JP3389463B2 - Non-radiative dielectric line - Google Patents
Non-radiative dielectric lineInfo
- Publication number
- JP3389463B2 JP3389463B2 JP20501797A JP20501797A JP3389463B2 JP 3389463 B2 JP3389463 B2 JP 3389463B2 JP 20501797 A JP20501797 A JP 20501797A JP 20501797 A JP20501797 A JP 20501797A JP 3389463 B2 JP3389463 B2 JP 3389463B2
- Authority
- JP
- Japan
- Prior art keywords
- dielectric line
- pattern
- dielectric
- parallel plate
- frequency signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004020 conductor Substances 0.000 claims description 33
- 239000004065 semiconductor Substances 0.000 claims description 20
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 6
- 230000001902 propagating effect Effects 0.000 description 6
- 239000004809 Teflon Substances 0.000 description 5
- 229920006362 Teflon® Polymers 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 229910052878 cordierite Inorganic materials 0.000 description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229920000298 Cellophane Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Landscapes
- Waveguides (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、例えばミリ波集積
回路等に組み込まれて、高周波信号のガイドとして用い
られる非放射性誘電体線路に関する。
【0002】
【従来の技術】従来の非放射性誘電体線路S1 の基本構
成を図2(a),(b)に示す。非放射性(Non Radiat
ive Dielectricで、以下、NRDという)誘電体線路S
1 は、誘電体線路2の上下に平行平板導体1,3を配置
し(図3)、平行平板導体1,3の間隔がλ/2以下の
とき、波長がλより大きい高周波信号は遮断されて平行
平板導体1,3間の空間には侵入できない。そして、平
行平板導体1,3の間に誘電体線路2を挿入すると、そ
の誘電体線路2に沿って高周波信号が伝搬でき、その高
周波信号からの放射波は平行平板導体1,3の遮断効果
によって抑制される。尚、前記λは近似的に真空中を伝
搬する高周波信号(電磁波)の波長に等しい。
【0003】また、誘電体線路2の中途にダイオード等
の半導体素子を設け、NRD誘電体線路S1 に、信号の
周波数変換、スイッチング、減衰、検出等の機能を付加
させていた。NRD誘電体線路S1 に半導体素子を取り
付けるには、同図(b)に示すように、誘電体基板4の
一主面上に、外部への高周波信号の漏洩を防ぐチョーク
パターン5と高周波信号を受信する一対のアンテナパタ
ーン5aを形成し、誘電体線路2内の高周波信号の伝搬
路に位置する一対のアンテナパターン5a間に、ダイオ
ードなどの半導体素子6を配置し接続した構造となって
いる。
【0004】尚、同図において、7は半導体素子6に駆
動用のバイアス電圧を入力したり、信号を出力するため
の入出力導線、8はミリ波集積回路の発振器、増幅器等
の他の電子部品に接続するための外部接続用の電極であ
る。
【0005】このようなNRD誘電体線路S1 におい
て、ダイオード実装パターン部を誘電体線路の断面に接
着し、チョークパターン部は別基板上に形成して、チョ
ークパターン部を誘電体線路の両方又は片方の側面に貼
付又は蒸着したものが提案されている(特開平8−86
03号公報参照)。
【0006】
【発明が解決しようとする課題】しかしながら、図2の
ような従来のものは、高周波信号の伝搬路、即ち電磁波
の集中する部分に誘電体基板4が挿入されているため、
誘電体線路2を伝搬する高周波信号に影響を与えやす
く、電気的特性を劣化させていた。例えば、誘電体線路
2内を伝搬する高周波信号の一部が前記誘電体基板4内
にまで伝搬、漏洩し、そのため、信号の損失が発生して
いた。
【0007】また、入出力導線7が誘電体基板4の端部
に取り付けられており、それを電極8に接続し、更に導
線等を用いて平行平板導体1,3の外部に導いていた。
しかしながら、このような接続構造は製造工程が非常に
煩雑で作業性が悪く、量産化を妨げていた。更に、誘電
体基板4は厚さが薄く長さが長いため、正確に位置決め
して固定するのが困難で、製造工程や使用中に位置ずれ
が生じたり、破損する危険性があった。
【0008】更に、チョークパターン部を誘電体線路の
両方又は片方の側面に貼付又は蒸着した従来例において
は、入出力導線から高周波信号が外部に漏れたり、誘電
体線路のチョークパターンを貼付した部分とそれ以外の
部分のインピーダンスが異なるため、インピーダンス不
整合による高周波信号の反射が起こるという問題点があ
った。
【0009】従って、本発明は上記事情に鑑みて完成さ
れたものであり、その目的は、チョークパターン部が誘
電体線路を伝搬する高周波信号に影響を与えず、高周波
信号の透過特性が良好なものとなり、また製造が容易で
量産に適していると同時に、半導体素子を誘電体線路の
正確な位置に容易に固定することができ、故に、信頼性
が高く、安価に製造可能なものとすることにある。
【0010】
【課題を解決するための手段】本発明の非放射性誘電体
線路は、高周波信号の波長λに対して間隔がλ/2以下
である平行平板導体の間に誘電体線路が挟持されて成
り、該誘電体線路内の中途の垂直断面に一対のアンテナ
パターンと該アンテナパターン間に接続される半導体素
子とが設けられ、前記誘電体線路外の平行平板導体上
に、前記アンテナパターンに接続されたチョークパター
ンが絶縁層を介して形成されていることを特徴とし、誘
電体線路を伝搬する高周波信号に影響を与えないチョー
クパターンとなり、製造が容易で量産に適していると共
に、半導体素子を誘電体線路の正確な位置に固定でき
る。
【0011】
【発明の実施の形態】本発明のNRD誘電体線路Sの基
本構成の斜視図を図1に示す。同図において、9は下側
の平行平板導体、10はアンテナパターン14とチョー
クパターン17を接続するもので、高周波信号取り出し
用の電極、11はミリ波集積回路の発振器、増幅器等の
他の電子部品に接続するための外部接続用の導線、11
aは導線11を外部へ案内する孔部、12はアンテナパ
ターン14及び半導体素子13を取り付けるための誘電
体基板である。また、14は誘電体線路15内の中途の
垂直断面に形成された、高周波信号送受信用の一対のア
ンテナパターン、15は誘電体線路、17は誘電体線路
15外の平行平板導体9上に形成され、アンテナパター
ン14に接続されたチョークパターン、18は絶縁層で
ある。尚、同図において、上側の平行平板導体は省略し
てある。
【0012】本発明において、誘電体線路15はテフロ
ン等の低損失樹脂材料、コーディライト等の低誘電率セ
ラミック材料から成るのが好ましく、これらは低損失で
加工が容易であり、量産に適している。また、誘電体線
