を引き揃えて空気ノ
ズルに供給し空気圧0. 7kg/cm2で交絡処理を施
し11200デニールの混繊糸を得た。炭素繊維の重量
比は56%であり、混繊度は30%であった。得られた
混繊糸より実施例1と同じ方法でDCB試験片を作成
し、引っ張り試験機を用いてG1cを求めた。G1cの
値は0. 8kJ/m2であった。
Comparative Example 1 Continuous carbon fiber of 12K instead of fiber A,
A mixed fiber was prepared using continuous nylon 6 fiber of 6000 denier / 580 filament instead of fiber B. The carbon fiber and the nylon 6 fiber were aligned and supplied to an air nozzle and entangled at an air pressure of 0.7 kg / cm 2 to obtain a mixed fiber of 11200 denier. The weight ratio of the carbon fibers was 56%, and the degree of fiber mixture was 30%. A DCB test piece was prepared from the obtained mixed fiber in the same manner as in Example 1, and G1c was determined using a tensile tester. The value of G1c was 0.8 kJ / m 2 .

【0027】[0027]

【比較例2】繊維Aの代わりに12Kの炭素繊維、繊維
Bの代わりに熱硬化性のビスフェノール系エポキシ樹脂
を用いてプリプレグを作成した。プリプレグ中の強化繊
維の重量比は60%であった。得られたプリプレグより
実施例1と同じ方法でDCB試験片を作成し、引っ張り
試験機を用いてG1cを求めた。G1cの値は0. 2k
J/m2であった。
Comparative Example 2 A prepreg was prepared using 12K carbon fiber in place of fiber A and a thermosetting bisphenol-based epoxy resin in place of fiber B. The weight ratio of the reinforcing fibers in the prepreg was 60%. A DCB test piece was prepared from the obtained prepreg in the same manner as in Example 1, and G1c was determined using a tensile tester. The value of G1c is 0.2k
J / m 2 .

【0028】[0028]

【発明の効果】本発明は以上の構成から明らかなよう
に、強化繊維中に熱可塑性マトリックス樹脂が均一に含
浸したことにより、成形して得られる成形品の層間及び
/叉は層内剥離強度が改善された熱可塑性コンポジット
用シート並びにその製造方法を提供するものである。具
体的には、本発明の熱可塑性コンポジット用シートは、
テニスやバドミントンのラケット用フレームあるいはバ
ット、またゴルフクラブのヘッドなどに適用可能であ
る。このように、本発明の熱可塑性コンポジット用シー
トは、広範囲の用途に適用可能であり、その効果は大で
ある。
According to the present invention, as is apparent from the above constitution, the peel strength between layers and / or between layers of a molded product obtained by molding is obtained by uniformly impregnating the reinforcing fiber with the thermoplastic matrix resin. And a method for producing the same. Specifically, the thermoplastic composite sheet of the present invention,
The present invention is applicable to a racket frame or bat for tennis or badminton, a golf club head, or the like. As described above, the thermoplastic composite sheet of the present invention can be applied to a wide range of uses, and the effect is great.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B29B 11/16 B29B 15/08 - 15/14 C08J 5/04 - 5/10 C08J 5/24 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) B29B 11/16 B29B 15/08-15/14 C08J 5/04-5/10 C08J 5/24

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記の(I)〜(III)の要件を満たす
コンポジット用ヤーンからなり、且つ臨界歪エネルギー
解放率が1. 0kJ/m2以上であることを特徴とする
熱可塑性コンポジット用シート。 (I)非連続強化繊維、非連続熱可塑性マトリックス繊
維及び連続熱可塑性マトリックス繊維からなり、(II)
前記両非連続繊維が共に実質的に無撚であり、且つ混繊
度が20%以上で混繊されており、(III)前記混繊さ
れたものを、前記コンポジット用ヤーンに対し重量比で
1%以上10%以下の前記連続熱可塑性マトリックス繊
維で捲回被覆されている
1. A thermoplastic composite sheet comprising a composite yarn satisfying the following requirements (I) to (III) and having a critical strain energy release rate of 1.0 kJ / m 2 or more. . (I) Consisting of discontinuous reinforcing fibers, discontinuous thermoplastic matrix fibers and continuous thermoplastic matrix fibers, (II)
Both of the discontinuous fibers are substantially non-twisted and are mixed with a degree of blending of 20% or more. (III) The blended fiber is mixed in a weight ratio of 1 to the composite yarn. % To 10% of the continuous thermoplastic matrix fiber.
【請求項2】 下記の(I)〜(III)の要件を満たす
コンポジット用ヤーンをテキスタイル加工した後、前記
非連続及び連続熱可塑性マトリックス繊維の融点よりも
高い温度で加圧し、前記非連続及び連続熱可塑性マトリ
ックス繊維を強化繊維に含浸させることを特徴とする請
求項1記載の熱可塑性コンポジット用シートの製造方
法。 (I)非連続強化繊維、非連続熱可塑性マトリックス繊
維及び連続熱可塑性マトリックス繊維からなり、(II)
前記両非連続繊維が共に実質的に無撚であり、且つ混繊
度が20%以上で混繊されており、(III)前記混繊さ
れたものを、前記コンポジット用ヤーンに対し重量比で
1%以上10%以下の前記連続熱可塑性マトリックス繊
維で捲回被覆されている
2. After textile processing a composite yarn satisfying the following requirements (I) to (III), the composite yarn is pressurized at a temperature higher than the melting point of the discontinuous and continuous thermoplastic matrix fibers. The method for producing a sheet for thermoplastic composite according to claim 1, wherein the continuous thermoplastic matrix fiber is impregnated into the reinforcing fiber. (I) Consisting of discontinuous reinforcing fibers, discontinuous thermoplastic matrix fibers and continuous thermoplastic matrix fibers, (II)
Both of the discontinuous fibers are substantially non-twisted and are mixed with a degree of blending of 20% or more. (III) The blended fiber is mixed in a weight ratio of 1 to the composite yarn. % To 10% of the continuous thermoplastic matrix fiber.
JP16470093A 1993-07-02 1993-07-02 Thermoplastic composite sheet Expired - Fee Related JP3314826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16470093A JP3314826B2 (en) 1993-07-02 1993-07-02 Thermoplastic composite sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16470093A JP3314826B2 (en) 1993-07-02 1993-07-02 Thermoplastic composite sheet

Publications (2)

Publication Number Publication Date
JPH0718098A JPH0718098A (en) 1995-01-20
JP3314826B2 true JP3314826B2 (en) 2002-08-19

Family

ID=15798216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16470093A Expired - Fee Related JP3314826B2 (en) 1993-07-02 1993-07-02 Thermoplastic composite sheet

Country Status (1)

Country Link
JP (1) JP3314826B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5471338B2 (en) * 2009-11-17 2014-04-16 東洋紡株式会社 Carbon long fiber reinforced polyamide composite material
JP5402584B2 (en) * 2009-12-02 2014-01-29 東洋紡株式会社 Carbon long fiber reinforced polyamide composite material

Also Published As

Publication number Publication date
JPH0718098A (en) 1995-01-20

Similar Documents

Publication Publication Date Title
JP6083377B2 (en) Carbon fiber composite material
JP5572947B2 (en) Molding material, fiber reinforced plastic, and production method thereof
US4104340A (en) Method of making structural member from prepreg sheet of fusible resin microfibers and heat-resistant reinforcing fibers
JPS62135537A (en) Flexible composite material and production thereof
JP5995150B2 (en) Carbon fiber composite material
JP2001064406A (en) Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof
US20200291557A1 (en) Unidirectional laid nonwoven and use thereof
KR20200141725A (en) Fabric for fiber reinforced plastic and manufacturing method thereof using the same
JPH07122190B2 (en) Preform yarn for thermoplastic composite material and method for producing the same
US20070003748A1 (en) Composite fabric product and method of manufacturing the same
JP3178562B2 (en) Yarn for thermoplastic composites
JP3314826B2 (en) Thermoplastic composite sheet
JP3345661B2 (en) Yarn for thermoplastic composites
JP3672043B2 (en) Thermoplastic composite continuous molding and continuous molding method
WO2005033390A2 (en) Composite fabric product and method of manufacturing the same
JP6364798B2 (en) Reinforcing fiber fabric and method for producing the same
JPH04183729A (en) Molding material for thermoplastic composite
JPH06107808A (en) Molding material for thermoplastic composite
JP3210694B2 (en) Method for producing fiber-reinforced composite material
JPH06294033A (en) Hybrid molding material for thermoplastic composite
JP3288302B2 (en) Continuous fiber reinforced thermoplastic prepreg sheet and molded product thereof
JP2536245B2 (en) Unidirectional reinforced composite fabric
JPH0359038A (en) Precursor of thermoplastic composite material and its production
JP3337089B2 (en) Composite fiber cloth
JP3561282B2 (en) Manufacturing method of composite material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees