JP3396496B2 - DC power transmission protection relay - Google Patents
DC power transmission protection relayInfo
- Publication number
- JP3396496B2 JP3396496B2 JP29546892A JP29546892A JP3396496B2 JP 3396496 B2 JP3396496 B2 JP 3396496B2 JP 29546892 A JP29546892 A JP 29546892A JP 29546892 A JP29546892 A JP 29546892A JP 3396496 B2 JP3396496 B2 JP 3396496B2
- Authority
- JP
- Japan
- Prior art keywords
- transmission line
- power
- current
- amount
- terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Emergency Protection Circuit Devices (AREA)
- Direct Current Feeding And Distribution (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は直流送電線の保護継電装
置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a protective relay device for a DC power transmission line.
【0002】[0002]
【従来の技術】従来、直流送電線の保護には、例えば特
公昭63-14564号(特許第 1469929号)公報に記載のもの
が使用されている。これは直流送電線特有の現象である
送電線内部事故時に順変換器側の端子の電流が増加、逆
変換器側の端子の電流が減少することに着目し、これを
検出して高速度に送電線を保護するものである。なお、
両端子の電流の差電流の大きさが一定値以上となった場
合に保護出力を送出する差動保護も使用されているが、
これは事故直後の過渡現象による不正応動を避けるた
め、高速動作に期待し得ない。2. Description of the Related Art Conventionally, for example, the one disclosed in Japanese Examined Patent Publication No. 63-14564 (Patent No. 1469929) has been used to protect a DC transmission line. This is a phenomenon peculiar to DC transmission lines.At the time of an internal fault in the transmission line, the current at the terminal on the forward converter side increases and the current on the terminal on the inverse converter side decreases, and this is detected to increase the speed. It protects power lines. In addition,
Differential protection is also used, which sends out a protection output when the magnitude of the current difference between both terminals exceeds a certain value.
This avoids unauthorized response due to transient phenomena immediately after the accident, and therefore high-speed operation cannot be expected.
【0003】[0003]
【発明が解決しようとする課題】即ち、従来の直流送電
線の保護は事故後の過渡現象にすばやく応動する装置
(特公昭63-14564号に記載のものなど)と、過渡現象が
安定した後に保護を行なう差動保護装置との2つの組合
せにより補完的に実施されている。しかしながら、これ
は保護装置が複雑となり好ましいことではない。[Problems to be Solved by the Invention] That is, the conventional protection of a DC transmission line is a device that quickly responds to a transient phenomenon after an accident (such as the one described in Japanese Patent Publication No. 63-14564) and after the transient phenomenon stabilizes. It is implemented complementarily by two combinations with a differential protection device for protection. However, this is not preferable because the protection device becomes complicated.
【0004】本発明は上記事情に鑑みてなされたもので
あり、その目的は従来2つの保護装置で補完的になされ
ていた保護動作を新たに提案する保護アルゴリズムによ
り簡単な装置で高精度に実現することにある。The present invention has been made in view of the above circumstances, and an object thereof is to realize a protection operation, which has been conventionally complemented by two protection apparatuses, with a simple apparatus and highly accurately by a newly proposed protection algorithm. To do.
【0005】[0005]
【課題を解決するための手段】本発明は動作量Id が抑
制量Ir より大なるときに(厳密にはリレ―感度k0を
越えて大なるとき)保護連動信号を送出する、保護継電
装置のうち次の特徴を備えたものである。According to the present invention, a protection interlocking signal is transmitted when the operation amount I d is larger than the suppression amount I r (strictly, when it is larger than the relay sensitivity k 0 ). The relay device has the following features.
【0006】[1] 動作量Id は被保護直流送電線両
端子の電流Ia ,Ib と直流送電線の対地電位VL より
次式により導出された電気量(もしくは演算量)であ
る。[0006] [1] Operation amount Id are electric quantity derived by the following equation from the pair land potential VL of the current Ia, Ib and DC transmission lines of the protected DC transmission line Ryotanshi (or operation amount).
【0007】[0007]
【数1】
ここで第3項は直流送電線の対地充電電流であり、短距
離送電線やケ―ブル区間を含まない場合には無視しうる
のでこの場合第3項は不要である。
[2] 抑制量Irは被保護直流送電線両端子の電流I
a,Ibより次式により導出された電気量(もしくは演
算量)である。[Equation 1] Here the third term is a counter locations charging current of the DC transmission line, short transmission lines and Ke - this third term so negligible if without the table section is not required. [2] The suppression amount Ir is the current I of both terminals of the protected DC transmission line.
It is the amount of electricity (or amount of calculation) derived from a and Ib by the following equation.
【0008】[0008]
【数2】 Ir =max {ΔIa ,ΔIb } ……(2)## EQU2 ## I r = max {ΔI a , ΔI b } (2)
【0009】ここでΔIa は端子電流Ia の変化分電流
であり、例えば10ms(50Hz系統での半サイクル相当)間
の電流の変化分の大きさを表わす。同様にΔIb は端子
電流Ib の変化分電流である。したがって電流の変化が
大きい程抑制量は大きくなり、変化が小さいと抑制量は
小さい。又、max {ΔIa ,ΔIb }は、2つの変化分
電流ΔIa ,ΔIb のうちの大きい方を抑制量とするも
のである。Here, ΔI a is a change current of the terminal current I a , and represents, for example, the amount of change in current for 10 ms (corresponding to a half cycle in a 50 Hz system). Similarly, ΔI b is a change current of the terminal current I b . Therefore, the larger the change in current, the larger the suppression amount, and the smaller the change, the smaller the suppression amount. Further, max {ΔI a , ΔI b } is the amount of suppression which is larger of the two change currents ΔI a and ΔI b .
【0010】[0010]
【作用】次に本発明の作用について説明する。このよう
な保護継電装置においては、内部事故と外部事故の識別
が最も重要である。この識別は主に動作量Idの大小に
より識別される。以下に外部事故と内部事故での関係式
を示す。 Next, the operation of the present invention will be described. In such a protective relay device, it is most important to distinguish between internal accidents and external accidents. This identification is made mainly by the magnitude of the motion amount Id. Below are the relational expressions for external and internal accidents.
Indicates.
【0011】すなわち、(A)式は外部事故を示し、
(B)式は内部事故を示している。That is, formula (A) shows an external accident,
Equation (B) shows an internal accident.
【数3】 [Equation 3]
【0012】If ≠0(Ifは事故点電流)となり、
Idの大きさによりその識別がなされる。しかしなが
ら、実際の事故発生時には送電線自身のインダクタンス
と送電線と大地間のキャパシタンスによる振動が発生
し、これらの高調波成分の影響を受けて、外部事故時に
も拘らず過渡的に(時間と共に減衰する)誤差差電流I
dεが発生する。誤差差電流Idεは、そのまま動作量
となるので、このままでは不要動作傾向となる。I f ≠ 0 (I f is the fault current),
The identification is made by the size of Id. However, when an actual accident occurs, vibration occurs due to the inductance of the transmission line itself and the capacitance between the transmission line and the ground, and under the influence of these harmonic components, it transiently (decays with time) despite an external accident. Error difference current I
dε occurs. Since the error difference current Idε becomes the operation amount as it is, it tends to be an unnecessary operation as it is.
【0013】本発明では次に示すような抑制量を用いる
ことにより、不要動作を回避するものであり、上記の誤
差差電流Id εは事故発生時の送電線の電気的振動によ
るものであり、この場合には両端子の電流Ia ,Ib を
同時に振動する。又、この振動の大きさは誤差差電流I
d εの大きさと同じ傾向を持つといえる。したがって両
端子・電流の変化分電流の大きさΔIa ,ΔIb を抑制
量に参加させることにより、上記の誤差差電流Id εを
相殺することが可能となる。In the present invention, unnecessary operation is avoided by using the following suppression amount, and the above error difference current I d ε is due to electric vibration of the transmission line at the time of accident. In this case, the currents I a and I b at both terminals oscillate simultaneously. In addition, the magnitude of this vibration depends on the error difference current I
It can be said that it has the same tendency as the magnitude of d ε. Therefore, it is possible to cancel the above error difference current I d ε by making the magnitudes of the currents ΔI a and ΔI b corresponding to the changes in both terminals / currents participate in the suppression amount.
【0014】具体的には両端子の電流Ia,Ibの変化
分ΔIa,ΔIbについて、その最大値max{ΔI
a,ΔIb}を抑制量Irとすることにより、事故発生
後の振動による誤差差電流Idεを相殺する抑制量を発
生させる。ここで、最大値をとる理由は確実な抑制量を
得ることと、この動作判定を送電線の両端に設置した別
々の装置で行なわせた場合の動作の同一性のためであ
る。以上により、Idε<Ir とすることが可能とな
り、外部事故時にリレーは不動作となる。一方、内部事
故では
Id ≒ If
と大きく、上記の抑制量Irで動作を阻害されることは
ない。なお、≒印はほぼ等しいことを意味する記号であ
る。Specifically, the maximum values max {ΔI of the changes ΔIa, ΔIb of the currents Ia, Ib at both terminals are set.
By setting a, ΔIb} as the suppression amount Ir, a suppression amount that cancels the error difference current Id ε due to the vibration after the accident occurs is generated. Here, the reason why the maximum value is taken is to obtain a certain amount of suppression and the same operation when the operation determination is performed by different devices installed at both ends of the power transmission line. From the above, it becomes possible to satisfy Idε <Ir, and the relay does not operate at the time of an external accident. On the other hand, in an internal accident, Id ≈ If, which is large, and the above-mentioned suppression amount Ir does not hinder the operation. Note that the ≅ marks are symbols that mean that they are almost equal.
【0015】[0015]
【実施例】次に本発明の実施例により説明する。EXAMPLES Next, examples of the present invention will be described.
【0016】図1は本発明の実施例であり、図中1,2
は直流送電線、3A,3Bは直流リアクトル、4A,4
Bは夫々順,逆変換装置、5A,5Bは直流送電システ
ムに連がる交流系統、6A,6Bは直流変流器、7A,
7Bは入力変換器、8A,8Bは自端子の端子に比例し
た電気量を相手端子へ送信する伝送装置、9A,9Bは
相手端子の端子電流に比例した電気量を自端子へ受信す
る伝送装置、10A,10Bは7Aと9A又は7Bと9Bの
出力を入力として動作判定を行なう継電器であり、図示
のように接続される。なお、図示しないが、直流送電線
の対地電位VLを直流変成器より夫々10A,10Bに導入
する。FIG. 1 shows an embodiment of the present invention.
Are DC transmission lines, 3A and 3B are DC reactors, 4A and 4
B is a forward and reverse converter, 5A and 5B are AC systems linked to a DC power transmission system, 6A and 6B are DC current transformers, 7A and
Reference numeral 7B is an input converter, 8A and 8B are transmission devices that transmit the amount of electricity proportional to the terminals of their own terminals to the other terminal, and 9A and 9B are transmission devices that receive the amount of electricity that is proportional to the terminal current of the other terminals. , 10A, 10B are relays for making an operation determination with the outputs of 7A and 9A or 7B and 9B as inputs, and are connected as shown in the figure. Although not shown, the ground potential V L of the DC transmission line is introduced into 10A and 10B from the DC transformer, respectively.
【0017】図2は本発明の上記10Aで示した継電器の
ブロック図でり、図中11Aは動作量合成部、12Aは抑制
量合成部、13Aは判定部、k0 はリレ―感度である。10
Bの構成も同様であるがここでは省略する。次に本発明
の実施例の作用を説明する。FIG. 2 is a block diagram of the relay shown by the above 10A of the present invention. In the figure, 11A is an operation amount synthesizing unit, 12A is a suppression amount synthesizing unit, 13A is a judging unit, and k 0 is a relay sensitivity. . Ten
The configuration of B is similar, but is omitted here. Next, the operation of the embodiment of the present invention will be described.
【0018】A端子の電流IA は入力変換器7A,伝送
装置8A,伝送装置9Bを経てB端子の継電器10Bへ伝
達され、同時に自端子(A端子)の継電器10Aへも伝達
される。同様にB端子の電流IB も入力変換器7B,伝
送装置8B,伝送装置9Aを経てA端子の継電器10Aへ
伝送され、同時に自端子(B端子)の継電器10Bへも伝
達される。したがって、継電器10A,10Bは常時、自
端,相手端子の電流の値が導入されている。このような
状態において、送電線1に事故(内部事故)が発生する
と、大きな差電流に加えて、比較的大きな減衰振動電流
が発生する。この場合の振動電流の包絡線の傾向を動作
量Id ,抑制量Ir について示したのが図3(a)であ
り、この場合Id >>Ir となり、リレ―は安定に動作
可能である。なお、>>印はId がIr より極めて大き
いことを意味する記号である。又、抑制量Ir は振動電
流によるものであり、仮に何らかの理由で保護連動が働
かず内部事故が継続し続けた場合には、Ir →0とな
り、リレ―はId >k0 (k0はリレ―の感度)、即
ち、差電流がリレ―感度以上あること(一般にいわゆる
電流マ―ジン分の差電流は存在する)を条件に継続的に
動作し続ける。The current I A at the A terminal is transmitted to the relay 10B at the B terminal through the input converter 7A, the transmission device 8A, and the transmission device 9B, and at the same time is transmitted to the relay 10A at the self terminal (A terminal). Similarly current I B is also input transducer 7B terminal B, the transmission apparatus 8B, are transmitted to the relay 10A of the terminal A through a transmission device 9A, it is also transmitted to the relay 10B of the own terminal (B terminal) at the same time. Therefore, the relays 10A and 10B are always introduced with the current values of the self-end and the mating terminal. When an accident (internal accident) occurs in the power transmission line 1 in such a state, a relatively large damped oscillating current is generated in addition to a large difference current. FIG. 3A shows the tendency of the envelope of the oscillating current in this case with respect to the operation amount I d and the suppression amount I r . In this case, I d >> I r , and the relay can operate stably. Is. The >> mark is a symbol that means that I d is much larger than I r . Further, the suppression amount I r is due to the oscillating current, and if the protection interlocking does not work and the internal accident continues for some reason, I r → 0 and the relay I d > k 0 (k 0 is the sensitivity of the relay), that is, the differential current is equal to or higher than the sensitivity of the relay (generally, there is a so-called differential current for the current margin), and the operation continues continuously.
【0019】又、送電線1の外部で事故(外部事故)が
発生すると、この場合には差電流は発生するものの小さ
い。又、比較的大きな減衰振動電流が同時に発生する。
この場合の振動電流の包絡線の傾向を動作量Id ,抑制
量Ir について示したのが図3(b)であり、この場合
Id <Ir となりリレ―は安定に正不動作となる。When an accident (external accident) occurs outside the power transmission line 1, a difference current is generated in this case, but it is small. In addition, a relatively large damped oscillating current is simultaneously generated.
FIG. 3B shows the tendency of the envelope curve of the oscillating current in this case with respect to the operation amount I d and the suppression amount I r . In this case, I d <I r , and the relay is stably positive and negative. Become.
【0020】以上に説明したように、上記実施例によれ
ば直流送電線の内・外部事故を正しく識別し、しかも高
速度に保護を行なうと共に、仮に何らかの事情で保護連
動が働かず内部事故が継続した場合においても、過渡現
象がなくなった後でも継続的に動作出力を送出すること
が可能となる。As described above, according to the above embodiment, the internal / external accident of the DC transmission line is correctly identified, and the high speed protection is performed. Even if it continues, it is possible to continuously output the operation output even after the transient phenomenon disappears.
【0021】本発明は上記実施例に限定されず、2端子
送電線のみならず、3端子以上の多端子送電線の保護に
適用することも可能であり、たとえば3端子送電線の保
護においては、(1)式の代りに3番目の端子の処理I
c を用いてThe present invention is not limited to the above-mentioned embodiment, and can be applied not only to the two-terminal power transmission line but also to the protection of a multi-terminal power transmission line having three or more terminals. For example, in the protection of the three-terminal power transmission line. , Processing of the third terminal instead of the equation (1) I
with c
【0022】[0022]
【数4】
(2)式の代りに3番目の端子の電流の変換分ΔIc を
用いて[Equation 4] Instead of the equation (2), the conversion component ΔI c of the current at the third terminal is used.
【0023】[0023]
【数5】
Ir =max {ΔIa ,ΔIb ,ΔIc } ……(2)′
とすればよく容易にn端子まで拡張できるのは言うまで
もない。又、(1)式(1)′式によらず、公知の他の
方法による充電電流補償を実施してもよい。## EQU5 ## Needless to say, I r = max {ΔI a , ΔI b , ΔI c } (2) ′ can be easily expanded to n terminals. Further, the charging current compensation may be performed by another known method instead of the equation (1) and the equation (1) ′.
【0024】次に、第2の実施例について、図4及び図
5を参照して説明する。本実施例は先の実施例に更に、
内部事故と判定した時には前述の抑制量Ir を強制的に
零に切り換える手段を設けたものである。図4は本実施
例の継電器での判定処理のフロ―チャ―トである。Next, a second embodiment will be described with reference to FIGS. 4 and 5. In addition to the previous embodiment, this embodiment further includes
A means is provided for forcibly switching the suppression amount I r to zero when it is judged that an internal accident has occurred. FIG. 4 is a flowchart of the determination process in the relay of this embodiment.
【0025】図4のフロ―チャ―トで示すように、先ず
14のブロックで自端電流,電圧および相手端電流を演算
処理部に取り込み、15のブロックで差電流、16のブロッ
クで充電電流補償量を演算する。17のブロックでは15お
よび16で演算された差電流との充電電流補償量を用いて
動作量Id を演算する。次に本実施例では、18のブロッ
クで、現時点で継電器が動作しているかどうかを判断
し、正常時または外部事故時で動作していない時は19の
ブロックで抑制量IR を演算するが、内部事故時で一旦
継電器が動作したと判定した時は、20ブロックで抑制量
IR を強制的に零とするル―チンへ移行する。19あるい
は20で抑制量IR が求められると21のブロックで既出の
判定式により判定演算が行なわれ、その結果継電器動作
あるいは復帰がセットされる。図5に内部事故時の動作
量Id と抑制量IR の時間的変化を示す。As shown in the flowchart of FIG. 4, first,
14 blocks fetch the self-end current, voltage and other end current into the calculation processing unit, 15 blocks calculate the difference current, and 16 blocks calculate the charging current compensation amount. In block 17, the operation amount I d is calculated using the charge current compensation amount with the difference current calculated in 15 and 16. Next, in this embodiment, it is determined in 18 blocks whether or not the relay is operating at the present time, and when the relay is not operating normally or at the time of an external accident, the suppression amount I R is calculated in 19 blocks. When it is determined that the relay has operated once during an internal accident, the routine proceeds to a routine in which the suppression amount I R is forcibly set to zero in 20 blocks. When the suppression amount I R is obtained at 19 or 20, the judgment calculation is performed in the block at 21 by the above judgment formula, and as a result, the relay operation or the reset is set. FIG. 5 shows the changes over time in the operation amount I d and the suppression amount I R at the time of an internal accident.
【0026】図5(b)のように内部事故発生直後の事
故電流が過渡振動しても、本実施例では図5(a)のよ
うに内部事故時には十分な動作量Id により一旦継電器
が動作すると、抑制量IR が零に制御されるので、その
直後の動作量Id の過渡的な振動がおきても抑制量IR
が動作量Id を上回ることは無く、安定した継電器動作
が得られる。また、外部事故時には従来通り大きな抑制
量IR が得られ継電器が誤動作することはない。Even if the fault current oscillates immediately after the occurrence of the internal accident as shown in FIG. 5B, in the present embodiment, the relay is temporarily operated with a sufficient operation amount I d at the time of the internal accident as shown in FIG. 5A. When operated, the suppression amount I R is controlled to zero, so that the suppression amount I R is suppressed even if a transient vibration of the operation amount I d immediately after that occurs.
Does not exceed the operation amount I d , and stable relay operation can be obtained. Further, in the event of an external accident, a large suppression amount I R is obtained as before, and the relay does not malfunction.
【0027】また、本実施例においても充電電流補償の
ある2端子送電線について述べたが、充電電流補償の有
無は本発明の本質ではなく、また充電電流補償の演算も
公知の他の方法で実施してもよい。端子数についても、
3端子以上の多端子送電線の保護に適用できることは勿
論である。更に、第3の実施例について、図6及び図7
を参照して説明する。Also, in the present embodiment, the two-terminal power transmission line having the charging current compensation has been described, but the presence or absence of the charging current compensation is not the essence of the present invention, and the calculation of the charging current compensation is performed by another known method. You may implement. Regarding the number of terminals,
Of course, it can be applied to protection of a multi-terminal transmission line having three or more terminals. 6 and 7 for the third embodiment.
Will be described with reference to.
【0028】本実施例は、リレ―感度k0 に注目し、つ
まりリレ―感度k0 を設定するもととなる電流マ―ジン
が直流線路電圧によって変わることに着目し、リレ―感
度を直流線路電圧に従い変化させるものである。[0028] This example, relay - focused on sensitivity k 0, i.e. relay - current becomes Moto select the sensitivity k 0 Ma - gin Noting that vary by the DC line voltage, relay - DC sensitivity It changes according to the line voltage.
【0029】図6は、直流送電の制御特性を示す図であ
る。特性aは整流器(REC)運転の特性を示し、特性
bは逆変換器(INV)運転の特性を示す。この2つの
特性の交点がその時点での直流送電の運転点を示す。FIG. 6 is a diagram showing the control characteristics of DC power transmission. The characteristic a shows the characteristic of the rectifier (REC) operation, and the characteristic b shows the characteristic of the inverse converter (INV) operation. The intersection of these two characteristics shows the operating point of DC power transmission at that time.
【0030】直流線路の地絡事故のような場合、線路電
圧はほとんどゼロになるので、直流送電の運転は、RE
C運転は運転点c、INV運転は運転点dで運転される
ので、電流差分Id=ia+ibは、過渡的には大きな
電流変動があれが、最終的には、電流マ―ジンと呼ばれ
る△I1 になる。(従来、この場合の電流差動リレ―の
最小感度はΔI1 /2に設定していた。)ところで、こ
のΔIは明らかなように、直流線路電圧VL によってそ
の値が変わる、即ちΔIは直流線路電圧の関数、ΔI=
f(VL )である。In the case of a ground fault of the DC line, the line voltage becomes almost zero, so the operation of DC power transmission is RE
Since the C operation is operated at the operating point c and the INV operation is performed at the operating point d, the current difference Id = ia + ib has a large current fluctuation transiently, but is finally called a current margin ΔI. Become 1 . (Conventionally, the minimum sensitivity of the current differential relay in this case was set to ΔI 1/2 .) By the way, this ΔI obviously changes depending on the DC line voltage V L , that is, ΔI is Function of DC line voltage, ΔI =
f ( VL ).
【0031】従って、本実施例では図7のように、直流
線路電圧を入力し、リレ―感度を変化させる感度設定部
24を設けたものである。これにより、例えば高抵抗地絡
の場合には直流線路電圧VL はあまり低下しない。そこ
で、そのときのVL に対するΔIから感度k02=f(V
L2)=ΔI/2を演算する。つまり、ΔI2 <ΔI1の
関係からk02<k01となり事故検出が高くなる。Therefore, in this embodiment, as shown in FIG. 7, a sensitivity setting section for inputting a DC line voltage and changing the relay sensitivity.
24 is provided. Thus, for example, in the case of a high resistance ground fault, the DC line voltage V L does not drop so much. Therefore, the time of V L sensitivity from ΔI for k 02 = f (V
L2 ) = ΔI / 2 is calculated. That is, from the relationship of ΔI 2 <ΔI 1 , k 02 <k 01 and the accident detection becomes high.
【0032】[0032]
【発明の効果】以上説明したように、本発明によれば従
来2つの保護装置で補完的になされていた保護動作を、
1つの簡単な装置で高精度,高感度で実現することが可
能となる。As described above, according to the present invention, the protection operation which has conventionally been complemented by the two protection devices,
It is possible to realize with high accuracy and high sensitivity with one simple device.
【図1】本発明の直流送電線の保護装置の一実施例を説
明するための構成図。FIG. 1 is a configuration diagram for explaining an embodiment of a protection device for a DC power transmission line of the present invention.
【図2】本発明の電流差動継電器の構成図。FIG. 2 is a configuration diagram of a current differential relay of the present invention.
【図3】内・外部事故時の動作量,抑制量の包絡線の時
間的変化を示す図。FIG. 3 is a diagram showing changes over time in the envelopes of the movement amount and the suppression amount at the time of internal / external accident.
【図4】第2の実施例の直流送電線の保護装置の判定処
理のフロ―チャ―ト。FIG. 4 is a flowchart of a determination process of a protection device for a DC power transmission line according to a second embodiment.
【図5】第2の実施例の内部事故時の動作量,抑制量の
時間的変化を示す図。FIG. 5 is a diagram showing temporal changes in the operation amount and the suppression amount at the time of an internal accident of the second embodiment.
【図6】第3の実施例の直流送電の制御特性とリレ―感
度の関係を示す図。FIG. 6 is a diagram showing a relationship between control characteristics and relay sensitivity of DC power transmission according to a third embodiment.
【図7】第3の実施例の電流差動継電器の構成図。FIG. 7 is a configuration diagram of a current differential relay according to a third embodiment.
1,2…直流送電線 3A,3B…直流リアクトル 4A,4B…順,逆変換装置 5A,5B…交流系統 6A,6B…直流変換器 7A,7B…入力変換器 8A,8B…伝送装置(送信) 9A,9B…伝送装置(受信) 10A,10B…継電器 11A…動作量合成部 12A…抑制量合成部 13A…判定部 24…感度設定部 k0 …リレ―感度1, 2 ... DC power transmission lines 3A, 3B ... DC reactors 4A, 4B ... Forward / inverse conversion devices 5A, 5B ... AC systems 6A, 6B ... DC converters 7A, 7B ... Input converters 8A, 8B ... Transmission device (transmission) ) 9A, 9B ... transmission device (reception) 10A, 10B ... relay 11A ... operation amount combining unit 12A ... suppression quantity synthesis section 13A ... determining unit 24 ... sensitivity setting unit k 0 ... relay - sensitivity
───────────────────────────────────────────────────── フロントページの続き (72)発明者 武田 秀雄 東京都港区芝浦一丁目1番1号 株式会 社東芝 本社事務所内 (56)参考文献 特開 昭59−70118(JP,A) 特開 昭55−131229(JP,A) 特開 昭60−2016(JP,A) 特開 昭59−149718(JP,A) 特開 昭59−149719(JP,A) 特開 昭59−149720(JP,A) 特公 平1−18645(JP,B2) 特公 平1−21683(JP,B2) 特公 平1−13292(JP,B2) 特公 昭63−61854(JP,B1) 特公 昭63−66131(JP,B1) (58)調査した分野(Int.Cl.7,DB名) H02H 3/26 - 3/30 H02J 1/00 ─────────────────────────────────────────────────── --- Continuation of front page (72) Inventor Hideo Takeda 1-1-1 Shibaura, Minato-ku, Tokyo Inside Toshiba Headquarters office (56) Reference JP-A-59-70118 (JP, A) JP JP-A-55-131229 (JP, A) JP-A-60-2016 (JP, A) JP-A-59-149718 (JP, A) JP-A-59-149719 (JP, A) JP-A-59-149720 (JP , A) JP-B 1-18645 (JP, B2) JP-B 1-21683 (JP, B2) JP-B 1-13292 (JP, B2) JP-B 63-61854 (JP, B1) JP-B Sho 63-66131 (JP, B1) (58) Fields surveyed (Int.Cl. 7 , DB name) H02H 3/26-3/30 H02J 1/00
Claims (5)
置及びこの直流電力を直流送電線を通して受電端に送電
し、交流電力に変換する逆変換装置を備える直流送電シ
ステムの直流送電線の保護継電装置において、前記直流
送電線の各端子の電流を相互に相手端に伝送する伝送手
段と、前記直流送電線の各端子の電流の差電流を求め動
作量とする動作量合成手段と、各端子の電流の所定時間
における変化量に比例した値を求め抑制量とする抑制量
合成手段と、前記動作量が前記抑制量と前記端子に設け
られている継電器のリレー感度との和より大きいとき
に、直流送電線の事故と判定する判定手段と、前記判定
手段が事故と判定した場合に前記順変換装置及び逆変換
装置を停止させるための制御信号を出力する制御信号出
力手段とを具備することを特徴とする直流送電線の保護
継電装置。1. A DC power transmission line protection system for a DC power transmission system, comprising: a forward conversion device for converting AC power to DC power; and a reverse conversion device for transmitting the DC power to a power receiving end through a DC power transmission line and converting it to AC power. In the relay device, the direct current
A transmitter that mutually transmits the current of each terminal of the power transmission line to the other end
Stage and the difference current between the currents at each terminal of the DC transmission line
The amount of movement composition means and the predetermined time of the current at each terminal
Suppression amount that is obtained by obtaining a value proportional to the amount of change in
Synthesizing means, and the operation amount is provided in the suppression amount and the terminal
When it is larger than the sum of the relay sensitivity of the relay
A determination means for determining a DC transmission line accident;
If the means determines an accident, the forward conversion device and the reverse conversion device
Control signal output that outputs a control signal to stop the device
Protective relay device of the DC transmission line, characterized by comprising a force means.
の電流から求めた変化量のなかで最大値を抑制量とする
ことを特徴とする直流送電線の保護継電装置。 2. The suppression amount according to claim 1,
The maximum value among the changes calculated from the current of
A protective relay device for a DC power transmission line, which is characterized in that
おいて区間内事故と判定した時には抑制量を強制的に零
に切り換える零制御手段とを具備することを特徴とする
直流送電線の保護継電装置。 3. The calculation of the suppression amount according to claim 1,
When it is judged that the accident is within the section, the suppression amount is forced to zero.
And zero control means for switching to
Protective relay for DC transmission lines.
置及びこの直流電力を直流送電線を通して受電端に送電
し、交流電力に変換する逆変換装置を備える直流送電シ
ステムの直流送電線の保護継電装置において、前記直流
送電線の各端子の電流を相互に相手端に伝送する伝送手
段と、前記直流送電線の各端子の電流の差電流を求め動
作量とする動作量合成手段と、各端子の電流の所定時間
における変化量に比例した値を求め抑制量とする抑制量
合成手段と、各端子に設けられている継電器のリレー感
度を直流線路電圧に応じて変化させる感度設定手段と、
前記動作量から前記抑制量を減算した値が前記感度設定
手段により設定されたリレー感度より大きいとき内部事
故と判定し出力する判定手段とを具備することを特徴と
する直流送電線の保護継電装置。4. A forward conversion device for converting AC power into DC power.
And transmit this DC power to the receiving end through the DC transmission line.
DC transmission system equipped with an inverse converter that converts the AC power to AC power.
Stem DC transmission line protection relay device,
A transmitter that mutually transmits the current of each terminal of the power transmission line to the other end
Stage and the difference current between the currents at each terminal of the DC transmission line
The amount of movement composition means and the predetermined time of the current at each terminal
Suppression amount that is obtained by obtaining a value proportional to the amount of change in
Synthetic means and relay feeling of relays provided at each terminal
Sensitivity setting means for changing the degree according to the DC line voltage,
A protective relay for a DC power transmission line, comprising: a determination unit that determines and outputs an internal accident when a value obtained by subtracting the suppression amount from the operation amount is larger than the relay sensitivity set by the sensitivity setting unit. apparatus.
直流線路電圧が高いとき感度を小さくすることを特徴と
する直流送電線の保護継電装置。5. The protective relay device for a DC power transmission line according to claim 4, wherein the sensitivity setting means reduces the sensitivity when the DC line voltage is high.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29546892A JP3396496B2 (en) | 1992-01-23 | 1992-11-05 | DC power transmission protection relay |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP989392 | 1992-01-23 | ||
JP4-9893 | 1992-01-23 | ||
JP29546892A JP3396496B2 (en) | 1992-01-23 | 1992-11-05 | DC power transmission protection relay |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05268717A JPH05268717A (en) | 1993-10-15 |
JP3396496B2 true JP3396496B2 (en) | 2003-04-14 |
Family
ID=26344704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29546892A Expired - Lifetime JP3396496B2 (en) | 1992-01-23 | 1992-11-05 | DC power transmission protection relay |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3396496B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5951237B2 (en) * | 2011-11-21 | 2016-07-13 | 株式会社東芝 | DC feeder protection relay device |
WO2022044169A1 (en) * | 2020-08-26 | 2022-03-03 | 日本電信電話株式会社 | Dc power distribution system, control device, anomaly detection method, and program |
-
1992
- 1992-11-05 JP JP29546892A patent/JP3396496B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05268717A (en) | 1993-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB1590665A (en) | Protective relay circuit for interphase faults | |
EP0059416A1 (en) | Ground fault detecting device for use with a DC circuit | |
US4530025A (en) | Current ratio-differential relay | |
JP3396496B2 (en) | DC power transmission protection relay | |
CA2038213A1 (en) | Transformer differential relay | |
US6842319B2 (en) | Procedure for producing an initiation signal after the current differential protection principle arrangement | |
JP3394305B2 (en) | Electronic trip device | |
JPS5921220A (en) | Overvoltage protecting relay unit | |
EP0169313B1 (en) | Transformer protective relay | |
JPS6356121A (en) | Ratio differential relay | |
US3742306A (en) | Core balance earth leakage protective systems | |
JP2577424B2 (en) | Current differential relay method | |
SU1403194A1 (en) | Arrangement for interlocking the differential protection of generator of independent power system in connecting wire failures | |
SU1513563A1 (en) | Device for differential protection with braking | |
JPS6327927B2 (en) | ||
JPH0636649B2 (en) | Variable width overcurrent relay | |
JP2856826B2 (en) | Differential relay | |
JPH0974661A (en) | Protective relay device | |
SU945937A1 (en) | Device for protecting collecting bars of electric power plants and substations | |
JPS6211158Y2 (en) | ||
JPH0452049B2 (en) | ||
JPH0243412B2 (en) | ||
JPH0465613B2 (en) | ||
JPS63224621A (en) | Grounding protection relay | |
JPS6245768B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080207 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090207 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100207 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100207 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110207 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120207 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120207 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130207 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130207 Year of fee payment: 10 |