路15は一組の平行平板導体に複数設けても構わない。
【0013】前記半導体素子13としては、高周波半導
体ダイオード,ガンダイオード,インパットダイオー
ド,可変容量ダイオード,ショットキーダイオード,バ
ラクタダイオード,PINダイオード等を使用でき、こ
れらのダイオードに限らず、インダクタ,キャパシタ,
トランジスタ等の機能を有するものでもよい。また、半
導体素子13は、誘電体線路15の中途であればどこに
あってもよい。
【0014】前記平行平板導体9は、高い電気伝導度及
び加工性の点で、Cu,Al,Fe,SUS(ステンレ
ス),Ag,Au,Pt等の導体板、あるいはこられの
導体層を表面に形成した絶縁板でもよい。
【0015】また、アンテナパターン14とチョークパ
ターン17は、高い電気伝導度を有するAu,Cu,A
l等の材料が好ましい。前記アンテナパターン14は本
発明において基本的に高周波信号の受信用であるが、高
周波信号あるいは他の信号の送信用としても使用でき
る。送信用として使用する場合、アンテナパターン14
に信号入力用の給電線を新たに接続する、又はチョーク
パターン17を通じて信号を入力してもよい。
【0016】本発明のチョークパターン17は、10μ
m〜200μm程度の薄い絶縁層18としての絶縁体フ
ィルム上に、蒸着法等で成膜するか、チョークパターン
17の形状に成形した薄い金属板を張り付けて構成す
る。このチョークパターン17は、基本的に1/4波長
チョークパターンとすることにより高周波信号を阻止す
るインダクタ(チョークコイル)と等価なものとなり、
高周波信号は外部へ漏洩しない。また、このチョークパ
ターン17は、上記と同様の効果が得られるものであれ
ば、1/4波長チョークパターン以外のパターンでも構
わない。
【0017】また、絶縁層18は、テフロン,セロハ
ン,ビニール,ポリスチレン,ポリエチレン等の充分な
絶縁性(電気的な抵抗率104 Ωm以上)を持つものな
らば良く、薄膜に形成可能なもの、フィルム状に成形で
きるものが望ましい。更に、絶縁層18は平行平板導体
9の表面にスパッタリング法,蒸着法,塗布法,浸漬法
等により直接成膜する、若しくは接着剤、粘着テープ等
を用いて貼り付けても構わない。
【0018】高周波信号取り出し用の電極10は、誘電
体基板12の下部にアンテナパターン14を延長させ
る、別個の電極を形成する等して形成すればよく、電極
10とチョークパターン17とを半田,導電性接着剤等
を用いて接続する。
【0019】また、チョークパターン17から外部への
高周波信号の取り出しは、平行平板導体9に開けられた
孔部11aを通じて、導線11により外部と接続する構
成が生産性が高く量産に適している。この場合、必要に
応じ、孔部11aの内部を樹脂等の絶縁物質等で充填す
る、孔部11aの内壁に絶縁物質等をコーティングす
る、又は導線11を絶縁チューブで被覆してもよい。
【0020】かくして、本発明は、チョークパターン部
が誘電体線路を伝搬する高周波信号に影響を与えず、ま
た製造が容易で量産に適しており、半導体素子を誘電体
線路の正確な位置に容易に固定することができるという
作用効果を有する。
【0021】尚、本発明は上記の実施形態に限定される
ものではなく、本発明の要旨を逸脱しない範囲内で種々
の変更は何等差し支えない。
【0022】
【実施例】本発明の実施例を以下に説明する。
【0023】(実施例)図1のNRD誘電体線路Sを以
下のようにして作製した。Cuから成り、100×10
0×8mmの2枚の平行平板導体を用意し、下側の平行
平板導体9の一主面に絶縁層18として、厚さ0.1m
mのテフロンフィルムを接着剤により接着した。このテ
フロンフィルムの表面に、チョークパターン17用のA
uを蒸着法で形成した。チョークパターン17の長手方
向の両端部には、導線11を半田等で取付け、平行平板
導体9に設けた孔部11aを通じて外部に接続するよう
に構成した。また、絶縁を保持するために、導線11を
テフロンチューブに通して使用した。
【0024】次いで、コーディライトから成り、高さ
2.25mm×巾1mmの誘電体線路15を、チョーク
パターン17の中央部を横切るように配置し、接着し
た。このとき、チョークパターン17の中央部に相当す
る誘電体線路15を切断する、あるいは誘電体線路15
を2本に分けて形成することにより、チョークパターン
17の中央部に半導体素子13取付用の誘電体基板12
を配置し、電極10を導電性接着剤を用いてチョークパ
ターン17に接続した。また、誘電体線路15の垂直断
面に直接アンテナパターン14及び半導体素子13を設
けてもよい。
【0025】半導体素子13として、NRD誘電体線路
Sにスイッチング機能を付与するためにビームリード型
PINダイオードを用いた。
【0026】そして、図2の従来品を、コーディライト
から成る誘電体線路2及び誘電体基板4、Auから成る
チョークパターン5及びアンテナパターン6、ビームリ
ード型PINダイオードを用いて作製し、ミリ波(数1
0〜数100GHz帯)透過特性について、上記本発明
のものと比較したグラフを図4に示す。約60GHz以
上では、チョークパターンにより高周波信号の外部への
漏れが阻止されているが、従来品は誘電体基板4が高周
波信号の導波路として作用し電磁波が外部に漏れ、ミリ
波透過特性が劣化した。
【0027】
【発明の効果】本発明のNRD誘電体導波路は、誘電体
線路内の中途の垂直断面に高周波信号受信用の一対のア
ンテナパターンとアンテナパターン間に接続される半導
体素子とが設けられ、誘電体線路外の平行平板導体上に
アンテナパターンに接続されたチョークパターンが絶縁
層を介して形成されていることにより、チョークパター
ン部が誘電体線路を伝搬する高周波信号に影響を与え
ず、高周波信号の透過特性が向上する。また、製造が容
易で量産に適しており、半導体素子を誘電体線路の正確
な位置に容易に固定することができ、その結果、信頼性
が高いものを安価に量産することができるという作用効
果を有する。
【0028】また、本発明のNRD誘電体導波路は、ミ
リ波集積回路、マイクロ波集積回路、又はハイブリッド
型の集積回路に応用できる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-radiative dielectric line which is incorporated in, for example, a millimeter-wave integrated circuit and is used as a guide for a high-frequency signal. 2. Description of the Related Art A basic structure of a conventional non-radiative dielectric line S1 is shown in FIGS. 2 (a) and 2 (b). Non-radioactive (Non Radiat
ive Dielectric, hereinafter referred to as NRD) dielectric line S
Reference numeral 1 denotes a case where parallel plate conductors 1 and 3 are arranged above and below a dielectric line 2 (FIG. 3). When the interval between the parallel plate conductors 1 and 3 is λ / 2 or less, a high-frequency signal having a wavelength larger than λ is cut off. Therefore, it cannot enter the space between the parallel plate conductors 1 and 3. When the dielectric line 2 is inserted between the parallel plate conductors 1 and 3, a high-frequency signal can be propagated along the dielectric line 2, and a radiation wave from the high-frequency signal is blocked by the parallel plate conductors 1 and 3. Is suppressed by Note that λ is approximately equal to the wavelength of a high-frequency signal (electromagnetic wave) that propagates in a vacuum. Further, a semiconductor element such as a diode is provided in the middle of the dielectric line 2, and functions such as frequency conversion, switching, attenuation, and detection of a signal are added to the NRD dielectric line S1. To attach a semiconductor element to the NRD dielectric line S1, a choke pattern 5 for preventing leakage of a high-frequency signal to the outside and a high-frequency signal are formed on one main surface of a dielectric substrate 4 as shown in FIG. A pair of antenna patterns 5a for receiving are formed, and a semiconductor element 6 such as a diode is arranged and connected between a pair of antenna patterns 5a located on the propagation path of the high-frequency signal in the dielectric line 2. In FIG. 1, reference numeral 7 denotes an input / output lead wire for inputting a driving bias voltage to the semiconductor element 6 and outputting a signal, and 8 denotes another electronic device such as an oscillator or an amplifier of a millimeter wave integrated circuit. External connection electrodes for connection to components. In such an NRD dielectric line S1, the diode mounting pattern portion is bonded to the cross section of the dielectric line, the choke pattern portion is formed on another substrate, and the choke pattern portion is formed on both or one of the dielectric lines. (Japanese Patent Laid-Open No. 8-86).
No. 03). However, in the conventional device as shown in FIG. 2, since the dielectric substrate 4 is inserted into a high-frequency signal propagation path, that is, a portion where electromagnetic waves concentrate.
The high frequency signal propagating through the dielectric line 2 is likely to be affected, deteriorating the electrical characteristics. For example, a part of the high-frequency signal propagating in the dielectric line 2 propagates and leaks into the dielectric substrate 4, so that signal loss occurs. Further, an input / output conductor 7 is attached to an end of the dielectric substrate 4, which is connected to the electrode 8, and further led to the outside of the parallel plate conductors 1, 3 using a conductor or the like.
However, such a connection structure has a very complicated manufacturing process and poor workability, which hinders mass production. Furthermore, since the dielectric substrate 4 has a small thickness and a long length, it is difficult to accurately position and fix it, and there is a risk of displacement or breakage during the manufacturing process or during use. Further, in the conventional example in which the choke pattern portion is attached or vapor-deposited on both or one side of the dielectric line, a high-frequency signal leaks from the input / output conductor to the outside, or the portion where the choke pattern of the dielectric line is attached. There is a problem that high-frequency signals are reflected due to impedance mismatching because the impedance of the other part differs from that of the other parts. Accordingly, the present invention has been completed in view of the above circumstances, and an object of the present invention is to prevent a choke pattern portion from affecting a high-frequency signal propagating through a dielectric line and having a good high-frequency signal transmission characteristic. The semiconductor device is easy to manufacture and suitable for mass production, and at the same time, the semiconductor element can be easily fixed to a precise position of the dielectric line, so that it can be manufactured with high reliability and at low cost. It is in. A non-radiative dielectric line according to the present invention has a dielectric line sandwiched between parallel plate conductors having an interval of λ / 2 or less with respect to a wavelength λ of a high-frequency signal. A pair of antenna patterns and a semiconductor element connected between the antenna patterns are provided on a halfway vertical cross section in the dielectric line, and the antenna pattern is formed on a parallel plate conductor outside the dielectric line. The connected choke pattern is formed via an insulating layer. The choke pattern does not affect the high-frequency signal propagating through the dielectric line, and is easy to manufacture and suitable for mass production. Can be fixed at an accurate position of the dielectric line. FIG. 1 is a perspective view showing the basic structure of an NRD dielectric line S according to the present invention. In the figure, 9 is a lower parallel plate conductor, 10 is a connection between the antenna pattern 14 and the choke pattern 17, an electrode for extracting a high-frequency signal, and 11 is another electronic device such as an oscillator or an amplifier of a millimeter wave integrated circuit. External connection lead wires for connecting to components, 11
a is a hole for guiding the conductive wire 11 to the outside, and 12 is a dielectric substrate for mounting the antenna pattern 14 and the semiconductor element 13. Further, 14 is a pair of antenna patterns for transmitting and receiving high-frequency signals formed on a halfway vertical cross section in the dielectric line 15, 15 is a dielectric line, and 17 is formed on the parallel plate conductor 9 outside the dielectric line 15. The choke pattern 18 connected to the antenna pattern 14 is an insulating layer. In the figure, the upper parallel plate conductor is omitted. In the present invention, the dielectric line 15 is preferably made of a low-loss resin material such as Teflon or a low-dielectric-constant ceramic material such as cordierite. These are low-loss, easy to process, and suitable for mass production. I have. Further, a plurality of dielectric lines 15 may be provided on a set of parallel plate conductors. As the semiconductor element 13, a high-frequency semiconductor diode, a Gunn diode, an input diode, a variable capacitance diode, a Schottky diode, a varactor diode, a PIN diode, and the like can be used.
It may have a function such as a transistor. Further, the semiconductor element 13 may be located anywhere in the dielectric line 15. The parallel plate conductor 9 is made of a conductor plate of Cu, Al, Fe, SUS (stainless steel), Ag, Au, Pt, or the like, or a conductor layer of these conductor layers, in view of high electric conductivity and workability. May be used. The antenna pattern 14 and the choke pattern 17 are made of Au, Cu, A having high electric conductivity.
Materials such as 1 are preferred. The antenna pattern 14 is basically for receiving a high-frequency signal in the present invention, but can also be used for transmitting a high-frequency signal or another signal. When used for transmission, antenna pattern 14
May be newly connected to a signal input power supply line, or a signal may be input through the choke pattern 17. The choke pattern 17 of the present invention has a size of 10 μm.
It is formed by depositing a thin metal plate formed in the shape of a choke pattern 17 on an insulating film as a thin insulating layer 18 having a thickness of about m to 200 μm by an evaporation method or the like. The choke pattern 17 is basically equivalent to an inductor (choke coil) that blocks a high-frequency signal by using a quarter-wave choke pattern.
High frequency signals do not leak to the outside. The choke pattern 17 may be a pattern other than the quarter-wave choke pattern as long as the same effect as described above can be obtained. The insulating layer 18 may be made of Teflon, cellophane, vinyl, polystyrene, polyethylene, etc., as long as it has a sufficient insulating property (electrical resistivity of 10 4 Ωm or more). What can be formed into a film is desirable. Further, the insulating layer 18 may be formed directly on the surface of the parallel plate conductor 9 by a sputtering method, a vapor deposition method, a coating method, a dipping method, or the like, or may be attached using an adhesive, an adhesive tape or the like. The electrode 10 for extracting a high-frequency signal may be formed by extending the antenna pattern 14 below the dielectric substrate 12, forming a separate electrode, or the like. Connect using a conductive adhesive or the like. For extracting a high-frequency signal from the choke pattern 17 to the outside, a configuration in which the conductor 11 is connected to the outside through the hole 11a formed in the parallel plate conductor 9 has high productivity and is suitable for mass production. In this case, if necessary, the inside of the hole 11a may be filled with an insulating material such as a resin, the inner wall of the hole 11a may be coated with an insulating material, or the conductive wire 11 may be covered with an insulating tube. Thus, according to the present invention, the choke pattern portion does not affect the high-frequency signal propagating through the dielectric line, is easy to manufacture and is suitable for mass production, and can easily place the semiconductor element at an accurate position on the dielectric line. Has the effect of being able to be fixed to It should be noted that the present invention is not limited to the above embodiment, and various changes may be made without departing from the scope of the present invention. Embodiments of the present invention will be described below. (Example) The NRD dielectric line S of FIG. 1 was manufactured as follows. Made of Cu, 100 × 10
Two parallel plate conductors each having a size of 0 × 8 mm were prepared, and a thickness of 0.1 m
m of Teflon film was adhered with an adhesive. On the surface of this Teflon film, A for chalk pattern 17
u was formed by an evaporation method. Conductive wires 11 were attached to both ends in the longitudinal direction of the choke pattern 17 by soldering or the like, and were connected to the outside through holes 11 a provided in the parallel plate conductor 9. In order to maintain insulation, the conductive wire 11 was used by passing it through a Teflon tube. Next, a dielectric line 15 made of cordierite and having a height of 2.25 mm and a width of 1 mm was arranged across the center of the choke pattern 17 and bonded. At this time, the dielectric line 15 corresponding to the central portion of the choke pattern 17 is cut, or the dielectric line 15 is cut.
Are formed in two pieces, so that the dielectric substrate 12 for attaching the semiconductor element 13 is provided at the center of the choke pattern 17.
Was arranged, and the electrode 10 was connected to the choke pattern 17 using a conductive adhesive. Further, the antenna pattern 14 and the semiconductor element 13 may be provided directly on the vertical section of the dielectric line 15. As the semiconductor element 13, a beam lead type PIN diode was used in order to give a switching function to the NRD dielectric line S. 2 is manufactured using a dielectric line 2 and a dielectric substrate 4 made of cordierite, a choke pattern 5 and an antenna pattern 6 made of Au, and a beam lead type PIN diode. (Equation 1
FIG. 4 shows a graph comparing the transmission characteristics of the present invention with respect to the transmission characteristics (0 to several hundred GHz band). Above about 60 GHz, the leakage of the high-frequency signal to the outside is prevented by the choke pattern, but in the conventional product, the dielectric substrate 4 acts as a waveguide for the high-frequency signal, the electromagnetic wave leaks to the outside, and the millimeter-wave transmission characteristics deteriorate. did. According to the NRD dielectric waveguide of the present invention, a pair of antenna patterns for receiving a high-frequency signal and a semiconductor element connected between the antenna patterns are provided on a halfway vertical cross section in the dielectric waveguide. Since the choke pattern connected to the antenna pattern is formed on the parallel plate conductor outside the dielectric line via the insulating layer, the choke pattern portion does not affect the high-frequency signal propagating through the dielectric line. In addition, the transmission characteristics of high-frequency signals are improved. In addition, it is easy to manufacture and suitable for mass production, and the semiconductor element can be easily fixed at an accurate position on the dielectric line, and as a result, a highly reliable device can be mass-produced at low cost. Having. The NRD dielectric waveguide of the present invention can be applied to a millimeter-wave integrated circuit, a microwave integrated circuit, or a hybrid integrated circuit.
【図面の簡単な説明】
【図1】本発明のNRD誘電体線路Sの基本構成を示
し、上側の平行平板導体を省略したものの斜視図であ
る。
【図2】(a)は従来のNRD誘電体線路S1 の基本構
成を示し、上側の平行平板導体を省略したものの斜視
図、(b)は従来のチョークパターン及びアンテナパタ
ーンの平面図である。
【図3】従来のNRD誘電体線路の基本構成を示し、上
側の平行平板導体を一部切り欠いたものの斜視図であ
る。
【図4】本発明と従来品のミリ波透過特性を比較したグ
ラフである。
【符号の説明】
1:下側の平行平板導体
2:誘電体線路
3:上側の平行平板導体
4:誘電体基板
5:チョークパターン
5a:アンテナパターン
6:半導体素子
7:導線
8:電極
9:下側の平行平板導体
10:電極
11:導線
11a:孔部
12:誘電体基板
13:半導体素子
14:アンテナパターン
15:誘電体線路
17:チョークパターン
18:絶縁層BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a basic configuration of an NRD dielectric line S according to the present invention, in which an upper parallel plate conductor is omitted. FIG. 2A is a perspective view showing the basic configuration of a conventional NRD dielectric line S1, in which an upper parallel plate conductor is omitted, and FIG. 2B is a plan view of a conventional choke pattern and an antenna pattern. FIG. 3 is a perspective view showing a basic configuration of a conventional NRD dielectric line, in which an upper parallel plate conductor is partially cut away. FIG. 4 is a graph comparing the millimeter wave transmission characteristics of the present invention and a conventional product. [Description of Signs] 1: Lower parallel plate conductor 2: Dielectric line 3: Upper parallel plate conductor 4: Dielectric substrate 5: Choke pattern 5a: Antenna pattern 6: Semiconductor element 7: Conducting wire 8: Electrode 9: Lower parallel plate conductor 10: electrode 11: conductive wire 11a: hole 12: dielectric substrate 13: semiconductor element 14: antenna pattern 15: dielectric line 17: choke pattern 18: insulating layer
フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01P 3/16 H01P 5/02 607 H01P 5/08 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) H01P 3/16 H01P 5/02 607 H01P 5/08
Claims (1)
以下である平行平板導体の間に誘電体線路が挟持されて
成り、該誘電体線路内の中途の垂直断面に一対のアンテ
ナパターンと該アンテナパターン間に接続される半導体
素子とが設けられ、前記誘電体線路外の平行平板導体上
に、前記アンテナパターンに接続されたチョークパター
ンが絶縁層を介して形成されていることを特徴とする非
放射性誘電体線路。(57) [Claim 1] The interval is λ / 2 with respect to the wavelength λ of the high frequency signal.
A dielectric line is sandwiched between the following parallel plate conductors, and a pair of antenna patterns and a semiconductor element connected between the antenna patterns are provided on a halfway vertical cross section in the dielectric line, A nonradiative dielectric line, wherein a choke pattern connected to the antenna pattern is formed on a parallel plate conductor outside the dielectric line via an insulating layer.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20501797A JP3389463B2 (en) | 1997-07-30 | 1997-07-30 | Non-radiative dielectric line |
US09/104,089 US6094106A (en) | 1997-06-25 | 1998-06-24 | Non-radiative dielectric waveguide module |
DE19828488A DE19828488B4 (en) | 1997-06-25 | 1998-06-25 | Module with a radiation-free dielectric waveguide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20501797A JP3389463B2 (en) | 1997-07-30 | 1997-07-30 | Non-radiative dielectric line |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1155011A JPH1155011A (en) | 1999-02-26 |
JP3389463B2 true JP3389463B2 (en) | 2003-03-24 |
Family
ID=16500073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20501797A Expired - Fee Related JP3389463B2 (en) | 1997-06-25 | 1997-07-30 | Non-radiative dielectric line |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3389463B2 (en) |
-
1997
- 1997-07-30 JP JP20501797A patent/JP3389463B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1155011A (en) | 1999-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3045046B2 (en) | Non-radiative dielectric line device | |
JP3500268B2 (en) | High frequency input / output terminal and high frequency semiconductor element storage package using the same | |
KR100282274B1 (en) | Transmission circuit using strip line in three dimensions | |
US6868258B2 (en) | Structure for connecting non-radiative dielectric waveguide and metal waveguide, millimeter wave transmitting/receiving module and millimeter wave transmitter/receiver | |
EP0712534A1 (en) | Three dimensional package for monolithic microwave/millimeterwave integrated circuits | |
EP0138369A2 (en) | Variable delay line | |
JP3406830B2 (en) | Electronic equipment for high frequency | |
JP3464104B2 (en) | Coupling structure of laminated waveguide line | |
JP3067675B2 (en) | Planar dielectric integrated circuit | |
JP3370076B2 (en) | Interconnecting high uniformity microstrips with deformed rectangular coaxial transmission lines | |
JP2005051330A (en) | Connection structure between dielectric waveguide line and high-frequency transmission line, high-frequency circuit board using the same, and package for mounting high-frequency element | |
US11394100B2 (en) | High-frequency connection structure for connecting a coaxial line to a planar line using adhesion layers | |
JP3389463B2 (en) | Non-radiative dielectric line | |
JPH11340701A (en) | Connection structure of high-frequency transmission line | |
JPH08250911A (en) | High frequency air-tight module | |
JP3462062B2 (en) | Connection structure of high-frequency transmission line and wiring board | |
JP3762058B2 (en) | Non-radiative dielectric line | |
JP3158031B2 (en) | Microstrip line coupling structure | |
JP7077137B2 (en) | Transmission lines and connectors | |
JP2000174515A (en) | Coplanar waveguide-waveguide converter | |
JP7580670B2 (en) | Microstrip line-waveguide transition | |
JPH05199019A (en) | High frequency circuit package | |
JPH1013113A (en) | Connecting method for distributed constant lines and microwave circuit | |
US3462709A (en) | Tunnel diode microwave oscillator | |
JP3071761B2 (en) | Mounting structure of high frequency semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |