Nothing Special   »   [go: up one dir, main page]

JP3398587B2 - Moldable antistatic resin molded product - Google Patents

Moldable antistatic resin molded product

Info

Publication number
JP3398587B2
JP3398587B2 JP33155397A JP33155397A JP3398587B2 JP 3398587 B2 JP3398587 B2 JP 3398587B2 JP 33155397 A JP33155397 A JP 33155397A JP 33155397 A JP33155397 A JP 33155397A JP 3398587 B2 JP3398587 B2 JP 3398587B2
Authority
JP
Japan
Prior art keywords
antistatic
antistatic resin
coating film
fibers
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33155397A
Other languages
Japanese (ja)
Other versions
JPH10226007A (en
Inventor
誠 井平
将人 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP33155397A priority Critical patent/JP3398587B2/en
Publication of JPH10226007A publication Critical patent/JPH10226007A/en
Application granted granted Critical
Publication of JP3398587B2 publication Critical patent/JP3398587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Paints Or Removers (AREA)
  • Inorganic Fibers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、表面に制電性を付
与して、成形加工によっても表面抵抗率の実質的な増加
を伴わない制電性樹脂成形品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antistatic resin molded article which has an antistatic property on its surface and is not accompanied by a substantial increase in surface resistivity even by a molding process.

【0002】[0002]

【従来の技術】制電性合成樹脂成形品は、成形品の表面
に制電性を付与して、表面で蓄積する静電気を逃がし
て、成形品表面での埃、粉塵の付着や堆積を嫌う用途に
使用されている。
2. Description of the Related Art An antistatic synthetic resin molded article imparts antistatic property to the surface of the molded article, releases static electricity accumulated on the surface, and dislikes adhesion and accumulation of dust and dust on the surface of the molded article. Used for purposes.

【0003】合成樹脂成形品に制電性を付与するには、
従来は、酸化錫などの導電性微粒子や炭素などの導電性
の微粒子あるいは繊維を樹脂に配合して均一に分散させ
ていた。これら粒子間ないし繊維間の相互接触により制
電性が生じ、成形品の電気抵抗を低下させるものであ
る。
To impart antistatic properties to synthetic resin molded articles,
Conventionally, conductive fine particles such as tin oxide and conductive fine particles such as carbon or fibers have been blended with a resin and uniformly dispersed. The mutual contact between these particles or between the fibers causes antistatic property and reduces the electrical resistance of the molded product.

【0004】また、成形品の表層部だけに導電性の粒子
や繊維を含有させることにより、成形品表面にだけ制電
性を付与することも行われ、このような例としては、樹
脂基板の表面に、合成樹脂に導電性の粒子や繊維を含有
させて形成した塗膜やフィルムを添着して形成したもの
があり、制電性樹脂板などとして利用されている。
It is also possible to impart the antistatic property only to the surface of the molded product by incorporating conductive particles or fibers only in the surface layer of the molded product. There is one formed by adhering a coating film or a film formed by containing conductive particles or fibers in a synthetic resin on the surface, and is used as an antistatic resin plate or the like.

【0005】[0005]

【発明が解決しようとする課題】上記従来の制電性樹脂
板は、熱可塑性の樹脂基板を成形した後で上記制電性の
フィルムを積層形成することにより、表面が良好な制電
性を示し、表面抵抗率1011Ω/□以下の樹脂板が得ら
れる。しかし、このように形成した樹脂板を、さらに加
熱して曲げ加工や真空成形のように面域を拡大するが如
き変形をさせると、二次成形後の表面抵抗率が高くな
り、制電性が低下すると言う問題があった。表面抵抗率
は一般に制電性樹脂板の引張変形によって増加するが、
この原因は、導電性粒子や繊維を分散した樹脂の伸びに
より導電性の粒子や繊維の相互接触頻度が少なくなり、
また、粒子間相互距離が大きくなるためであると考えら
れる。
The above-mentioned conventional antistatic resin plate has a good antistatic property on the surface by forming a thermoplastic resin substrate and then laminating and forming the antistatic film. A resin plate having a surface resistivity of 10 11 Ω / □ or less is obtained. However, if the resin plate formed in this way is further heated and deformed such as bending or vacuum forming to expand the surface area, the surface resistivity after secondary molding becomes high, and the antistatic property is increased. There was a problem that it decreased. The surface resistivity generally increases due to the tensile deformation of the antistatic resin plate,
The reason for this is that the frequency of mutual contact between the conductive particles and fibers decreases due to the elongation of the resin in which the conductive particles and fibers are dispersed,
It is also considered that the mutual distance between particles becomes large.

【0006】さらに、成形過程の変形量が大きくて塑性
変形を生ずるような場合には、繊維状の導電材料は変形
方向に配向してしまうので、さらに線維間の相互接触や
導通可能な間隔保持の頻度が少なくなり、表面抵抗率が
高くなることが認められる。この傾向は、導電材料が剛
直な短繊維である場合ほど生じやすいものである。
Further, when the amount of deformation in the forming process is large and plastic deformation occurs, the fibrous conductive material is oriented in the direction of deformation, and therefore, mutual contact between fibers and maintenance of a conductive space. It can be seen that the frequency of is decreased and the surface resistivity is increased. This tendency is more likely to occur when the conductive material is a rigid short fiber.

【0007】このように、制電性樹脂板がその後に二次
加工などの成形加工に供されると、加工後の成形品の表
面抵抗率が高くなって制電性が低下するのでは、その用
途が限られる。このような場合には、通常の熱可塑性樹
脂板から成形加工した後に、制電性塗料を成形品の表面
所望部位に塗布することで制電性を付与することは可能
であるけれども、制電性塗料の塗布のための工程が必要
となり、しかも、複雑な形状の成形品では均質で表面性
状の良好な塗膜形成が困難で、均一な制電性の付与がで
きない。
As described above, if the antistatic resin plate is subsequently subjected to a forming process such as a secondary process, the surface resistivity of the processed product is increased and the antistatic property is deteriorated. Its use is limited. In such a case, it is possible to impart antistatic property by applying an antistatic coating to a desired site on the surface of the molded article after molding from a normal thermoplastic resin plate, but antistatic property is possible. A process for applying a conductive coating is required, and it is difficult to form a coating film having a complicated shape and a good surface property, and it is impossible to impart uniform antistatic property.

【0008】本発明は、上記問題に鑑み、制電性付与後
の二次加工によっても表面抵抗率の実質的な増加を伴わ
ないような熱成形可能な制電性樹脂成形品を提供しよう
とするものである。
In view of the above problems, the present invention intends to provide a thermoformable antistatic resin molded article which does not cause a substantial increase in surface resistivity even by secondary processing after imparting antistatic property. To do.

【0009】[0009]

【解決手段】本発明の制電性樹脂成形品は、熱可塑性樹
脂基材と、該樹脂基材の何れかの表面に被着された制電
性樹脂層とから成る制電性樹脂成形品であるが、上記制
電性樹脂層は、熱可塑性樹脂中に導電性の長繊維が曲が
りくねって且つ互いに接触及び/若しくは導通性を有す
る間隔を保持して分散している塗膜により形成されてな
るものである。この成形品がその後の熱加工によって制
電性樹脂層の圧下ないし引張り、曲げなどの変形を受け
ても、曲がりくねった長繊維が真直ぐになろうとするの
みでお互いの接触や導通可能な間隔を保てなくなること
がなく、従って、成形後も、樹脂層の制電性を保持する
ことができる。これにより、加熱成形などの二次加工に
よっても制電性を有する成形性と制電性とを同時に保持
した制電性樹脂成形品とすることができるのである。
An antistatic resin molded article of the present invention comprises a thermoplastic resin substrate and an antistatic resin layer adhered to any surface of the resin substrate. However, the antistatic resin layer is formed by a coating film in which conductive long fibers are twisted and dispersed in a thermoplastic resin while being held in contact with each other and / or at intervals having conductivity. It will be. Even if this molded product undergoes deformation such as rolling down, stretching, bending, etc. of the antistatic resin layer due to subsequent heat processing, the meandering long fibers will only try to straighten and maintain a distance where they can contact and conduct each other. Therefore, the antistatic property of the resin layer can be maintained even after molding. As a result, it is possible to obtain an antistatic resin molded product that retains the antistatic moldability and the antistatic property at the same time even by secondary processing such as heat molding.

【0010】このような導電性の長繊維には、炭素繊
維、金属繊維、導電化された有機繊維、等が利用可能
で、できるだけ細くて長い繊維がお互いに絡み合って接
触し易く、また曲がりくねり易いので好ましい。特に好
ましいのは、超極細の長炭素繊維である。超極細の長炭
素繊維はお互いに絡み合って毛玉状に集合し易い性質が
あり、該毛玉状繊維集合体から多数の繊維が放出してい
て、熱可塑性樹脂中にその毛玉状繊維集合体を多数均一
に分散させることにより、樹脂層中の繊維集合体を相互
に接触させ及び/若しくは導通可能な間隔を保持させ、
該樹脂層に制電性を付与する。
As such conductive long fibers, carbon fibers, metal fibers, electrically conductive organic fibers, etc. can be used, and the thin and long fibers that are as thin as possible are easily entangled with each other and easily contact and bend. Therefore, it is preferable. Particularly preferred are ultra-fine long carbon fibers. The ultrafine long carbon fibers have a property that they are easily entangled with each other and easily aggregate in a pill-like shape, and a large number of fibers are released from the pill-like fiber aggregate, and the pill-like fiber aggregate is uniformly dispersed in the thermoplastic resin. By making the fiber aggregates in the resin layer contact with each other and / or hold a conductive interval,
Antistatic property is imparted to the resin layer.

【0011】従来の炭素繊維は線径が大きくて剛直であ
り、繊維同士の絡み合いがないのであるが、本発明に使
用する長繊維、特に超極細炭素繊維は、繊維が超極細
で、即ち、線径に比して長さが長いので樹脂層中でも各
炭素繊維が絡み合った状態で分散する。毛玉状に絡み合
った超極細炭素繊維は、毛玉状として分散し易くて絡み
合いも容易になされる。炭素繊維を毛玉状集合体とする
ためには、線径が3.5〜500nmで、アスペクト比
(線径に対する長さの比)が100〜3000の超極細
であることが望ましい。この毛玉状炭素繊維集合体から
は多数の炭素繊維が放出した状態をなし、毛玉状の集合
体同士が接近している状態では、毛玉から放射状に突出
延伸している炭素繊維が、樹脂層中で相互に接触して或
いは導通可能な間隔を保持して、電気的に導通状態を形
成している。
Conventional carbon fibers have a large wire diameter and are rigid, and there is no entanglement between the fibers. However, the long fibers used in the present invention, particularly the ultrafine carbon fibers, have ultrafine fibers, that is, Since the length is longer than the wire diameter, the carbon fibers are dispersed in the resin layer in a entangled state. The ultrafine carbon fibers entwined in a pill shape are easily dispersed in a pill shape and easily entangled. In order to make the carbon fibers into a pilllike aggregate, it is desirable that the wire diameter is 3.5 to 500 nm and the aspect ratio (ratio of the length to the wire diameter) is 100 to 3000. A large number of carbon fibers are released from this fluffy carbon fiber aggregate, and when the pilllike aggregates are close to each other, the carbon fibers radially protruding from the pill are extended in the resin layer. An electrically conductive state is formed by contacting each other or maintaining a space capable of conducting.

【0012】本発明は、少ない量で樹脂層中での導電性
長繊維の広範囲の分散状態を維持するために、導電性長
繊維を添加した樹脂塗液の塗膜を基材表面に形成した。
塗膜形成後に二次加工のため加熱して変形しても、樹脂
層中で導電性長繊維の絡み合いは解けずに短絡したまま
保持でき、加工による制電性の低下は少ない。超極細長
炭素繊維を添加した塗膜では、加工により制電性が低下
するどころか、むしろ、適度な加工成形に伴う塗膜の適
度の圧下によって、塗膜中で毛玉状集合体同士ないしは
集合体から出ている多数の炭素繊維同士の接触や導通可
能に接近する頻度が高くなり、制電性が高くなる効果が
認められる。
According to the present invention, a coating film of a resin coating solution containing conductive long fibers is formed on the surface of a substrate in order to maintain a wide range of dispersed state of the conductive long fibers in a resin layer in a small amount. .
Even if the film is heated and deformed for secondary processing after forming the coating film, the entanglement of the conductive long fibers in the resin layer can be maintained as a short circuit without being unraveled, and the reduction in antistatic property due to the processing is small. In the coating film containing ultra-fine long carbon fiber, the antistatic property is not lowered by the processing, but rather, by the appropriate reduction of the coating film due to the appropriate processing and molding, the pill-like aggregates or the aggregates in the coating film are separated from each other. The frequency with which a large number of protruding carbon fibers come in contact with each other or close to each other in a conductive manner increases, and the effect of increasing the antistatic property is recognized.

【0013】[0013]

【発明の実施の形態】本発明の成形用制電性樹脂成形品
は、熱可塑性樹脂基材と制電性樹脂層とからなるもので
あるが、熱可塑性樹脂基材は、その成形品の用途により
適した熱可塑性樹脂から選ばれ、例示すると、ポリエチ
レン、ポリプロピレンなどオレフイン系樹脂、ポリ塩化
ビニル、ポリメチルメタクリレートなどビニル系樹脂、
ポリカーボネート、ポリエチレンテレフタレート、不飽
和ポリエステル、芳香族ポリエステルなどエステル系樹
脂などがある。このなかで、耐薬品性に優れ、耐熱性も
70〜80℃で、強度も有するポリ塩化ビニルが好まし
く用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION The antistatic resin molded article for molding of the present invention comprises a thermoplastic resin base material and an antistatic resin layer. The thermoplastic resin base material is It is selected from thermoplastic resins that are more suitable for different purposes, and examples include olefin resins such as polyethylene and polypropylene, polyvinyl chloride, vinyl resins such as polymethylmethacrylate,
Examples include ester resins such as polycarbonate, polyethylene terephthalate, unsaturated polyester and aromatic polyester. Among these, polyvinyl chloride having excellent chemical resistance, heat resistance of 70 to 80 ° C. and strength is preferably used.

【0014】基材の形態は、板、シート、フイルム、
管、その他、線、条、棒などがあり、この基材は、成形
品の用途と制電性樹脂層の形成に適したものであれば特
に制限されないが、好ましくは、後に熱成形するのに適
したものから選ばれる。特に、板又はシートが、熱成形
に利用できるので、好ましく適用される。
The form of the substrate is a plate, a sheet, a film,
There are pipes, others, wires, strips, rods, etc., and this base material is not particularly limited as long as it is suitable for the use of the molded product and the formation of the antistatic resin layer, but preferably it is thermoformed later. Is selected from those suitable for. In particular, plates or sheets are preferably applied since they can be used for thermoforming.

【0015】制電性樹脂層は、熱可塑性樹脂中に導電性
の長繊維、好ましくは導電性長炭素繊維の毛玉状繊維集
合体を分散させて成る塗膜であって、成形品の表面に制
電性を付与するものであるが、この樹脂層を熱可塑性樹
脂から形成するのは、この樹脂層も二次加工による成形
を可能にするためである。
The antistatic resin layer is a coating film formed by dispersing electrically conductive long fibers, preferably pilllike fiber aggregates of electrically conductive long carbon fibers, in a thermoplastic resin, and is applied to the surface of a molded article. The resin layer is made of a thermoplastic resin to impart electrical properties, but this resin layer is also capable of being molded by secondary processing.

【0016】この樹脂層は、上記の基材を構成する上記
熱可塑性樹脂と同種又は異種の熱可塑性樹脂が選ばれ
る。特に、この樹脂層が塗膜から形成されるので、塗膜
形成の樹脂は、基材樹脂と同種の樹脂であって、且つ導
電性長繊維を容易に分散させるために塗液に形成可能な
ものが、基材との接着性の点から、好ましい。異種の樹
脂を使用することも可能であるが、特に、同種の樹脂か
らは塗液の形成が困難であるとき或は同種の樹脂が耐候
性、表面硬度、耐磨耗性等において劣るときは、異種の
熱可塑性樹脂であって、塗液の形成が可能で、同種の樹
脂より耐候性や表面硬度や耐磨耗性等に優れ、塗液硬化
後は基材樹脂との接着力の大きい樹脂のなかから選ばれ
る。
For this resin layer, the same or different thermoplastic resin as the above-mentioned thermoplastic resin constituting the above-mentioned base material is selected. In particular, since this resin layer is formed from the coating film, the resin for forming the coating film is the same type of resin as the base resin, and can be formed in the coating liquid to easily disperse the conductive long fibers. The thing is preferable from a point of adhesiveness with a base material. It is possible to use different kinds of resins, but especially when it is difficult to form a coating liquid from the same kind of resin or when the same kind of resin is inferior in weather resistance, surface hardness, abrasion resistance, etc. , A different type of thermoplastic resin that can form a coating liquid, has better weather resistance, surface hardness and abrasion resistance than the same type of resin, and has a large adhesive force with the base resin after the coating liquid is cured. It is selected from the resins.

【0017】制電性樹脂層の塗液は、樹脂基材がポリ塩
化ビニルの場合には、ポリ塩化ビニル、その共重合体や
アクリル樹脂を、相溶性が高い揮発性の溶媒、例えば、
メチルイソブチルケトン、メチルエチルケトン、シクロ
ヘキサノンなどに溶解して塗液にしたものが利用され
る。樹脂基材がポリカーボネートの場合にも、ポリ塩化
ビニルやその共重合体やアクリル樹脂の上記塗液が使用
され、また、樹脂基材がアクリル樹脂の場合はアクリル
樹脂の上記塗液が使用される。
When the resin base material is polyvinyl chloride, the coating liquid for the antistatic resin layer contains polyvinyl chloride, its copolymer and acrylic resin, and a volatile solvent having a high compatibility, for example,
A coating solution that is dissolved in methyl isobutyl ketone, methyl ethyl ketone, cyclohexanone, or the like is used. Even when the resin base material is polycarbonate, the above coating liquid of polyvinyl chloride, its copolymer or acrylic resin is used, and when the resin base material is acrylic resin, the above coating liquid of acrylic resin is used. .

【0018】この樹脂層は、基材表面、例えば基板の何
れかの表面又は両面に塗膜として形成されている。塗膜
の形成は基材表面に直接グラビアロール等で塗布した
り、ディッビングにて行う方法もある。また、熱可塑性
樹脂フィルムの表面に導電性長繊維を含む塗膜を形成
し、このフィルムの裏面を上記の基材に添着する方法も
ある。この場合には、基材表面にこのフィルムの裏面を
接着剤を介在して接着する方法や直接に加熱プレスやロ
ールプレスで熱圧着する方法等が採用される。
The resin layer is formed as a coating film on the surface of the base material, for example, any surface or both surfaces of the substrate. The coating film may be formed by directly applying it to the surface of the substrate with a gravure roll or by diving. There is also a method in which a coating film containing conductive long fibers is formed on the surface of a thermoplastic resin film and the back surface of this film is attached to the above-mentioned substrate. In this case, a method of adhering the back surface of the film to the surface of the base material with an adhesive interposed, or a method of directly performing thermocompression bonding with a heating press or a roll press is adopted.

【0019】本発明に使用する導電性長繊維は、炭素繊
維、ステンレスや銅等の金属繊維、硫化銅等を含有した
有機繊維等が使用される。これらの繊維は曲がりくねっ
ていてお互いがいずれかで接触及び/若しくは導通性を
有する間隔を保っていて、導通性を有している。各繊維
の径は50μm以下であることが、樹脂層中で曲がりく
ねって接触させたり導通可能に接近させるために有用で
ある。
As the conductive long fibers used in the present invention, carbon fibers, metal fibers such as stainless steel and copper, organic fibers containing copper sulfide and the like are used. These fibers are serpentine and electrically conductive, spaced apart such that they are in contact and / or electrically conductive with each other. It is useful that the diameter of each fiber is 50 μm or less in order to make a meandering contact in the resin layer or to bring them close to each other in a conductive manner.

【0020】導電性長繊維として、線径に対して充分に
長い長炭素繊維が好ましく、長炭素繊維には、特に、超
極細としたものが好ましく使用される。このような長炭
素繊維は、不定形炭素質繊維とグラファイト質繊維の両
方を含み、さらに長炭素繊維には、素繊維に不定形炭素
とグラファイトとが共存するような炭素繊維も使用され
る。これらは、いずれも超極細状の繊維であって、繊維
同士が縺れて絡み合いにより集合体を形成する性質を有
するものが好ましい。
As the conductive long fibers, long carbon fibers sufficiently long with respect to the wire diameter are preferable, and as the long carbon fibers, ultrafine fibers are particularly preferably used. Such long carbon fibers include both amorphous carbonaceous fibers and graphite fibers, and as the long carbon fibers, carbon fibers in which amorphous carbon and graphite coexist in elementary fibers are also used. It is preferable that all of these are ultrafine fibers and have the property of forming an aggregate by entanglement of fibers.

【0021】導電性の長炭素繊維として、最も良いの
は、構造上はグラファイト質繊維であって、繊維軸に同
軸状にグラファイト層が積層形成された断面円形のグラ
ファイト質の極細状の長繊維であり、その線径が1μm
以下のものである。
As the conductive long carbon fiber, the best one is a graphite fiber structurally, and a graphite fine ultrafine filament fiber having a circular cross section in which graphite layers are laminated coaxially on the fiber axis. And the wire diameter is 1 μm
It is as follows.

【0022】このようなグラファイト質繊維は、特公平
3−64606号公報明細書中にその製法が開示されて
いるが、芳香族又は非芳香族炭化水素と水素との混合気
流中で鉄族金属又はその酸化物の接触反応により繊維軸
に同軸状のグラファイト層が析出されて形成された極細
な繊維である。この繊維はグラファイトの層状結晶のC
軸が繊維軸と直交する構造であり、不定形炭素の析出が
少なくなされているものが好ましい。
A method for producing such a graphite fiber is disclosed in Japanese Patent Publication No. 3-64606, but an iron group metal is contained in a mixed gas flow of an aromatic or non-aromatic hydrocarbon and hydrogen. Alternatively, it is an ultrafine fiber formed by depositing a coaxial graphite layer on the fiber axis by the catalytic reaction of its oxide. This fiber is a layered crystal of graphite C
A structure in which the axis is orthogonal to the fiber axis and precipitation of amorphous carbon is reduced is preferable.

【0023】特に、超極細の長炭素繊維の形状は、線径
(単一繊維の直径)が1μm以下、好ましくは3.5〜
500nmである。超極細の長炭素繊維は、線径の小さ
い方が樹脂層中で集合し易くてよいが、3.5nm未満
では成形時に切断されやすく、線径が500nmを超え
ると、繊維が剛直になりやすく、集合するのに不利とな
る。
Particularly, the shape of the ultra-fine long carbon fiber has a wire diameter (diameter of a single fiber) of 1 μm or less, preferably 3.5 to
It is 500 nm. For ultrafine long carbon fibers, the smaller the wire diameter, the easier it may be to aggregate in the resin layer. , It is disadvantageous to gather.

【0024】超極細の長炭素繊維は、アスペクト比(線
径に対する長さの比)を5以上にして、繊維の縺れや絡
み合いを容易にする。その結果、繊維は集合体が形成し
やすくなる。特に、アスペクト比100〜3000とす
るのが好ましく、アスペクト比100未満では、集合体
を形成し難く、各繊維相互の接触頻度が低下したり、或
いは導通可能な間隔が保持できず、成形品の熱成形の際
に塗膜中の集合体間の接触短絡が解けて、制電性が低下
するおそれもある。他方、アスペクト比3000以上の
ときは、炭素繊維の集合体が大きくなりすぎ、添加量の
割りに集合体間の接触や導通可能な間隔保持の頻度が低
下する。
The ultra-fine long carbon fiber has an aspect ratio (ratio of length to wire diameter) of 5 or more to facilitate entanglement and entanglement of the fiber. As a result, the fibers tend to form aggregates. In particular, it is preferable to set the aspect ratio to 100 to 3,000. If the aspect ratio is less than 100, it is difficult to form an aggregate, the frequency of contact between the respective fibers is reduced, or the conductive intervals cannot be maintained. At the time of thermoforming, the contact short circuit between the aggregates in the coating film may be dissolved, and the antistatic property may be lowered. On the other hand, when the aspect ratio is 3,000 or more, the aggregate of carbon fibers becomes too large, and the frequency of contact between the aggregates and holding of the interval at which conduction is possible is reduced for the added amount.

【0025】図1(A)に示すように、超極細の長炭素
繊維1は、線径が小さく且つアスペクト比が大きいの
で、繊維1、1同士が絡み合って、顕微鏡的外観では、
毛玉状に集合し、該毛玉状繊維集合体2は、直径aが
0.2〜10μm程度の寸法で、この毛玉の周囲から曲
がりくねった繊維1が放射状に放出した形態を示す。そ
して、毛玉状繊維集合体2も、図1(B)に示すよう
に、多数集まって相互に接触し又相互に導通可能な間隔
を保持しながら重なり合って凝集した凝集体3を形成し
ている。
As shown in FIG. 1 (A), since the ultrafine long carbon fiber 1 has a small wire diameter and a large aspect ratio, the fibers 1 and 1 are entangled with each other, and in a microscopic appearance,
The pill-like fiber aggregates 2 are aggregated in a pill shape, and the diameter a is about 0.2 to 10 μm, and the fibers 1 meandering around the pill form are released radially. As shown in FIG. 1 (B), the pill-shaped fiber aggregates 2 also form aggregates 3 which are aggregated and agglomerated while being in contact with each other and maintaining an interval allowing mutual conduction.

【0026】このような凝集した毛玉状集合体2を塗液
中に添加すると、毛玉中に樹脂液が浸透して毛玉間相互
の凝集が解けて毛玉が分散して均一に分布するようにな
る。これを樹脂表面に塗布すると塗液中の溶剤が揮発
し、その後には、硬化した樹脂層中においても毛玉がそ
の繊維の一部を周囲に放出する状態となり、相互に隣接
する周囲の毛玉同士がその繊維を交叉接触しあるいは接
近させながら、毛玉状の炭素繊維集合体2間が導通し、
樹脂層の電気抵抗が低下するのである。
When such aggregated pill-shaped aggregates 2 are added to the coating liquid, the resin liquid permeates into the pills to dissolve the aggregates between the pills and to disperse the pills and distribute them uniformly. . When this is applied to the resin surface, the solvent in the coating liquid volatilizes, and then the pills also release some of the fibers to the surroundings even in the cured resin layer. While the balls cross-contact or bring the fibers close to each other, the fluffy carbon fiber aggregates 2 are electrically connected,
The electric resistance of the resin layer is reduced.

【0027】制電性樹脂層の形成は、熱可塑性樹脂を揮
発性溶剤に溶解して溶液にし、この溶液中に上記長炭素
繊維を分散させて塗液を作り、上記基材表面に塗布し
て、溶剤を揮散させて硬化させて塗膜にする。基材表面
への塗布は、ナイフエッジコーティング、ロールコーテ
ィング、スプレーコーティング等が利用可能であるが、
基材が表面平坦な平板であるときは、ロールコーテイン
グによるグラビア印刷法が塗布厚み一定に調整できて良
い。
The antistatic resin layer is formed by dissolving a thermoplastic resin in a volatile solvent to form a solution, dispersing the long carbon fibers in the solution to form a coating solution, and coating the surface of the base material. Then, the solvent is volatilized and cured to form a coating film. For the coating on the substrate surface, knife edge coating, roll coating, spray coating, etc. can be used,
When the substrate is a flat plate having a flat surface, the gravure printing method by roll coating may be adjusted to a constant coating thickness.

【0028】本発明が制電性樹脂層を塗膜とするのは、
長炭素繊維の集合体の分散状態を樹脂層中に維持したま
ま基材表面に制電層を形成するためである。
In the present invention, the antistatic resin layer is used as the coating film.
This is because the antistatic layer is formed on the surface of the base material while maintaining the dispersion state of the aggregate of long carbon fibers in the resin layer.

【0029】制電性樹脂層中の長炭素繊維の添加量は、
1〜8重量%程度とするのがよい。1重量%未満では、
制電性が得られず、8重量%以上では、添加量の多い割
りに表面抵抗率がそれほど低下しないからである。特に
好ましいのは3〜8重量%である。塗液に対しては長炭
素繊維の添加量が0.2〜0.8重量%となるように溶
剤を添加して均一塗布するように塗液を調製するのが良
い。この範囲であれば塗液が適度な粘度を有し均一な塗
布ができるからである。
The amount of long carbon fibers added to the antistatic resin layer is
It is preferable to set it to about 1 to 8% by weight. Below 1% by weight,
This is because the antistatic property cannot be obtained, and if it is 8% by weight or more, the surface resistivity does not decrease so much despite the large addition amount. Particularly preferred is 3 to 8% by weight. It is preferable to prepare a coating solution by adding a solvent so that the amount of long carbon fibers added to the coating solution will be 0.2 to 0.8% by weight and uniformly coating. This is because within this range, the coating liquid has an appropriate viscosity and uniform coating is possible.

【0030】そして、乾燥蒸発して硬化した後の塗膜で
ある制電性樹脂層の厚みは、0.1〜10μmとし、こ
れにより、成形品の表面抵抗率が、104 〜1011Ω/
□程度を容易に得ることができる。厚み0.1μm未満
では、充分低い表面抵抗率が得られず、また、成形品を
二次加工して延伸することで、更に塗膜の厚みが減少し
制電性能を維持できなくなる。10μm以上では表面抵
抗率は、10μmでの表面抵抗率とほぼ同程度であっ
て、そこで10μmを超える厚膜としても無意味であ
る。また、塗膜の厚みを増すと、透視性が悪くなるの
で、この点からも10μm以下が好ましい。基材に透明
樹脂を用いると、制電性樹脂層に黒色の長炭素繊維を用
いているにもかかわらず、超極細であると同時に添加量
も1〜8重量%と少なくてすむので、基材の材質、厚み
を考え併せると約30〜90%の全光線透過率の透視性
を有する成形品となすことができる。
The thickness of the antistatic resin layer, which is a coating film after dried and evaporated to be cured, is 0.1 to 10 μm, whereby the surface resistivity of the molded product is 10 4 to 10 11 Ω. /
□ The degree can be easily obtained. If the thickness is less than 0.1 μm, a sufficiently low surface resistivity cannot be obtained, and by further processing and stretching the molded product, the thickness of the coating film further decreases and the antistatic performance cannot be maintained. When the thickness is 10 μm or more, the surface resistivity is almost the same as the surface resistivity at 10 μm, and it is meaningless for a thick film to exceed 10 μm. Further, if the thickness of the coating film is increased, the transparency is deteriorated. From this point as well, the thickness is preferably 10 μm or less. When a transparent resin is used as the base material, it is superfine and the addition amount is as low as 1 to 8% by weight, even though black long carbon fibers are used for the antistatic resin layer. Considering the material and thickness of the material, a molded product having a transparency of about 30 to 90% of total light transmittance can be obtained.

【0031】このように表面に制電性樹脂層を形成した
成形品は、基材及び樹脂層がいずれも熱可塑性樹脂であ
るので、その用途に応じて、二次加工をすることができ
る。二次加工には、成形品を加熱して行う曲げ加工、プ
レス成形、真空成形、圧空成形、ブロー成形、型押し成
形などがあり、これら二次加工により表面の当該樹脂層
には、引張変形、厚み減少、とこれに伴う面積拡張が生
じるけれども、過激な加工をするのでなければ、表面抵
抗率は殆ど上昇することなく、むしろ低下傾向にあり、
二次加工後も充分な制電性を有している。
In the molded article having the antistatic resin layer formed on the surface as described above, since the base material and the resin layer are both thermoplastic resins, secondary processing can be performed depending on the application. The secondary processing includes bending, which is performed by heating the molded product, press molding, vacuum molding, pressure molding, blow molding, and stamping molding.The secondary processing causes tensile deformation of the resin layer on the surface. , Thickness reduction and area expansion accompanying it occur, but unless extreme processing is performed, the surface resistivity hardly increases, but rather tends to decrease.
It has sufficient antistatic property even after secondary processing.

【0032】このように加熱加工により表面抵抗率が実
質的に上昇しないのは、制電性樹脂層中に分散して互い
に接触状態あるいは導通性を有する間隔にある毛玉状集
合体は、各炭素繊維が曲がりくねってもつれや絡み合っ
ているので、熱成形により変形を受けて各集合体が離れ
ても絡み合った繊維同士は接触を維持し或いは導通性を
有する間隔を保持したまま曲がりくねった繊維が単に伸
びるだけであり、導通状態は変わらないからである。し
かし、余り大きな変形を受けて曲がりくねった繊維の伸
びの限度以上になると繊維が切断されさらに繊維間の導
通性を有する間隔が保持できなくなる。このため、変形
即ち成形倍率は10.0倍までとすべきである。また、
毛玉状集合体を分散させた樹脂層の場合、成形倍率を2
〜5倍にすると表面抵抗率が低下する傾向にある。これ
は、図2に示すように、熱成形時に制電性樹脂層が上下
方向に圧縮されると、樹脂層の上下に分布して導通して
いなかった各集合体が互いに接近して接触し或いは導電
性を有する間隔になり、線維間が導通し導通点が増加す
るので、熱成形により表面抵抗率が低下すると考えられ
る。
As described above, the surface resistivity is not substantially increased by the heating process because the pill-like aggregates dispersed in the antistatic resin layer and in contact with each other or at intervals having electrical conductivity are carbon fibers. Since they are twisted or entangled even if they meander, even if each assembly separates due to deformation due to thermoforming, the entangled fibers maintain contact with each other or the twisted fibers simply stretch while maintaining an interval having conductivity. This is because the conduction state does not change. However, when the fiber is bent so much that it is deformed too much and the length of the fiber becomes more than the limit of elongation, the fiber is cut and it becomes impossible to maintain a conductive interval between the fibers. Therefore, the deformation, that is, the molding magnification should be up to 10.0 times. Also,
In the case of a resin layer in which pill-shaped aggregates are dispersed, the molding ratio is 2
When it is -5 times, the surface resistivity tends to decrease. This is because, as shown in FIG. 2, when the antistatic resin layer is compressed in the vertical direction during thermoforming, the aggregates distributed above and below the resin layer and not conducting are brought into close contact with each other. Alternatively, the distance becomes conductive, and the fibers are electrically connected to each other to increase the conduction point, so that it is considered that the surface resistivity is lowered by thermoforming.

【0033】そして、基材に透明樹脂を用いた透視性を
有する制電性樹脂成形品も同様に二次加工しても制電性
を維持しているので、制電性、二次加工性、透視性を兼
ね備えた成形品を得ることができる。さらに、本発明の
成形品は、基材を透明性樹脂に着色剤を添加して予め所
望の色彩に調色しておくことにより、制電性と、二次加
工性と、さらに、制電性樹脂層のすぐれた透視性と相俟
って意図した色彩を損わない深みのある色調とを兼ね備
えた成形品を得ることができる。
Since a transparent antistatic resin molded product using a transparent resin as a base material also retains the antistatic property even after the secondary processing, the antistatic property and the secondary processability are maintained. It is possible to obtain a molded article having both transparency. Furthermore, the molded article of the present invention has antistatic property, secondary processability, and antistatic property by adding a colorant to the transparent resin and adjusting the color of the base material to a desired color in advance. It is possible to obtain a molded product having a good transparency and a deep color tone that does not impair the intended color in combination with the excellent transparency.

【0034】[0034]

【実施例】溶媒としてのシクロヘキサノンに、熱可塑性
樹脂としてポリ塩化ビニルの粉末を添加して溶解し、こ
の溶液中にグラファイト質繊維(ハイピリオンカタリシ
スインターナショナル社製造、品名「グラファイトフィ
ブリルズ」平均線径 10nm、平均長さ10μm)を
種々濃度を変えて添加して、塗液を形成した。
[Examples] Polyvinyl chloride powder as a thermoplastic resin was added to cyclohexanone as a solvent and dissolved, and graphite fibers (manufactured by Hypillion Catalysis International Co., product name "Graphite Fibrils" mean line) were added to the solution. (Diameter 10 nm, average length 10 μm) was added at various concentrations to form a coating liquid.

【0035】樹脂基材として厚み2.0mmのポリ塩化
ビニルシートを用い、その表面に、上記の塗液をバーコ
ータで乾燥塗膜厚が概算2μmと4μmの二水準となる
ように塗布して乾燥硬化させて、制電性塗膜を形成し
た。次いで、このシートを、200℃に加熱して真空成
形加工を行った。真空成形の際の成形倍率(成形前の原
板面積に対する成形後の面積の比)は2〜10とし、真
空成形の前と後で測定した表面抵抗率を対比した。
A polyvinyl chloride sheet having a thickness of 2.0 mm is used as a resin base material, and the surface of the sheet is coated with the above coating solution by a bar coater so that the thickness of the coating film becomes two levels of approximately 2 μm and 4 μm and dried. It was cured to form an antistatic coating. Next, this sheet was heated to 200 ° C. and vacuum-formed. The forming magnification (the ratio of the area after forming to the area of the original plate before forming) during vacuum forming was set to 2 to 10, and the surface resistivity measured before and after vacuum forming was compared.

【0036】塗膜中のグラファイト質繊維の添加量が、
4.5重量%の試料(実施例1)と3.6重量%の試料
(実施例2)について、真空成形前後の表面抵抗率の測
定試験結果を表1にまとめた。
The amount of graphite fiber added to the coating film is
Table 1 summarizes the results of the surface resistivity measurement test before and after vacuum forming for the 4.5 wt% sample (Example 1) and the 3.6 wt% sample (Example 2).

【0037】また、比較例1として、微粒子状酸化錫S
nO2 系の制電性塗料を使用して制電性のポリ塩化ビニ
ルシートを形成した。この比較例1は、シクロヘキサノ
ンに上記のポリ塩化ビニルを9重量%、SnO2 (触媒
化成(株)製、品名「ELCOM TL35」粒径 2
00nm以下)を15重量%添加して塗液を調製して、
実施例と同じポリ塩化ビニルシートに塗布して塗膜を形
成し、同様に真空成形の前後で表面抵抗率を実測して比
較した。
As Comparative Example 1, fine particle tin oxide S
An antistatic polyvinyl chloride sheet was formed using an nO 2 -based antistatic paint. In this comparative example 1, 9 wt% of the above polyvinyl chloride was added to cyclohexanone, SnO 2 (Catalyst Kasei Co., Ltd., product name “ELCOM TL35”, particle size 2
(00 nm or less) to prepare a coating solution by adding 15% by weight,
The same polyvinyl chloride sheet as in the example was applied to form a coating film, and similarly, the surface resistivity was measured before and after vacuum forming and compared.

【0038】比較例2として、針状の導電性酸化チタン
を含有した制電性塗料(大日精化(株)製造、「ネオコ
ンコートS2120」)を同様にポリ塩化ビニルシート
に塗布して塗膜を形成し、同様に、真空成形の前後の表
面抵抗率を比較した。
As Comparative Example 2, a polyvinyl chloride sheet was similarly coated with an antistatic paint containing needle-shaped conductive titanium oxide (manufactured by Dainichiseika Co., Ltd., "Neoconcoat S2120"). Was formed, and similarly, the surface resistivity before and after vacuum forming was compared.

【0039】[0039]

【表1】 [Table 1]

【0040】表1から、塗膜形成後で真空成形前(成形
倍率1)にあっては実施例のグラファイト質繊維を含む
成形品が107 〜109 Ω/□の表面抵抗率であり、十
分な制電性を有している。これに対して、比較例1の微
粒子状SnO2 を含む成形品は、ほぼ106 Ω/□程度
の表面抵抗率で、実施例より低くなっていて、より十分
な制電性を有する。比較例2の針状酸化チタンを含む成
形品は、106 〜107 Ω/□程度で、十分な制電性を
有する。また、実施例、比較例共に膜厚が厚くなると表
面抵抗率が低下している。
It can be seen from Table 1 that the molded article containing the graphite fiber of the example has a surface resistivity of 10 7 to 10 9 Ω / □ after the coating film formation and before the vacuum forming (molding ratio 1), It has sufficient antistatic properties. On the other hand, the molded article containing fine particle SnO 2 of Comparative Example 1 has a surface resistivity of about 10 6 Ω / □, which is lower than that of the example, and has a sufficient antistatic property. The molded product containing the acicular titanium oxide of Comparative Example 2 has a sufficient antistatic property of about 10 6 to 10 7 Ω / □. Further, in both the examples and the comparative examples, the surface resistivity decreases as the film thickness increases.

【0041】これらの試料を真空成形すると、比較例
1、2の成形品は、成形倍率3.0からその表面抵抗率
が1012Ω/□以上に上昇し制電性を有さなくなるけれ
ども、本発明のグラファイト質繊維の使用の実施例は、
成形倍率5.0でも表面抵抗率が成形前よりもむしろ低
下する現象がみられ、表面抵抗率が107 Ω/□以下と
なった。このような結果となった原因として、この真空
成形の過程では、成形品の伸びと同時に塗膜も伸びて薄
くなるから、あるいは、成形品が金型に接触して塗膜も
圧下されるから、実施例においては、曲がりくねった繊
維が伸びるだけで繊維間の接触や導通可能な間隔は保た
れ、さらに、塗膜中に分散するグラファイト質繊維の集
合体が位置を変えずに偏平に変形して長くなり、上下に
分布していて接触していなかった集合体相互間の接触や
導通可能な接近が新たに起り、これらより接触ないし導
通可能な接近の頻度が高くなったためと解される。
When these samples were vacuum-molded, the molded products of Comparative Examples 1 and 2 had a surface resistivity increased to 10 12 Ω / □ or more from the molding ratio of 3.0 and no longer had antistatic property. Examples of the use of the graphitic fibers of the present invention are:
Even at a molding ratio of 5.0, a phenomenon in which the surface resistivity was lowered rather than that before molding was observed, and the surface resistivity was 10 7 Ω / □ or less. The reason for such a result is that, in the process of vacuum forming, the coating film stretches and thins at the same time as the molded article stretches, or the molded article contacts the mold and the coating film is also pressed down. In the examples, only the winding fibers are stretched to maintain the contact between the fibers and the interval where conduction is possible, and further, the aggregate of the graphite fibers dispersed in the coating film is deformed into a flat shape without changing the position. It is considered that the contact between the aggregates which are distributed vertically and are not in contact with each other, and the approach in which conduction is possible newly occur, and the frequency of the approach in which contact or conduction is possible is higher than these.

【0042】これに対して、比較例1においては微粒子
状SnO2 であるため、塗膜が伸びると微粒子状SnO
2 の接触や接近がなくなり、表面抵抗率が増加するもの
と考えられる。また比較例2においても、針状の導電性
酸化チタンを用いているため、塗膜が伸びると導電性酸
化チタンの相互距離が広がり接触や導通に要する接近が
なくなると同時に、針状酸化チタンが変形方向に配向し
て上下の接触や接近もなくなるためと考えられる。しか
し、比較例2は、針状であるため比較例1の微粒状のも
のより粒子間は若干接触ないし接近を保つことができる
のであろう。(成形倍率2倍では2×108 Ω/□であ
るが、これとて成形倍率が2倍までであり、実用的でな
い。)
On the other hand, in Comparative Example 1, since the particulate SnO 2 is used, when the coating film is extended, the particulate SnO 2 is added.
It is considered that the contact and approach of 2 disappear and the surface resistivity increases. In Comparative Example 2 as well, since needle-shaped conductive titanium oxide is used, when the coating film extends, the mutual distance of the conductive titanium oxide increases and the contact or contact required for conduction disappears. It is considered that it is oriented in the direction of deformation and there is no vertical contact or approach. However, since Comparative Example 2 is needle-shaped, it may be possible to maintain a slight contact or approach between the particles as compared with the fine-grained Comparative Example 1. (It is 2 × 10 8 Ω / □ when the molding ratio is 2 times, but this is not practical because the molding ratio is up to 2 times.)

【0043】塗膜中の上記グラファイト質繊維「グラフ
ァイトフィブリルズ」の添加量を変えて作製した制電性
ポリ塩化ビニルシートを使用して、塗膜中の添加量と真
空成形前後の表面抵抗率との関係の測定結果を表2に示
してある。表2より、添加量が0.93wt%では制電性
を有さず、1.3wt%になって若干の制電性を有するよ
うになり、添加量の下限は1wt%であることがわかる。
また、添加量を8.6wt%にしても7wt%と略同じ表面
抵抗率を示し、これ以上の添加量の増加は無意味である
ことがわかる。この結果より、長炭素繊維「グラファイ
トフィブリルズ」の添加範囲が、1〜8重量%の範囲で
あれば適度な制電性を付与できることががわかる。
Using the antistatic polyvinyl chloride sheets produced by changing the addition amount of the above graphite fiber "graphite fibrils" in the coating film, the addition amount in the coating film and the surface resistivity before and after vacuum forming were used. Table 2 shows the measurement results of the relationship with. From Table 2, it can be seen that when the added amount is 0.93 wt%, it does not have antistatic property, and when it becomes 1.3 wt%, it has some antistatic property, and the lower limit of the added amount is 1 wt%. .
Further, even if the addition amount is 8.6 wt%, the surface resistivity is almost the same as 7 wt%, and it can be seen that further increase of the addition amount is meaningless. From this result, it is understood that when the addition range of the long carbon fiber "graphite fibrils" is in the range of 1 to 8% by weight, appropriate antistatic property can be imparted.

【0044】[0044]

【表2】 [Table 2]

【0045】次に、塗膜中の「グラファイトフィブリル
ズ」の添加量が4.5重量部で、塗膜厚みが4.1μm
の樹脂層を有するポリ塩化ビニルシートを用いて、真空
成形による成形倍率と表面抵抗率との関係を求め、表3
に示した。該表より、成形倍率が7倍になると若干表面
抵抗率が増加し、10倍になると1012Ω/□以上とな
って制電性を有さなくなることがわかる。これは、繊維
が曲がりくねっていても7倍もの成形倍率で加工する
と、繊維が伸びて樹脂の変形に対応してやや追従しづら
くなって接触や導通可能な接近ができなくなるものも出
てくることによるものと考えられる。このことより、後
述の表4から判るように制電性を保持できる成形倍率の
可能性は膜厚が厚くなると増加する傾向にあることと実
際的な成形作業性を考え併せると、成形倍率は10倍程
度までが制電性を保持できるであろうと考えられる。ま
た、この表3より、成形倍率が5倍までは二次加工によ
り表面抵抗率が低下しており、好ましい成形倍率は7倍
までである。
Next, the amount of "graphite fibrils" added in the coating film was 4.5 parts by weight, and the coating film thickness was 4.1 μm.
Using the polyvinyl chloride sheet having the resin layer of No. 3, the relationship between the molding ratio by vacuum molding and the surface resistivity was determined, and Table 3
It was shown to. From the table, it can be seen that when the molding magnification is 7 times, the surface resistivity is slightly increased, and when the molding magnification is 10 times, it becomes 10 12 Ω / □ or more and the antistatic property is lost. This is because even if the fiber is meandering, if it is processed at a molding ratio of 7 times, the fiber will stretch and it will be difficult to follow the deformation of the resin, and it will not be possible to make contact or conduction approach. It is considered to be a thing. From this, as can be seen from Table 4 described later, the possibility of the molding ratio that can maintain the antistatic property tends to increase as the film thickness increases, and considering the practical molding workability, the molding ratio is It is considered that the antistatic property can be maintained up to about 10 times. Further, from Table 3, the surface resistivity is lowered by the secondary processing until the molding ratio is up to 5, and the preferable molding ratio is up to 7.

【0046】[0046]

【表3】 [Table 3]

【0047】次に、「グラファイトフィブリルズ」の塗
膜中の添加量を4.5重量部に固定し、塗膜厚を変化さ
せて膜厚の表面抵抗率に及ぼす効果について調べ、表4
に示した。表4より、膜厚が厚くなるほど表面抵抗率が
低下し、この傾向は、成形倍率が高い場合にも成り立つ
ことが判る。しかし、膜厚を15μmにしても8μmの
ときとほとんど変わらない表面抵抗率を示し、10μm
程度で十分である。また、膜厚が0.3μmと薄いと1
12Ω/□以上で十分な制電性を有さないが、3倍の成
形をなすことで1010Ω/□と低下し制電性を十分有す
るようになる。また、塗膜中の添加量を増加させると表
面抵抗率が低下する傾向にあることを考え併せると、膜
厚としては、0.1〜10μm程度が良く、好ましくは
1〜8μmである。
Next, the addition amount of "graphite fibrils" in the coating film was fixed to 4.5 parts by weight, and the effect of the film thickness on the surface resistivity was investigated by changing the coating film thickness, and Table 4
It was shown to. From Table 4, it can be seen that the surface resistivity decreases as the film thickness increases, and this tendency holds even when the molding ratio is high. However, even if the film thickness is 15 μm, the surface resistivity is almost the same as when it is 8 μm, and it is 10 μm.
The degree is enough. If the film thickness is as thin as 0.3 μm, it is 1
When it is 0 12 Ω / □ or more, it does not have sufficient antistatic property, but when it is molded three times, it becomes 10 10 Ω / □ and it has sufficient antistatic property. Taking into consideration that the surface resistivity tends to decrease as the amount added in the coating film increases, the film thickness is preferably about 0.1 to 10 μm, and preferably 1 to 8 μm.

【0048】[0048]

【表4】 [Table 4]

【0049】さらに、膜厚と透視性の関係について調
べ、その結果を表5に示した。膜厚が厚くなると透視性
は低下するものの、2.3μm厚では57.1%の全光
線透過性を有し、十分成形品を通して透視できるもので
あることがわかる。このものは、表4に示すように、1
8 Ω/□の表面抵抗率を有し、二次加工性も十分有し
ているものである。
Further, the relationship between the film thickness and the transparency was investigated, and the results are shown in Table 5. Although the transparency decreases as the film thickness increases, it can be seen that the 2.3 μm-thickness has a total light transmittance of 57.1% and can be sufficiently seen through a molded product. This one, as shown in Table 4,
It has a surface resistivity of 0 8 Ω / □ and sufficient secondary workability.

【0050】[0050]

【表5】 [Table 5]

【0051】このようにして、本発明の制電性樹脂成形
品は、特に、少量のグラファイト質繊維の適量の配合使
用で、しかも極めて薄い塗膜の形成だけで、加工に対し
ても安定して優れた表面制電性を得ることができるので
ある。
In this way, the antistatic resin molded article of the present invention is stable to processing, especially by using an appropriate amount of a small amount of graphite fiber and forming an extremely thin coating film. Thus, excellent surface antistatic property can be obtained.

【0052】[0052]

【発明の効果】本発明は、樹脂基材の表面に形成する制
電性樹脂層は熱可塑性樹脂中に導電性の長繊維が曲がり
くねって且つ相互接触して、又は導通性を有する間隔を
保持して分散している塗膜としたので、成形品の制電性
を維持しながら二次加工成形ができるような熱成形用制
電性樹脂成形品とすることができる。さらに、導電性長
繊維として超極細の長炭素繊維を用いて塗膜とした制電
性樹脂成形品は、該成形品を二次加工しても、成形品表
面の制電機能を維持することができる。
According to the present invention, the antistatic resin layer formed on the surface of the resin base material is such that the conductive long fibers are twisted and in contact with each other in the thermoplastic resin, or a space having conductivity is maintained. Since the coating film is dispersed as described above, it is possible to obtain an antistatic resin molded article for thermoforming which enables secondary processing molding while maintaining the antistatic property of the molded article. In addition, the antistatic resin molded product coated with ultrafine long carbon fibers as the conductive long fibers must maintain the antistatic function on the surface of the molded product even when the molded product is secondarily processed. You can

【0053】制電性樹脂層に含む導電材料に超極細状で
アスペクト比の大きいグラファイト質繊維を使用するこ
とにより、毛玉状集合体とすることができるので、成形
品の表面制電性を効率良く実現でき、また、制電性樹脂
層を、グラファイト質繊維を含む塗液を塗布して成る塗
膜としたので、成形品の制電性付与の作業を簡便になす
ことができる。また、グラファイト質繊維を少量添加す
ることで十分な制電性を発揮でき、透明基材を用いるこ
とで透視性を有する成形品を得ることができる。
By using a graphite fiber having an ultra-fine shape and a large aspect ratio as the conductive material contained in the antistatic resin layer, a pilllike aggregate can be obtained, so that the surface antistatic property of the molded article can be efficiently obtained. Further, since the antistatic resin layer is a coating film formed by applying the coating liquid containing the graphite fiber, the work of imparting the antistatic property to the molded product can be easily performed. Further, by adding a small amount of graphite fiber, sufficient antistatic property can be exhibited, and by using a transparent substrate, a molded article having transparency can be obtained.

【0054】制電性樹脂層に制電性を付与するのに、導
電性繊維として、特に、極細状のグラファイト質繊維を
少量添加することにより透視性が良好な成形品を得るこ
とができ、さらに基材を着色剤により予め着色すること
により成形品は所望の色彩に調色し得て、しかも、種々
の深みがあって且つ意図した色調を損なわない色彩を具
備した成形品を容易に得ることができる。
In order to impart the antistatic property to the antistatic resin layer, a molded article having good transparency can be obtained by adding a small amount of an extremely fine graphite fiber as the conductive fiber, Further, by pre-coloring the base material with a coloring agent, the molded product can be toned to a desired color, and easily, a molded product having various depths and a color that does not impair the intended color tone can be easily obtained. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に使用するグラファイト質繊維の毛玉状
集合体(A)と毛玉状集合体が凝集した状態(B)を示
す概念図。
FIG. 1 is a conceptual diagram showing a pilllike aggregate (A) of graphite fibers used in the present invention and a state (B) in which the pilllike aggregate is aggregated.

【図2】制電性樹脂層中に分散したグラファイト質繊維
の毛玉状集合体の状態を示す概念図。
FIG. 2 is a conceptual diagram showing a state of a pilllike aggregate of graphite fibers dispersed in an antistatic resin layer.

【符号の説明】[Explanation of symbols]

1 長炭素繊維 2 毛玉状集合体 3 凝集体 1 long carbon fiber 2 pilllike aggregates 3 aggregates

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−132963(JP,A) 特開 昭61−254636(JP,A) 特開 平7−102197(JP,A) 特開 昭61−218669(JP,A) (58)調査した分野(Int.Cl.7,DB名) B32B 1/00 - 35/00 B29C 51/00 - 51/46 C09D 1/00 - 201/10 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-7-132963 (JP, A) JP-A-61-254636 (JP, A) JP-A-7-102197 (JP, A) JP-A-61- 218669 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B32B 1/00-35/00 B29C 51/00-51/46 C09D 1/00-201/10

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱可塑性樹脂基材と、該樹脂基材の表面
に被着された制電性樹脂層とから成る熱成形可能な制電
性樹脂成形品であって、 上記制電性樹脂層は、熱可塑性樹脂中に導電性の長繊維
が曲がりくねって且つ互いに接触しておよび/若しくは
導電性を有する間隔を保って分散している塗膜であっ
て、熱成形後には、該塗膜の成形部分の制電性が低下し
ないことを特徴とする熱成形可能な制電性樹脂成形品。
1. A thermoformable antistatic resin molded article comprising a thermoplastic resin base material and an antistatic resin layer adhered to the surface of the resin base material, wherein the antistatic resin The layer is a coating film in which electroconductive long fibers are dispersed in a thermoplastic resin in a meandering manner and in contact with each other and / or at intervals having electroconductivity, and the film is formed after thermoforming. A thermoformable antistatic resin molded product, which is characterized in that the antistatic property of the molded part does not deteriorate.
【請求項2】 熱可塑性樹脂基材と、該樹脂基材の表面
に被着された制電性樹脂層とから成る熱成形可能な制電
性樹脂成形品であって、 上記制電性樹脂層は、熱可塑性樹脂中に線径3.5〜5
00nmの導電性長炭素繊維が曲がりくねって且つ互い
に接触して及び/若しくは導電性を有する間隔を保って
分散している塗膜であって、熱成形後には、該塗膜の成
形部分の制電性が低下しないことを特徴とする成形可
能な制電性樹脂成形品。
2. A thermoformable antistatic resin molded article comprising a thermoplastic resin base material and an antistatic resin layer adhered to the surface of the resin base material, wherein the antistatic resin is The layer has a wire diameter of 3.5 to 5 in the thermoplastic resin.
A coating film in which conductive long carbon fibers of 00 nm are dispersed in a meandering shape and in contact with each other and / or at intervals having a conductive property, and after thermoforming, antistatic property of a molded portion of the coating film is obtained. thermoformable antistatic resin molded article sex characterized in that it does not decrease.
【請求項3】 上記の制電性樹脂層には、成形後におい
ても、長繊維が接触しておよび/若しくは導電性を有す
る間隔を保って分散している請求項1又は2に記載の制
電性樹脂成形品。
3. The antistatic resin layer according to claim 1, wherein even after molding, the long fibers are dispersed in contact with each other and / or at a conductive spacing. Electric resin molded product.
【請求項4】 塗膜が別体の熱可塑性樹脂フィルム上に
形成され、該フィルム上の該塗膜が上記の熱可塑性樹脂
基材に熱圧着された請求項1ないし3いずれかに記載の
制電性樹脂成形品。
4. The coating film according to claim 1, wherein the coating film is formed on a separate thermoplastic resin film, and the coating film on the film is thermocompression-bonded to the thermoplastic resin substrate. Antistatic resin molded product.
【請求項5】 長炭素繊維が断面円形のグラファイト質
である請求項2ないし4いずれかに記載の制電性樹脂成
形品。
5. The antistatic resin molded article according to claim 2, wherein the long carbon fiber is a graphite material having a circular cross section.
【請求項6】 長炭素繊維は、該繊維各々の絡まった毛
玉状集合体を成し、該集合体の周囲から曲がりくねった
該繊維が放射状に放出した形態を有する請求項2ないし
5いずれかに記載の制電性樹脂成形品。
6. The long carbon fiber forms a pill-shaped aggregate in which the respective fibers are entangled with each other, and the fibers meandering around the aggregate are radially released. Antistatic resin molded product of.
【請求項7】 長炭素繊維が、上記の毛玉状集合体が多
数凝集した凝集体を成している請求項6に記載の制電性
樹脂成形品。
7. The antistatic resin molded article according to claim 6, wherein the long carbon fibers form an aggregate in which a large number of the pilllike aggregates are aggregated.
【請求項8】 塗膜が、塗膜中に長炭素繊維1〜8重量
%含み、且つ、0.1〜10μmの厚みを有する請求項
2ないし7いずれかに記載の制電性樹脂成形品。
8. The antistatic resin molded article according to claim 2, wherein the coating film contains 1 to 8% by weight of long carbon fibers in the coating film and has a thickness of 0.1 to 10 μm. .
【請求項9】 制電性樹脂成形品が、30〜90%の全
光線透過率を有する請求項2ないし8いずれかに記載の
制電性樹脂成形品。
9. The antistatic resin molded article according to claim 2, wherein the antistatic resin molded article has a total light transmittance of 30 to 90%.
【請求項10】 制電性樹脂成形品が、成形倍率1.1
〜10.0倍で熱成形されて、該成形品が1011Ω/
□以下の表面抵抗率を有する請求項2ないし9いずれか
に記載の制電性樹脂成形品。
10. The antistatic resin molding has a molding ratio of 1.1.
Thermoformed by 10 to 10 times, the molded product is 10 11 Ω /
□ The antistatic resin molded product according to any one of claims 2 to 9, which has the following surface resistivity.
【請求項11】 制電性樹脂成形品が成形倍率2〜5倍
で形成され、成形された塗膜部分の制電性がさらに向上
する請求項2ないし8いずれかに記載の制電性樹脂成形
品。
11. The antistatic resin according to claim 2, wherein the antistatic resin molded product is formed with a molding magnification of 2 to 5 times, and the antistatic property of the molded coating film portion is further improved. Molding.
JP33155397A 1996-12-10 1997-12-02 Moldable antistatic resin molded product Expired - Fee Related JP3398587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33155397A JP3398587B2 (en) 1996-12-10 1997-12-02 Moldable antistatic resin molded product

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-329437 1996-12-10
JP32943796 1996-12-10
JP33155397A JP3398587B2 (en) 1996-12-10 1997-12-02 Moldable antistatic resin molded product

Publications (2)

Publication Number Publication Date
JPH10226007A JPH10226007A (en) 1998-08-25
JP3398587B2 true JP3398587B2 (en) 2003-04-21

Family

ID=26573204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33155397A Expired - Fee Related JP3398587B2 (en) 1996-12-10 1997-12-02 Moldable antistatic resin molded product

Country Status (1)

Country Link
JP (1) JP3398587B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8778116B2 (en) 2007-12-07 2014-07-15 Meijyo Nano Carbon Co., Ltd. Method for producing carbon nanotube-containing conductor

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19932383A1 (en) * 1999-07-14 2001-01-18 Ticona Gmbh Electrically conductive molded plastic parts
JP2003100147A (en) * 2001-09-25 2003-04-04 Nagase & Co Ltd Conductive material containing carbon nanotube and its manufacturing method
JP2005060497A (en) * 2003-08-11 2005-03-10 Mitsubishi Plastics Ind Ltd Snow- and ice-slipping member and its manufacturing process
JP4488826B2 (en) * 2004-07-29 2010-06-23 タキロン株式会社 Antistatic resin molding
JP2006035775A (en) * 2004-07-29 2006-02-09 Takiron Co Ltd Antistatic resin molded product
JP4488825B2 (en) * 2004-07-29 2010-06-23 タキロン株式会社 Antistatic resin molding
KR102103541B1 (en) 2005-08-12 2020-04-23 캄브리오스 필름 솔루션스 코포레이션 Nanowires-based transparent conductors
JP4795780B2 (en) * 2005-11-14 2011-10-19 タキロン株式会社 Antistatic resin molding
JP4591322B2 (en) * 2005-11-15 2010-12-01 王子製紙株式会社 Chip-type electronic component storage mount
CN101589473B (en) 2006-10-12 2011-10-05 凯博瑞奥斯技术公司 Nanowire-based transparent conductors and applications thereof
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
JP6098860B2 (en) 2007-04-20 2017-03-22 シーエーエム ホールディング コーポレーション Composite transparent conductor and device
SG183138A1 (en) 2010-02-05 2012-09-27 Cambrios Technologies Corp Photosensitive ink compositions and transparent conductors and method of using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8778116B2 (en) 2007-12-07 2014-07-15 Meijyo Nano Carbon Co., Ltd. Method for producing carbon nanotube-containing conductor

Also Published As

Publication number Publication date
JPH10226007A (en) 1998-08-25

Similar Documents

Publication Publication Date Title
JP3398587B2 (en) Moldable antistatic resin molded product
JP6124099B1 (en) Conductive laminate, molded body using the same, capacitive touch sensor and planar heating element, and method for manufacturing molded body
US20060257638A1 (en) Articles with dispersed conductive coatings
KR20050121665A (en) Articles with protruding conductive coatings
JP2009252014A (en) Touch panel
JP2006035771A (en) Conductive layer transfer sheet
JP2006035773A (en) Self-adhesive conductive molding
JP2003100147A (en) Conductive material containing carbon nanotube and its manufacturing method
JP6580431B2 (en) Transparent conductive film
US6214451B1 (en) Formable antistatic resin molded article
JP4087508B2 (en) Antistatic resin molded product and its secondary molded product
JP4488826B2 (en) Antistatic resin molding
US20240321477A1 (en) Method for manufacturing an electrically conductive composite
JP2003258490A (en) Electromagnetic wave shielding material, and manufacturing method thereof
CN220509722U (en) Flexible composite conductive film
WO2021172086A2 (en) Transparent conductive film
WO2022030106A1 (en) Multilayer body and secondary molded article
KR20230117607A (en) Manufacturing method of transparent conductive film
JP2008103354A (en) Antistatic resin molding, and secondary molding thereof
KR20230114757A (en) transparent conductive film
JP6712860B2 (en) Transparent conductive film
KR20230116053A (en) transparent conductive film
JP4191078B2 (en) Antistatic transparent resin plate
JP2007130950A (en) Antistatic molded resin body
WO2021065829A1 (en) Method for producing a transparent electroconductive film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees