Nothing Special   »   [go: up one dir, main page]

JP3309027B2 - Reluctant resolver - Google Patents

Reluctant resolver

Info

Publication number
JP3309027B2
JP3309027B2 JP01038295A JP1038295A JP3309027B2 JP 3309027 B2 JP3309027 B2 JP 3309027B2 JP 01038295 A JP01038295 A JP 01038295A JP 1038295 A JP1038295 A JP 1038295A JP 3309027 B2 JP3309027 B2 JP 3309027B2
Authority
JP
Japan
Prior art keywords
winding
voltage
phase
rotor
phase winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01038295A
Other languages
Japanese (ja)
Other versions
JPH08205502A (en
Inventor
伸二 柴田
康一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP01038295A priority Critical patent/JP3309027B2/en
Publication of JPH08205502A publication Critical patent/JPH08205502A/en
Application granted granted Critical
Publication of JP3309027B2 publication Critical patent/JP3309027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/2013Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/70Position sensors comprising a moving target with particular shapes, e.g. of soft magnetic targets
    • G01D2205/77Specific profiles
    • G01D2205/776Cam-shaped profiles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、工作機械のサーボモー
タ等の位置や速度の検出に用いられるリラクタンスレゾ
ルバに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reluctance resolver used for detecting the position and speed of a servomotor of a machine tool.

【0002】[0002]

【従来の技術】図4は従来技術のリラクタンスレゾルバ
の一例を示す説明図であり、図5は図4のリラクタンス
レゾルバの電気回路の一例を示すブロック図であり、図
6はそのタイミングチャートである。図4、図5、図6
において、タイミング発生器4は、同期した2つの信号
であるクロック信号CLKとホールド信号HDを発生す
る。励磁信号発生器5はクロック信号CLKに同期した
正弦波信号である励磁信号Veを発生する。この励磁信
号Veは、差動増幅器17により、電流増幅され励磁電
圧Vepになる。図4に示すように、ステータ3の内周
には、90゜の等間隔で配された、4つの硅素鋼鈑等の
磁性体からなる励磁突極A〜Dが設けられており、半径
方向で対向する励磁突極AとC、および励磁突極BとD
が、それぞれ180゜位相がずれている。励磁突極対A
及びCには、それぞれ巻線Lf及び巻線Lhが巻回さ
れ、励磁突極対B及びDには、それぞれ巻線Lg及び巻
線Liが巻回されている。各励磁突極A〜Dの端部は内
側に向いており、この端部によって囲まれた空間内にギ
ャップを介してロータ2が配されている。ロータ2は回
転軸1に対して偏心した円筒状の磁性体からなる。この
偏心形状により、ロータ2が回転すると、ロータ2と各
励磁突極A〜Dの端部との間のエアーギャップが回転角
度θに応じて変化し、このギャップの変化によって、0
゜、90゜、180゜、270゜の位相差をもち、ロー
タ2の1回転につき1周期分の三角関数に相当するイン
ダクタンス変化が各巻線Lf〜Liにもたらされる。
2. Description of the Related Art FIG. 4 is an explanatory view showing an example of a conventional reluctance resolver, FIG. 5 is a block diagram showing an example of an electric circuit of the reluctance resolver of FIG. 4, and FIG. 6 is a timing chart thereof. . 4, 5, and 6
, The timing generator 4 generates a clock signal CLK and a hold signal HD which are two synchronized signals. The excitation signal generator 5 generates an excitation signal Ve which is a sine wave signal synchronized with the clock signal CLK. The excitation signal Ve is current-amplified by the differential amplifier 17 to become an excitation voltage Vep. As shown in FIG. 4, on the inner periphery of the stator 3, four exciting salient poles A to D made of a magnetic material such as a silicon steel plate and arranged at equal intervals of 90 ° are provided. Exciting salient poles A and C, and exciting salient poles B and D
However, each is 180 ° out of phase. Excitation salient pole pair A
And C are wound with a winding Lf and a winding Lh, respectively, and the exciting salient pole pairs B and D are wound with a winding Lg and a winding Li, respectively. The ends of the exciting salient poles A to D face inward, and the rotor 2 is arranged via a gap in a space surrounded by the ends. The rotor 2 is made of a cylindrical magnetic body eccentric with respect to the rotation shaft 1. When the rotor 2 rotates due to this eccentric shape, the air gap between the rotor 2 and the end of each of the exciting salient poles A to D changes in accordance with the rotation angle θ.
With a phase difference of ゜, 90 ゜, 180 ゜, 270 変 化, an inductance change corresponding to a trigonometric function for one cycle per rotation of the rotor 2 is caused in each of the windings Lf to Li.

【0003】図5に示すように、巻線Lf〜Liの接続
端は、一方が差動増幅器17の出力と反転入力端子に、
もう一方がそれぞれ電流検出抵抗21〜24に接続され
ている。巻線Lf〜Liは、ロータ2の回転に伴うイン
ダクタンスの変化を電流の変化に変換し、電流検出抵抗
21〜24は、この電流の変化を電圧の変化に変換す
る。電流検出抵抗21〜24に発生した出力電圧Vf〜
Viは、それぞれ差動増幅器6、7に入力される。すな
わち、差動増幅器6の反転入力端子に出力電圧Vfが、
非反転入力端子に出力電圧Vhがそれぞれ入力され、差
動増幅器6の出力端子からはロータ2の回転角度θによ
り振幅が正弦波状に変調されたA相信号Vaが出力され
る。また、差動増幅器7の反転入力端子に出力電圧Vg
が、非反転入力端子に出力電圧Viがそれぞれ入力さ
れ、差動増幅器7の出力端子からはロータ2の回転角度
θにより振幅が正弦波状に変調されたB相信号Vbが出
力される。図4に矢印で示されるように、ロータ2が右
回りしている時は、B相信号はA相信号よりも位相が9
0゜進んで振幅が変化する。この様子が、図6にVa、
Vbとして示される。出力信号Vf〜Viは差動増幅器
6、7により増幅され、上述のようにA相信号Va及び
B相信号Vbとしてサンプル・アンド・ホールド回路
8、9に入力される。サンプル・アンド・ホールド回路
8、9は、ホールド信号HDが“L”レベルのとき入力
信号をサンプルし、“H”レベルのときそのサンプルさ
れた信号をホールドする。A/D変換器10、11は、
ホールド信号HDの立ち上がりで、サンプル・アンド・
ホールド回路8、9から出力されるアナログ信号をデジ
タル信号A、Bに変換する。内挿回路12は、デジタル
信号A、Bを割り算した結果のアークタンジェントをと
ることにより目的の角度θを算出し出力する。このよう
なリラクタンスレゾルバのVa、Vbを式で表す。今、
Lf〜LiのインピーダンスXf〜Xiを巻線の直流抵
抗rとロータ2の回転に伴うインダクタンスの変化分L
及び変化しないインダクタンスLoとして示すと、 Xf=r+jω・( Lo+L・cos(θ)) ・・・式1 Xg=r+jω・( Lo+L・cos(θ+90゜)) ・・・式2 Xh=r+jω・( Lo+L・cos(θ+180 ゜)) ・・・式3 Xi=r+jω・( Lo+L・cos(θ+270 ゜)) ・・・式4 となる。電流検出抵抗21〜24の抵抗値をRとする
と、出力信号Vf〜Viは、 Vf=Vep・R/( R+Xf) ・・・式5 Vg=Vep・R/( R+Xg) ・・・式6 Vh=Vep・R/( R+Xh) ・・・式7 Vi=Vep・R/( R+Xi) ・・・式8 となる。式5〜8に式1〜4を代入し整理すると、 Vf=Vep・R・( R+r−jω( Lo+L・cos(θ))) /((R+r) 2 +ω2 (Lo+L・cos(θ))2 ) ・・・式9 Vg=Vep・R・( R+r−jω( Lo+L・cos(θ+90゜))) /((R+r) 2 +ω2 (Lo+L・cos(θ+90゜))2 ) ・・・式10 Vh=Vep・R・( R+r−jω( Lo+L・cos(θ+180 ゜))) /((R+r) 2 +ω2 (Lo+L・cos(θ+180 ゜))2 ) ・・・式11 Vi=Vep・R・( R+r−jω( Lo+L・cos(θ+270 ゜))) /((R+r) 2 +ω2 (Lo+L・cos(θ+270 ゜))2 )・・・式12 ここで、Lo>>Lにより Lo≒Lo+L・cos(θ) ・・・式13 ≒Lo+L・cos(θ+90゜) ・・・式14 ≒Lo+L・cos(θ+180 ゜) ・・・式15 ≒Lo+L・cos(θ+270 ゜) ・・・式16 とする。一方、Va、Vbは Va=Vh−Vf ・・・式17 Vb=Vi−Vg ・・・式18 であるので、、式13〜16を式9〜12の分母側に代
入し、それを式17,18に代入して整理すると、 Va=2・Vep・R・jω・L・cos(θ) /((R+r) 2 +ω2 ・Lo2 ) ・・・式19 Vb=2・Vep・R・jω・L・cos(θ+90゜) /((R+r) 2 +ω2 ・Lo2 ) ・・・式20 となる。式19、20より、Va、Vbの振幅は、巻線
の直流抵抗rに依存していることがわかる。
As shown in FIG. 5, one end of a connection end of windings Lf to Li is connected to an output of a differential amplifier 17 and an inverting input terminal.
The other ends are connected to the current detection resistors 21 to 24, respectively. The windings Lf to Li convert a change in inductance due to the rotation of the rotor 2 into a change in current, and the current detection resistors 21 to 24 convert the change in current into a change in voltage. The output voltage Vf generated at the current detection resistors 21 to 24
Vi is input to the differential amplifiers 6 and 7, respectively. That is, the output voltage Vf is applied to the inverting input terminal of the differential amplifier 6,
An output voltage Vh is input to the non-inverting input terminal, and an A-phase signal Va whose amplitude is modulated in a sinusoidal manner by the rotation angle θ of the rotor 2 is output from the output terminal of the differential amplifier 6. The output voltage Vg is applied to the inverting input terminal of the differential amplifier 7.
However, the output voltage Vi is input to the non-inverting input terminal, and the output terminal of the differential amplifier 7 outputs a B-phase signal Vb whose amplitude is modulated in a sinusoidal manner by the rotation angle θ of the rotor 2. As shown by the arrow in FIG. 4, when the rotor 2 rotates clockwise, the phase of the B-phase signal is 9 times higher than that of the A-phase signal.
The amplitude changes by 0 °. This is shown in FIG.
Vb. The output signals Vf to Vi are amplified by the differential amplifiers 6 and 7 and input to the sample-and-hold circuits 8 and 9 as the A-phase signal Va and the B-phase signal Vb as described above. The sample and hold circuits 8 and 9 sample the input signal when the hold signal HD is at "L" level, and hold the sampled signal when it is at "H" level. The A / D converters 10, 11 are:
At the rising edge of the hold signal HD, sample and
The analog signals output from the hold circuits 8 and 9 are converted into digital signals A and B. The interpolation circuit 12 calculates and outputs the target angle θ by taking the arc tangent of the result of dividing the digital signals A and B. Va and Vb of such a reluctance resolver are represented by equations. now,
The impedances Xf to Xi of Lf to Li are represented by the DC resistance r of the winding and the change L of the inductance caused by the rotation of the rotor 2.
Xf = r + jω · (Lo + L · cos (θ)) ··· Equation 1 Xg = r + jω · (Lo + L · cos (θ + 90 °)) ··· Equation 2 Xh = r + jω · (Lo + L) Cos (θ + 180 °)) Formula 3 Xi = r + jω (Lo + Lcos (θ + 270 °)) Formula 4 Assuming that the resistance values of the current detection resistors 21 to 24 are R, the output signals Vf to Vi are as follows: Vf = Vep · R / (R + Xf) Equation 5 Vg = Vep · R / (R + Xg) Equation 6 Vh = Vep · R / (R + Xh) Equation 7 Vi = Vep · R / (R + Xi) Equation 8 Substituting Equations 1 to 4 into Equations 5 to 8 and rearranging, Vf = Vep · R · (R + r−jω (Lo + L · cos (θ))) / ((R + r) 2 + ω 2 (Lo + L · cos (θ)) 2 ) ・ ・ ・ Equation 9 Vg = Vep · R · (R + r−jω (Lo + L · cos (θ + 90 °))) / ((R + r) 2 + ω 2 (Lo + L · cos (θ + 90 °)) 2 ) 10 Vh = Vep · R · (R + r−jω (Lo + L · cos (θ + 180 °))) / ((R + r) 2 + ω 2 (Lo + L · cos (θ + 180 °)) 2 ) Equation 11 Vi = Vep · R · (R + r-jω ( Lo + L · cos (θ + 270 °))) / ((R + r) 2 + ω 2 (Lo + L · cos (θ + 270 °)) 2) formula 12 here, Lo >> L by Lo ≒ Lo + L・ Cos (θ) ・ ・ ・ Equation 13 ≒ Lo + L ・ cos (θ + 9013) ・ ・ ・ Equation 14 ≒ Lo + L ・ cos (θ + 180 ゜) ・ ・ ・ Equation 15 I do. On the other hand, Va and Vb are as follows: Va = Vh−Vf Expression 17 Vb = Vi−Vg Expression 18 Therefore, Expressions 13 to 16 are substituted into the denominator side of Expressions 9 to 12, and are substituted into Expressions Substituting into 17, 18 and rearranging, Va = 2 · Vep · R · jω · L · cos (θ) / ((R + r) 2 + ω 2 · Lo 2 ) Equation 19 Vb = 2 · Vep · R · jω · L · cos (θ + 90 °) / ((R + r) 2 + ω 2 · Lo 2) the equation 20. From Expressions 19 and 20, it can be seen that the amplitudes of Va and Vb depend on the DC resistance r of the winding.

【0004】[0004]

【発明が解決しようとする課題】このようなリラクタン
スレゾルバでは、周囲温度が上昇すると各巻線Lf〜L
iの直流抵抗値rが増加して励磁電流が減少するので、
検出信号の振幅が減少する。これにより、回転角度検出
の分解能が減少するという問題点があった。また、反対
に、周囲温度が下がると巻線の直流抵抗値が減少して検
出信号の振幅が増加する。これにより、A/D変換器1
0、11の入力レンジ範囲を超えてしまい、回転角度検
出に誤差が発生するという問題があった。このように従
来技術では、周囲温度の変化により検出信号の振幅が変
化するので、安定した信頼性の高い回転角度の検出がで
きなかった。更に、従来のリラクタンスレゾルバは、図
4、図5に示されるように、差動増幅器17の出力及び
差動増幅器6、7の4個の入力端子の合計5箇所で電気
回路と接続されている。また、電流検出用抵抗は4個使
用されている。このように、レゾルバ部分と電気回路部
分とをつなぐ線数や電流検出抵抗が多いので、装置が複
雑化し、部品コストや組み立てコストが高くなるという
問題もあった。本発明は、このような問題点を解決する
ためになされたものであり、検出信号の振幅の温度依存
性を無くし、安定した信頼性の高い回転位置検出を可能
とし、レゾルバ部分と電気回路部分をつなぐ線数や電子
部品数を減らし装置を簡素化した安価なリラクタンスレ
ゾルバを実現することを目的とする。
In such a reluctance resolver, when the ambient temperature rises, each winding Lf-L
Since the DC resistance r of i increases and the exciting current decreases,
The amplitude of the detection signal decreases. As a result, there is a problem that the resolution for detecting the rotation angle is reduced. Conversely, when the ambient temperature decreases, the DC resistance value of the winding decreases, and the amplitude of the detection signal increases. Thereby, the A / D converter 1
There is a problem that the input range exceeds the input range of 0 and 11 and an error occurs in the detection of the rotation angle. As described above, in the related art, since the amplitude of the detection signal changes due to a change in the ambient temperature, a stable and reliable rotation angle cannot be detected. Further, as shown in FIGS. 4 and 5, the conventional reluctance resolver is connected to an electric circuit at a total of five points including the output of the differential amplifier 17 and the four input terminals of the differential amplifiers 6 and 7. . Also, four current detecting resistors are used. As described above, since the number of lines connecting the resolver portion and the electric circuit portion and the number of current detection resistors are large, there has been a problem that the device becomes complicated and the cost of parts and assembly increases. The present invention has been made to solve such a problem, and eliminates the temperature dependency of the amplitude of a detection signal, enables stable and reliable rotation position detection, and has a resolver portion and an electric circuit portion. It is an object of the present invention to realize an inexpensive reluctance resolver in which the number of lines connecting electronic devices and the number of electronic components are reduced and the apparatus is simplified.

【0005】[0005]

【課題を解決するための手段】本発明は、工作機械のサ
ーボモータ等の位置や速度の検出に用いられるリラクタ
ンスレゾルバに関するものであり、本発明の上記目的
は、ロータの回転に応じて、インダクタンスが0゜、9
0゜、180゜、270゜の位相差をもって周期的に変
化する4組の巻線を備えたレゾルバにおいて、前記イン
ダクタンスの変化の位相が0゜と180゜の巻線を直列
接続した第1相巻線と、前記インダクタンスの変化の位
相が90゜と270゜の巻線を直列接続した第2相巻線
と、前記第1相巻線と前記第2相巻線とを並列接続し、
その両端に励磁電流を流すとともに、励磁電流を周囲温
度の変化に対して一定に保つ定電流励磁手段と、前記定
電流励磁手段の出力電圧に基づいて、ロータの回転角度
演算の基準となるオフセット電圧を発生するオフセット
電圧発生手段と、前記第1相巻線及び前記第2相巻線に
おける各直列接続点からそれぞれ出力される電圧と前記
オフセット電圧との差に基づいてロータの回転角度を演
算する内挿手段と、を含むことを特徴とする構成により
達成される。
SUMMARY OF THE INVENTION The present invention relates to a reluctance resolver used for detecting the position and speed of a servomotor or the like of a machine tool. Is 0 ゜, 9
In a resolver having four sets of windings that periodically change with a phase difference of 0 °, 180 °, and 270 °, a first phase in which windings of the inductance change of 0 ° and 180 ° are connected in series. A winding, a second phase winding in which windings having a change in inductance of 90 ° and 270 ° are connected in series, and the first phase winding and the second phase winding connected in parallel;
A constant current exciting means for supplying an exciting current to both ends thereof and keeping the exciting current constant with respect to a change in ambient temperature, and an offset serving as a reference for calculating a rotation angle of the rotor based on an output voltage of the constant current exciting means. Offset voltage generating means for generating a voltage, and calculating a rotation angle of the rotor based on a difference between the voltage output from each of the series connection points in the first phase winding and the second phase winding and the offset voltage. And an interpolating means.

【0006】[0006]

【作用】本発明にあっては、定電流励磁手段により巻線
を一定電流で励磁するので、検出信号の振幅の変化を無
くし、安定した信頼性の高い回転位置の検出ができるよ
うになる。そして、180゜位相のずれた巻線を直列に
接続して励磁と検出をしているので、レゾルバ部分と電
気回路部分とをつなぐ線数や電子部品数を減らし装置を
簡素化し安価にすることができる。
According to the present invention, since the winding is excited with a constant current by the constant current exciting means, a change in the amplitude of the detection signal is eliminated, and a stable and reliable rotation position can be detected. Since the windings 180 ° out of phase are connected in series for excitation and detection, the number of lines and electronic components connecting the resolver and the electric circuit are reduced, and the apparatus is simplified and inexpensive. Can be.

【0007】[0007]

【実施例】以下、図面に基づいて本発明の実施例につい
て詳細に説明する。図1は本発明のリラクタンスレゾル
バの一例を示す説明図であり、図2はその電気回路の一
例を示すブロック図であり、図3はそのタイミングチャ
ートである。図1、図2、図3で図4、図5、図6と同
一のものには同一符号を付ける。図1、図2、図3にお
いて、ステータ3及びロータ2の形状、ロータ2の回転
によって各巻線La〜Ldにもたらされるインダクタン
スの変化、励磁信号発生器5以前及び差動増幅器6、7
以後は従来例と同じだが、各巻線の接続方法、電気回路
側への接続線数、オフセット電圧のキャンセル方法及び
励磁電圧の制御方法が異なる。図1、図2、図3におい
て、ステータ3には、ロータ2の回転に応じて、インダ
クタンスが0゜、90゜、180゜、270゜の位相差
をもって周期的に変化する4組の巻線La〜Ldが巻回
されている。そして、インダクタンスの変化の位相が0
゜と180゜の巻線La,Lcが直列接続されて第1相
巻線が構成されている。また、インダクタンスの変化の
位相が90゜と270゜の巻線Lb,Ldが直列接続さ
れて第2相巻線が構成されている。第1相巻線と第2相
巻線とは並列接続されている。並列接続の一端は、差動
増幅器17の出力に、もう一端は接地抵抗器14に接続
されている。更に、第1相巻線における巻線Laと巻線
Lcとの直列接続点NACは、差動増幅器6の反転入力
端子に、第2相巻線における巻線Lbと巻線Ldとの直
列接続点NBDは、差動増幅器7の反転入力端子にそれ
ぞれ入力されている。図2に示されるように、電気回路
側への接続線数は図5に示される従来よりも1本少ない
4本である。また、図2において、抵抗器15の片側は
差動増幅器17の出力に、もう一方は抵抗器16と差動
増幅器6、7の非反転入力端子に接続される。抵抗器1
6のもう一方は、接地抵抗器14と差動増幅器17の反
転入力端子に接続される。抵抗器の数は図5に示される
従来よりも1個少ない3個である。尚、接地抵抗器14
は温度特性の良い(具体的には抵抗値の温度変化が小さ
い)ものを、抵抗器15と抵抗器16の抵抗値は相対精
度の等しい(具体的には温度特性と抵抗値が等しい)も
のとする。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is an explanatory diagram showing an example of the reluctance resolver of the present invention, FIG. 2 is a block diagram showing an example of an electric circuit thereof, and FIG. 3 is a timing chart thereof. In FIGS. 1, 2, and 3, the same components as those in FIGS. 4, 5, and 6 are denoted by the same reference numerals. 1, 2, and 3, the shapes of the stator 3 and the rotor 2, changes in inductance brought to the windings La to Ld by the rotation of the rotor 2, the excitation signal generator 5, and the differential amplifiers 6 and 7.
Subsequent steps are the same as in the conventional example, but differ in the method of connecting the windings, the number of lines connected to the electric circuit, the method of canceling the offset voltage, and the method of controlling the excitation voltage. 1, 2 and 3, a stator 3 has four sets of windings whose inductance periodically changes with a phase difference of 0 °, 90 °, 180 °, and 270 ° according to the rotation of the rotor 2. La to Ld are wound. And the phase of the change in inductance is 0
゜ and 180 ° windings La and Lc are connected in series to form a first phase winding. Further, the windings Lb and Ld having phases of change of inductance of 90 ° and 270 ° are connected in series to form a second phase winding. The first phase winding and the second phase winding are connected in parallel. One end of the parallel connection is connected to the output of the differential amplifier 17, and the other end is connected to the ground resistor 14. Further, a series connection point NAC between the winding La and the winding Lc in the first phase winding is connected to the inverting input terminal of the differential amplifier 6 in series connection between the winding Lb and the winding Ld in the second phase winding. The point NBD is input to each of the inverting input terminals of the differential amplifier 7. As shown in FIG. 2, the number of connection lines to the electric circuit is four, one less than the conventional one shown in FIG. 2, one side of the resistor 15 is connected to the output of the differential amplifier 17, and the other side is connected to the resistor 16 and the non-inverting input terminals of the differential amplifiers 6 and 7. Resistor 1
6 is connected to the grounding resistor 14 and the inverting input terminal of the differential amplifier 17. The number of resistors is three, one less than the conventional one shown in FIG. In addition, the grounding resistor 14
Indicates that the temperature characteristics are good (specifically, the temperature change of the resistance value is small), and that the resistance values of the resistors 15 and 16 have the same relative accuracy (specifically, the temperature characteristics and the resistance value are equal). And

【0008】このように構成することで、巻線を流れる
すべての電流は、接地抵抗器14を流れるので、接地抵
抗器14に発生する電圧Venを励磁電圧Vepに負帰
還をかけることにより、励磁電圧Veに比例した励磁電
流を常に流すことができるので、検出信号の振幅の温度
依存性を無くすことができる。更に詳しく説明すると、
もし、周囲温度の上昇により巻線の直流抵抗値が増加す
ると、接地抵抗器14に流れる電流が減少し電圧Ven
が低下する。これにより、接地抵抗器14に接続される
差動増幅器17の反転入力端子の電位も下がる。する
と、差動増幅器17の差動入力電圧が上昇して励磁電圧
Vepが上がるので、巻線を流れる電流は増加する。反
対に周囲温度が低下して巻線の直流抵抗値が減少する
と、電圧Venが上昇し励磁電圧Vepが低下して巻線
を流れる電流が減少する。以上の動作により巻線を流れ
る電流は周囲温度の影響を受けない。従って、接地抵抗
器14と差動増幅器17とにより本発明の定電流励磁手
段が構成される。次に、抵抗器15と抵抗器16の接続
点の電圧Vofsは、巻線Laと巻線Lcとの直列接続
点NACの電圧Vac及び、巻線Lbと巻線Ldとの直
列接続点NBDの電圧Vbdのオフセット電圧である。
この様子が、図3にVofsとして示される。従って、
抵抗器15と抵抗器16とで本発明のオフセット電圧発
生手段を構成する。また、直列接続点NACの電圧Va
c及び直列接続点NBDの電圧Vbdは、ロータ2の回
転に伴う巻線Laと巻線Lc及び巻線Lbと巻線Ldの
インダクタンス変化に基づき振幅が正弦波状に変調され
た電圧となっている。この様子が、図3にVac及びV
bdとして示される。差動増幅器6では、上記オフセッ
ト電圧Vofsから接続点NACの電圧Vacが引か
れ、A/D変換器10の入力レンジの中点電位を中心に
増幅が行われ、サンプル・アンド・ホールド回路8に入
力される。この差動増幅器6の出力信号は、ロータ2の
回転角度により振幅が正弦波状に変調されたA相信号V
aとなっている。同様にして、差動増幅器7では、上記
オフセット電圧Vofsから接続点NBDの電圧Vbd
が引かれ、A/D変換器11の入力レンジの中点電位を
中心に増幅が行われ、サンプル・アンド・ホールド回路
9に入力される。この差動増幅器7の出力信号は、ロー
タ2の回転角度により振幅が正弦波状に変調されたB相
信号Vbとなっているが、ロータ2が右回りしている時
は、A相信号よりも位相が90゜進んで振幅が変化す
る。以上より、オフセット電圧Vofsは、差動増幅器
6、7の出力信号Va、Vbの振幅がA/D変換器1
0、11の入力レンジ範囲を超えないような基準を設定
するものであり、ロータの回転角度演算の基準電圧とな
っている。これにより、A/D変換器10、11への入
力信号が入力レンジ範囲を超えることにより発生する回
転角度検出の誤差をなくすことができる。上述したA
相、B相信号Va、Vbは、サンプル・アンド・ホール
ド回路8、9とA/D変換器10、11と内挿回路12
により従来技術と同様にして目的の回転角度θに変換さ
れ、内挿回路12から出力される。このようなリラクタ
ンスレゾルバのVa、Vbを式で表す。従来例と同様
に、La〜LdのインピーダンスXa〜Xdを巻線の直
流抵抗rとロータ2の回転に伴うインダクタンスの変化
分L及び変化しないインダクタンスLoとして示すと、 Xa=r+jω・( Lo+L・cos(θ)) ・・・式21 Xb=r+jω・( Lo+L・cos(θ+90゜)) ・・・式22 Xc=r+jω・( Lo+L・cos(θ+180 ゜)) ・・・式23 Xd=r+jω・( Lo+L・cos(θ+270 ゜)) ・・・式24 となる。そして、接地抵抗器14に流れる電流をIとす
ると、巻線La〜Ldに流れる電流は、式21〜24の
関係によりXa+XcとXb+Xdの抵抗値が等しいこ
とから、各電流の振幅と位相は等しくなり、I/2とな
る。すると、VacとVbdは、 Vac=I/2・Xc+Ven ・・・式25 Vbd=I/2・Xd+Ven ・・・式26 となる。また、Vep、Vofs、Va、Vbは、 Vep=I/2・(Xa+Xc)+Ven ・・・式27 Vofs=(Vep+Ven)/2 ・・・式28 Va=Vofs−Vac ・・・式29 Vb=Vofs−Vbd ・・・式30 となるので、これらの式21〜30を整理すると、 Va=I/2・jω・L・cos(θ) ・・・式31 Vb=I/2・jω・L・cos(θ+90゜) ・・・式32 となる。式31、式32より、Va、Vbの振幅は、巻
線の直流抵抗rに依存しないことがわかる。
With this configuration, all the current flowing through the winding flows through the grounding resistor 14, so that the voltage Ven generated at the grounding resistor 14 is negatively fed back to the exciting voltage Vep to excite the exciting voltage Vep. Since the exciting current proportional to the voltage Ve can always flow, the temperature dependency of the amplitude of the detection signal can be eliminated. More specifically,
If the DC resistance of the winding increases due to an increase in the ambient temperature, the current flowing through the grounding resistor 14 decreases and the voltage Ven increases.
Decrease. As a result, the potential of the inverting input terminal of the differential amplifier 17 connected to the ground resistor 14 also decreases. Then, the differential input voltage of the differential amplifier 17 increases and the excitation voltage Vep increases, so that the current flowing through the winding increases. Conversely, when the ambient temperature decreases and the DC resistance of the winding decreases, the voltage Ven increases, the excitation voltage Vep decreases, and the current flowing through the winding decreases. With the above operation, the current flowing through the winding is not affected by the ambient temperature. Therefore, the grounding resistor 14 and the differential amplifier 17 constitute the constant current exciting means of the present invention. Next, the voltage Vofs at the connection point between the resistor 15 and the resistor 16 is the voltage Vac at the connection point NAC between the winding La and the winding Lc and the voltage Vac at the connection point NBD between the winding Lb and the winding Ld. This is an offset voltage of the voltage Vbd.
This is shown as Vofs in FIG. Therefore,
The resistor 15 and the resistor 16 constitute the offset voltage generating means of the present invention. Also, the voltage Va of the series connection point NAC
The voltage cb and the voltage Vbd at the series connection point NBD are voltages whose amplitudes are modulated in a sine wave shape based on the inductance changes of the winding La and the winding Lc and the winding Lb and the winding Ld accompanying the rotation of the rotor 2. . This situation is shown in FIG.
bd. In the differential amplifier 6, the voltage Vac at the connection point NAC is subtracted from the offset voltage Vofs, amplification is performed around the midpoint potential of the input range of the A / D converter 10, and the amplification is performed by the sample-and-hold circuit 8. Is entered. The output signal of the differential amplifier 6 is an A-phase signal V whose amplitude is modulated in a sinusoidal manner by the rotation angle of the rotor 2.
a. Similarly, in the differential amplifier 7, the voltage Vbd of the connection point NBD is calculated from the offset voltage Vofs.
Is amplified, the signal is amplified around the midpoint potential of the input range of the A / D converter 11, and is input to the sample-and-hold circuit 9. The output signal of the differential amplifier 7 is a B-phase signal Vb whose amplitude is modulated in a sinusoidal manner by the rotation angle of the rotor 2, but when the rotor 2 rotates clockwise, the output signal is smaller than the A-phase signal. The phase advances by 90 ° and the amplitude changes. As described above, the amplitude of the output signals Va and Vb of the differential amplifiers 6 and 7 is the offset voltage Vofs.
The reference is set so as not to exceed the input range of 0 and 11, and is a reference voltage for calculating the rotation angle of the rotor. As a result, it is possible to eliminate an error in rotation angle detection that occurs when the input signals to the A / D converters 10 and 11 exceed the input range. A described above
The phase and B phase signals Va and Vb are supplied to sample and hold circuits 8 and 9, A / D converters 10 and 11, and an interpolation circuit 12.
Is converted into the target rotation angle θ in the same manner as in the prior art, and is output from the interpolation circuit 12. Va and Vb of such a reluctance resolver are represented by equations. Similarly to the conventional example, when the impedances Xa to Xd of La to Ld are shown as a DC resistance r of the winding and a change L of the inductance due to the rotation of the rotor 2 and an inductance Lo that does not change, Xa = r + jω · (Lo + L · cos (θ)) Expression 21 Xb = r + jω · (Lo + L · cos (θ + 90 °)) Expression 22 Xc = r + jω · (Lo + L · cos (θ + 180 °)) Expression 23 Xd = r + jω · ( Lo + L · cos (θ + 270 °)) Expression 24 Assuming that the current flowing through the grounding resistor 14 is I, the current flowing through the windings La to Ld has the same resistance and the same value of Xa + Xc and Xb + Xd according to the relations of Expressions 21 to 24. And I / 2. Then, Vac and Vbd are as follows: Vac = I / 2 · Xc + Ven (Equation 25) Vbd = I / 2 · Xd + Ven (Equation 26) In addition, Vep, Vofs, Va, and Vb are as follows: Vep = I / 2 · (Xa + Xc) + Ven Equation 27 Vofs = (Vep + Ven) / 2 Equation 28 Va = Vofs−Vac Equation 29 Vb = Vofs−Vbd: Equation 30 Equations 21 to 30 are rearranged. Va = I / 2 · jω · L · cos (θ) Equation 31 Vb = I / 2 · jω · L Cos (θ + 90 °) Expression 32 Equations 31 and 32 show that the amplitudes of Va and Vb do not depend on the DC resistance r of the winding.

【0009】[0009]

【発明の効果】以上のように本発明のリラクタンスレゾ
ルバによれば、巻線に流れる電流を接地抵抗器により検
出し、定電流励磁手段に負帰還をかけ、巻線に流れる電
流が温度の影響を受けないようにしたので、検出信号の
振幅の変化の温度依存性を無くすことができる。また、
レゾルバ部分と電気回路部分とをつなぐ線数を5本から
4本に減らし、抵抗器の数も4個から3個に減らした。
以上により、安定した信頼性の高い回転位置検出を可能
とし、簡素化された安価なリラクタンスレゾルバを実現
できる。尚、ここでは、回転位置を検出するリラクタン
スレゾルバについて述べたが、直線位置を検出するリラ
クタンスレゾルバについても、同様に構成することで、
同様の効果が得られることは言うまでない。また、ロー
タ2が回転しているときに、A/D変換器の出力のA
相、B相信号の振幅を算出して、その振幅が一定となる
ように励磁電圧を制御することでも、励磁電流を一定に
保つことができ、同様の効果が得られる。
As described above, according to the reluctance resolver of the present invention, the current flowing through the winding is detected by the grounding resistor, negative feedback is applied to the constant current exciting means, and the current flowing through the winding is affected by the temperature. As a result, the temperature dependence of the change in the amplitude of the detection signal can be eliminated. Also,
The number of lines connecting the resolver part and the electric circuit part was reduced from five to four, and the number of resistors was also reduced from four to three.
As described above, stable and reliable rotation position detection is enabled, and a simplified and inexpensive reluctance resolver can be realized. Here, the reluctance resolver that detects the rotational position has been described, but the reluctance resolver that detects the linear position can be similarly configured.
Needless to say, the same effect can be obtained. When the rotor 2 is rotating, the output of the A / D converter A
By calculating the amplitudes of the phase and B-phase signals and controlling the excitation voltage so that the amplitudes are constant, the excitation current can be kept constant, and the same effect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のリラクタンスレゾルバの一実施例を
示す図である。
FIG. 1 is a diagram showing one embodiment of a reluctance resolver of the present invention.

【図2】 本発明のリラクタンスレゾルバの電気回路の
一例を示すブロック図である。
FIG. 2 is a block diagram showing an example of an electric circuit of the reluctance resolver of the present invention.

【図3】 図2のタイミングチャートである。FIG. 3 is a timing chart of FIG.

【図4】 従来技術のリラクタンスレゾルバの一例を示
す図である。
FIG. 4 is a diagram illustrating an example of a conventional reluctance resolver.

【図5】 従来のリラクタンスレゾルバの電気回路の一
例を示すブロック図である。
FIG. 5 is a block diagram showing an example of an electric circuit of a conventional reluctance resolver.

【図6】 図5のタイミングチャートである。FIG. 6 is a timing chart of FIG.

【符号の説明】[Explanation of symbols]

1 回転軸、2 ロータ、3 ステータ、4 タイミン
グ発生器、5 励磁信号発生器、6,7 差動増幅器、
8,9 サンプル・アンド・ホールド回路、10,11
A/D変換器、12 内挿回路、14 接地抵抗器、
15,16 抵抗器、17 差動増幅器、A,B,C,
D励磁突極、La,Lb,Lc,Ld,Lf,Lg,L
h,Li 巻線。
1 rotating shaft, 2 rotors, 3 stators, 4 timing generators, 5 excitation signal generators, 6, 7 differential amplifiers,
8,9 Sample and hold circuit, 10,11
A / D converter, 12 interpolation circuit, 14 ground resistor,
15, 16 resistor, 17 differential amplifier, A, B, C,
D excitation salient pole, La, Lb, Lc, Ld, Lf, Lg, L
h, Li winding.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01D 5/00 - 5/62 G01B 7/00 - 7/34 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) G01D 5/00-5/62 G01B 7 /00-7/34

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ロータの回転に応じて、インダクタンス
が0゜、90゜、180゜、270゜の位相差をもって
周期的に変化する4組の巻線を備えたレゾルバにおい
て、 前記インダクタンスの変化の位相が0゜と180゜の巻
線を直列接続した第1相巻線と、 前記インダクタンスの変化の位相が90゜と270゜の
巻線を直列接続した第2相巻線と、 前記第1相巻線と前記第2相巻線とを並列接続し、その
両端に励磁電流を流すとともに、励磁電流を周囲温度の
変化に対して一定に保つ定電流励磁手段と、 前記定電流励磁手段の出力電圧に基づいて、ロータの回
転角度演算の基準となるオフセット電圧を発生するオフ
セット電圧発生手段と、 前記第1相巻線及び前記第2相巻線における各直列接続
点からそれぞれ出力される電圧と前記オフセット電圧と
の差に基づいてロータの回転角度を演算する内挿手段
と、 を含むことを特徴とするリラクタンスレゾルバ。
1. A resolver having four sets of windings whose inductance periodically changes with a phase difference of 0 °, 90 °, 180 °, and 270 ° according to rotation of a rotor, A first phase winding in which windings having phases of 0 ° and 180 ° are connected in series; a second phase winding in which windings having phases of change in inductance of 90 ° and 270 ° are connected in series; A phase winding and the second phase winding connected in parallel, an exciting current flowing through both ends thereof, and a constant current exciting means for keeping the exciting current constant with respect to a change in ambient temperature; and Offset voltage generating means for generating an offset voltage serving as a reference for calculating the rotation angle of the rotor based on the output voltage; and voltages output from respective series connection points in the first phase winding and the second phase winding. And said off Reluctance resolver comprising: the interpolation means for calculating a rotation angle of the rotor based on the difference between Tsu G Voltage, the.
JP01038295A 1995-01-26 1995-01-26 Reluctant resolver Expired - Fee Related JP3309027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01038295A JP3309027B2 (en) 1995-01-26 1995-01-26 Reluctant resolver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01038295A JP3309027B2 (en) 1995-01-26 1995-01-26 Reluctant resolver

Publications (2)

Publication Number Publication Date
JPH08205502A JPH08205502A (en) 1996-08-09
JP3309027B2 true JP3309027B2 (en) 2002-07-29

Family

ID=11748585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01038295A Expired - Fee Related JP3309027B2 (en) 1995-01-26 1995-01-26 Reluctant resolver

Country Status (1)

Country Link
JP (1) JP3309027B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3414893B2 (en) * 1995-07-12 2003-06-09 オークマ株式会社 Rotational position detector
JP4699544B2 (en) * 1999-03-15 2011-06-15 株式会社アミテック Rotary position detector
JP4523147B2 (en) * 2000-12-21 2010-08-11 株式会社エム・システム技研 Rotation angle detector
JP5141000B2 (en) * 2006-09-15 2013-02-13 日立金属株式会社 Position detection method and position detection apparatus
JP2011153863A (en) * 2010-01-26 2011-08-11 Oriental Motor Co Ltd Rotational position detection device, and motor driving system using the same
JP2011153864A (en) * 2010-01-26 2011-08-11 Oriental Motor Co Ltd Rotational position detection device, and motor driving system using the same
EP2853861B1 (en) * 2012-05-14 2017-10-18 Amiteq Co., Ltd. Position detection device
JP6454965B2 (en) * 2014-01-27 2019-01-23 日産自動車株式会社 Rotation angle detection device and method for detecting abnormality of rotation angle detection device
JP2015165217A (en) * 2014-03-03 2015-09-17 株式会社デンソー Rotation detection device
FR3115870B1 (en) 2020-11-05 2022-11-11 Continental Automotive Angular position sensor

Also Published As

Publication number Publication date
JPH08205502A (en) 1996-08-09

Similar Documents

Publication Publication Date Title
US20120109562A1 (en) Rotational angle detection device
KR20150047536A (en) System and method for error correction in angular position sensors
GB2578194A (en) Position observer for electrical machines
JP3309027B2 (en) Reluctant resolver
Zare et al. The effect of winding arrangements on measurement accuracy of sinusoidal rotor resolver under fault conditions
JP3060525B2 (en) Resolver device
JP2001235307A (en) Rotary type position detecting apparatus
JP2558159B2 (en) Two-phase signal generator and two-phase signal generation method
JP5522845B2 (en) Rotary position detector
JP3170449B2 (en) Absolute encoder
JP3693280B2 (en) Resolver assembly equipment
JP4365654B2 (en) Angular position detection device and driving device using the same
JPS6333395B2 (en)
JP3408238B2 (en) Resolver / digital converter and conversion method
JP3100841B2 (en) Rotational position detecting device and method
Sun et al. Rotor-position sensing system based on one type of variable-reluctance resolver
JP2556383B2 (en) Magnetic resolver
JP4975082B2 (en) Angle detector
JPH07104178B2 (en) Rotation angle detector
JPS62203596A (en) Speed controller for 3-phase ac motor
JPH0266407A (en) Control circuit for magnetic resolver
JP2006023155A (en) Angular position detecting circuit and its adjusting method
JP2865219B2 (en) Position detection device using resolver
JPH01284712A (en) Position and speed detecting device
EP3832317A1 (en) Adaptive filter for motor speed measurement system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees