Nothing Special   »   [go: up one dir, main page]

JP3384524B2 - Microstrip antenna device - Google Patents

Microstrip antenna device

Info

Publication number
JP3384524B2
JP3384524B2 JP24756196A JP24756196A JP3384524B2 JP 3384524 B2 JP3384524 B2 JP 3384524B2 JP 24756196 A JP24756196 A JP 24756196A JP 24756196 A JP24756196 A JP 24756196A JP 3384524 B2 JP3384524 B2 JP 3384524B2
Authority
JP
Japan
Prior art keywords
conductor plate
plate
divided
rectangular
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24756196A
Other languages
Japanese (ja)
Other versions
JPH1093331A (en
Inventor
誠嗣 萩原
光一 常川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP24756196A priority Critical patent/JP3384524B2/en
Publication of JPH1093331A publication Critical patent/JPH1093331A/en
Application granted granted Critical
Publication of JP3384524B2 publication Critical patent/JP3384524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、多共振でかつ高性
能なプリント形のマイクロストリップアンテナ装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a print-type microstrip antenna device having multiple resonances and high performance.

【0002】[0002]

【従来の技術】図10は特願昭59−162690で提
案された従来の2共振板状逆F形アンテナの例である。
21は放射板a,22は放射板b,23はグランド板、
24,25はスタブ、26は給電点、27は給電線であ
る。ここで、放射板aの大きさ(L1×L2)と放射板
bの大きさ(L3×L4)が違い、これにより放射板a
と放射板bのそれぞれの共振周波数で共振して2共振と
なる。即ち、放射板aで構成される板状逆F形アンテナ
Aと、その上にのせられた板状逆F形アンテナBの二つ
が独立に共振しており、それを一つの給電線で給電した
ものである。このため、厚さh2は単一の板状逆F形ア
ンテナの厚さh1のほぼ2倍を必要とする。
2. Description of the Related Art FIG. 10 shows an example of a conventional two-resonant plate-shaped inverted F-shaped antenna proposed in Japanese Patent Application No. 59-162690.
21 is a radiation plate a, 22 is a radiation plate b, 23 is a ground plate,
24 and 25 are stubs, 26 is a feeding point, and 27 is a feeding line. Here, the size of the radiating plate a (L1 × L2) and the size of the radiating plate b (L3 × L4) are different.
And radiating plate b resonate at their respective resonance frequencies, resulting in two resonances. That is, the plate-shaped inverted F-shaped antenna A composed of the radiation plate a and the plate-shaped inverted F-shaped antenna B placed on the antenna A resonate independently, and they are fed by one feed line. It is a thing. Therefore, the thickness h2 needs to be approximately twice the thickness h1 of a single plate inverted F-shaped antenna.

【0003】他の例としては図11のA〜Cがある("H
andbook of MICROSTRIP ANTENNAS",J.R.James & P.S.H
all)。これは、マイクロストリップアンテナ(以下MS
Aと言う)の断面構造を示したもので、31は放射板
a,32は放射板b,33はグランド板、34,35は
給電線である。これらについても放射板aと放射板bの
大きさ、構造が違い、それぞれが独立の共振をして2共
振になるものである。従って、各周波数を比較的任意に
とれる利点はあるが、基本的に2つのアンテナを重ねた
構造であるため、アンテナ容積が大きくなり、構造も複
雑になる欠点があった。
Another example is A to C in FIG. 11 ("H
andbook of MICROSTRIP ANTENNAS ", JR James & PSH
all). This is a microstrip antenna (MS
(A)), 31 is a radiation plate a, 32 is a radiation plate b, 33 is a ground plate, and 34 and 35 are feeder lines. Also in these, the radiation plate a and the radiation plate b are different in size and structure, and each of them resonates independently to give two resonances. Therefore, although there is an advantage that each frequency can be taken relatively arbitrarily, there is a drawback that the antenna volume is large and the structure is complicated because the structure basically has two antennas stacked.

【0004】これらの欠点を解決することを目的として
提案されたのが図12に示すようにMSAに細隙を入れ
2共振させた構造である(特願平7−314988)。
この構造は、両素子とも片側を短絡することで、両周波
数共λ/4MSAとして動作するようになっている。こ
こで、共振波長をλe1,λe2とすると、方形放射導
体板1の長さLは、(1/4)λe2,(1/4)λe
1より小さい。それぞれの素子に流れる電流I1とI2
のイメージ電流がグランド導体板2へ流れる。グランド
導体板2の代わりに図13Aの携帯電話を想定した大き
さの金属筐体11に、短絡板4を上向きにして設置した
場合、グランド導体板2上と同様に金属筐体11にイメ
ージ電流が流れ、筐体自体もアンテナとして動作する。
そのため、筐体の長さが放射パターンに影響を与えてく
る。その影響の度合いは周波数によって変化してくる。
A structure proposed in order to solve these drawbacks is a structure in which a narrow gap is formed in an MSA to cause two resonances as shown in FIG. 12 (Japanese Patent Application No. 7-314988).
In this structure, by shorting one side of both elements, both frequencies operate as λ / 4MSA. Here, assuming that the resonance wavelengths are λe1 and λe2, the length L of the rectangular radiation conductor plate 1 is (1/4) λe2, (1/4) λe.
Less than 1. Currents I1 and I2 flowing through each element
Image current flows to the ground conductor plate 2. If the short-circuit plate 4 is installed in the metal casing 11 of the size shown in FIG. 13A in place of the ground conductor plate 2 with the short-circuit plate 4 facing upward, the image current will flow in the metal casing 11 as in the case of the ground conductor plate 2. And the housing itself also operates as an antenna.
Therefore, the length of the housing affects the radiation pattern. The degree of the effect changes depending on the frequency.

【0005】例えば、L=30mm,W=30mm,t=4.
8mm,比誘電率2.6の誘電体を用い、コンデンサC1を
約3pF,コンデンサC2を約0.5pFとしたアンテナを図
13Aの金属筐体11に設置した場合のリターンロス図
を図13Bに示す。C1側の素子でf=820MHz,C
2側の素子でf=1.49GHzに共振させており、2共振
していることがわかる。このときの各々の共振周波数に
おける放射パターンを図14に示す。共にEθ成分が高
くなっていることがわかる。
For example, L = 30 mm, W = 30 mm, t = 4.
FIG. 13B is a return loss diagram when an antenna having a dielectric of 8 mm and a relative permittivity of 2.6, a capacitor C1 of about 3 pF and a capacitor C2 of about 0.5 pF is installed in the metal housing 11 of FIG. 13A. Show. F = 820MHz, C on the C1 side element
It can be seen that the element on the second side resonates at f = 1.49 GHz and two resonances occur. The radiation pattern at each resonance frequency at this time is shown in FIG. It can be seen that the Eθ component is high in both cases.

【0006】図12のコンデンサC2を取り去り、C2
の付いていた方の導体板の長さをけずってL2とし(C
1側はLのまま)、L=30mm,L2=25.5mm,W=
25mm,t=4.8mm,比誘電率2.6の誘電体を用い、コ
ンデンサC1を約3pFとしたアンテナを図13Aの金属
筐体11に設置した場合のリターンロス図を図15に示
す。C1側の素子でf=820MHz,C2側の素子でf
=2.14GHzに共振させており、2共振していることが
わかる。このときの各々の共振周波数における放射パタ
ーンを図16に示す。f=820MHzでは図14と同様
にEθ成分が高くなっている。しかし、f=2.14GHz
ではEθ成分が低くなっており、特に+X軸方向のレベ
ルが約−4dBに落ちている。
[0006] removed and the capacitor C2 in FIG. 12, C2
Eliminate the length of the conductor plate that was attached to L2 (C
1 side remains L), L = 30mm, L2 = 25.5mm, W =
FIG. 15 shows a return loss diagram when an antenna having a dielectric constant of 25 mm, t = 4.8 mm and a relative dielectric constant of 2.6 and a capacitor C1 of about 3 pF is installed in the metal housing 11 of FIG. 13A. F = 820 MHz for the C1 side element, f for the C2 side element
It resonates at = 2.14 GHz, and it can be seen that there are two resonances. FIG. 16 shows the radiation pattern at each resonance frequency at this time. At f = 820 MHz, the Eθ component is high as in FIG. However, f = 2.14 GHz
, The Eθ component is low, and especially the level in the + X axis direction drops to about -4 dB.

【0007】周波数が高くなると、波長が短くなり、筐
体の見かけの大きさが大きくなり、筐体上のイメージ電
流の影響が高まり、放射パターンのレベルが下がったた
めと考えられる。
It is considered that as the frequency becomes higher, the wavelength becomes shorter, the apparent size of the housing becomes larger, the influence of the image current on the housing becomes higher, and the level of the radiation pattern is lowered.

【0008】[0008]

【発明が解決しようとする課題】従来のアンテナ装置は
以上のように共振周波数を高くすると、放射パターンの
レベルが低下する欠点があった。本発明はアンテナを小
形化すると共に、このような問題点を解決するためにな
されたものである。
The conventional antenna device has a drawback that the level of the radiation pattern is lowered when the resonance frequency is increased as described above. The present invention has been made in order to reduce the size of the antenna and solve such a problem.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

(1)請求項1の発明は、グランド導体板、方形放射導
体板、短絡板,同軸給電線及び複数のコンデンサから成
るマイクロストリップアンテナ装置に関する。グランド
導体板と方形放射導体板とは平行に配され、方形放射導
体板の一辺のほぼ中央部よりほぼ直角に細隙が形成さ
れ、同軸給電線の内導体は、方形放射導体板に、外導体
はグランド導体板にそれぞれ接続される。
(1) The invention of claim 1 relates to a microstrip antenna device comprising a ground conductor plate, a rectangular radiation conductor plate, a short-circuit plate, a coaxial feeder line and a plurality of capacitors. The ground conductor plate and the rectangular radiating conductor plate are arranged parallel to each other, and a slit is formed at a right angle from approximately the center of one side of the rectangular radiating conductor plate. The conductors are respectively connected to the ground conductor plate.

【0010】方形放射導体板の一辺の細隙で2分割され
た各々の分割辺とその直下のグランド導体板の間にコン
デンサがそれぞれ接続され、方形放射導体板の一辺と対
向する他辺の、分割辺の一方と対向する部分とその直下
のグランド導体板との間に短絡板が接続され、方形放射
導体板の他辺の、分割辺の他方と対向する部分とその直
下のグランド導体板の間にコンデンサが接続される。
Capacitors are respectively connected between each divided side divided by a slit on one side of the rectangular radiating conductor plate and the ground conductor plate immediately below, and the divided side of the other side facing the one side of the rectangular radiating conductor plate. A short-circuit plate is connected between the part facing one side and the ground conductor plate directly below it, and a capacitor is placed between the part of the other side of the rectangular radiating conductor plate facing the other of the divided sides and the ground conductor plate directly below it. Connected.

【0011】方形放射導体板の細隙で区分され、他辺に
短絡板が接続されて、λ/4(λは波長)放射板として
動作する一方の半部と対応するアンテナの第1種の共振
周波数(f1)における管内波長をλe1とし、方形放
射導体板の細隙で区分され、他辺にコンデンサが接続さ
れて、λ/2放射板として作用する他方の半部と対応す
るアンテナの第2種の共振周波数(f2;f1<f2)
における管内波長をλe2としたとき、方形放射導体板
の細隙の形成された辺と直角な辺の長さが、(1/4)
λe1及び(1/2)λe2より小さく設定される。
A first type of antenna corresponding to one half which is divided by a slit of a rectangular radiating conductor plate and has a short-circuit plate connected to the other side thereof to operate as a λ / 4 (λ is a wavelength) radiating plate. The wavelength inside the tube at the resonance frequency (f1) is λe1, and it is divided by the slit of the rectangular radiating conductor plate, the capacitor is connected to the other side, and the other half of the antenna that acts as a λ / 2 radiating plate corresponds to Two types of resonance frequencies (f2; f1 <f2)
When the guide wavelength at λe2 is λe2, the length of the side of the rectangular radiation conductor plate perpendicular to the side where the slit is formed is (1/4)
It is set smaller than λe1 and (1/2) λe2.

【0012】(2)請求項2の発明では、前記(1)に
おいて、短絡板が複数とされる。 (3)請求項3の発明では、前記(1)において、方形
放射導体板の細隙で2分割された分割辺の一方(他辺の
短絡板の接続された部分と対向する)にほぼ直角に1個
または複数個の第2の細隙が形成され、それらの第2の
細隙によって分割辺の一方がn個(n≧2)に分割さ
れ、それらの分割された各々の部分とその直下のグラン
ド導体板の間に、それぞれコンデンサが接続される。
(2) In the invention of claim 2, in the above item (1), a plurality of short-circuit plates are provided. (3) In the invention of claim 3, in the above-mentioned (1), it is substantially perpendicular to one of the divided sides of the rectangular radiating conductor plate divided by the slit (opposing the connected portion of the short-circuit plate on the other side). One or a plurality of second slits are formed in each of the divided slits, and one of the divided sides is divided into n pieces (n ≧ 2) by the second slits. Capacitors are connected between the ground conductor plates directly below.

【0013】方形放射導体板の一方の半部の第2の細隙
によりn個に再分割された部分とそれぞれ対応するアン
テナの第1種の共振周波数(f1−1…f1−n)にお
ける管内波長をλe1−1…λe1−nとしたとき、方
形放射導体板の細隙の形成された辺と直角な辺の長さ
が、(1/4)λe1−i(i=2…n)より小さく設
定される。
Inside the tube at the first resonance frequency (f1-1 ... f1-n) of the antenna corresponding to the subdivided into n pieces by the second slit in one half of the rectangular radiating conductor plate. When the wavelength is λe1-1 ... λe1-n, the length of the side of the rectangular radiating conductor plate perpendicular to the side where the slit is formed is (1/4) λe1-i (i = 2 ... n) It is set small.

【0014】(4)請求項4の発明では、前記(3)に
おいて、方形放射導体板の一方の半部の第2細隙により
n個に分割された各々がコンデンサで接続される。 (5)請求項5の発明では、前記(1)において、短絡
板の代わりにコンデンサが接続される。方形放射導体板
の細隙で2区分され、それぞれλ/2(λは波長)放射
板として動作する二つの半部とそれぞれ対応するアンテ
ナの第1種、第2種の共振周波数(f1,f2)におけ
る管内波長をλe1,λe2としたとき、方形放射導体
板の細隙の形成された辺と直角な辺の長さが、(1/
2)λe1及び(1/2)λe2より小さく設定され
る。
(4) According to the invention of claim 4, in the above (3), each of the n divided by the second slits in one half of the rectangular radiation conductor plate is connected by a capacitor. (5) In the invention of claim 5, in (1), a capacitor is connected instead of the short-circuit plate. Resonant frequencies (f1, f2) of the first and second types of antennas corresponding to the two halves, which are divided into two by the slit of the rectangular radiating conductor plate and respectively operate as λ / 2 (λ is the wavelength) radiating plate. ), Where the in-tube wavelengths are λe1 and λe2, the length of the side of the rectangular radiation conductor plate perpendicular to the side where the slit is formed is (1 /
2) It is set smaller than λe1 and (1/2) λe2.

【0015】(6)請求項6の発明では、前記(1)ま
たは(5)のアンテナ装置において、方形放射導体板と
グランド導体板の間に誘電体が挿入される。
(6) In the invention of claim 6, in the antenna device of (1) or (5), a dielectric is inserted between the rectangular radiation conductor plate and the ground conductor plate.

【0016】[0016]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

(実施例1)図1は請求項1の発明の実施例を示したも
ので、図12と対応する部分に同じ符号を付け、重複説
明を省略する。短絡板4の幅がコンデンサC1を付けた
半部に短縮され、他の半部にコンデンサC3が付けられ
る。このような構造にすることにより、2共振化が可能
である。コンデンサC1を取り付けた素子が(1/4)
λMSAとして動作し、低い共振周波数に設定される。
コンデンサC2,C3が取り付けられた素子が(1/
2)λMSAとし動作し、高い共振周波数に設定され
る。(1/4)λMSAの場合と比較して、(1/2)
λMSAの場合は電流がグランド導体板上へ流れにくく
なる。その理由は、放射板の一方の半部は短絡板4を接
続した辺がλ/4放射板の電流分布の腹(振幅が最大)
となり、コンデンサC1を付けた辺が節(振幅が最小)
となり、放射板の他方の半部は、コンデンサC2,C3
を付けた辺がそれぞれλ/2放射板の電流分布の節とな
るからである。
(Embodiment 1) FIG. 1 shows an embodiment of the invention of claim 1, parts corresponding to those in FIG. The width of the short-circuit plate 4 is shortened to the half where the capacitor C1 is attached, and the capacitor C3 is attached to the other half. With such a structure, dual resonance can be achieved. The element with the capacitor C1 attached is (1/4)
It operates as λMSA and is set to a low resonance frequency.
The element to which the capacitors C2 and C3 are attached is (1 /
2) It operates as λMSA and is set to a high resonance frequency. (1/2) compared to the case of (1/4) λMSA
In the case of λMSA, it becomes difficult for current to flow onto the ground conductor plate. The reason is that the side connecting the short-circuit plate 4 in one half of the radiation plate is the antinode of the current distribution of the λ / 4 radiation plate (the amplitude is maximum).
And the side with the capacitor C1 is a node (minimum amplitude)
And the other half of the radiation plate has capacitors C2 and C3.
This is because the sides marked with become the nodes of the current distribution of the λ / 2 radiation plate.

【0017】(実施例2)図2は請求項2の発明の実施
例を示したものである。図1の短絡板4を図2のように
2枚の細い短絡板で置き換えた構造である。短絡板から
細隙7と平行な方向への波だけでなく対角線方向までの
異なる波長の波が乗るようになるので、帯域幅が広が
る。それ以外の動作は図1と変わらない。
(Embodiment 2) FIG. 2 shows an embodiment of the invention of claim 2. This is a structure in which the short-circuit plate 4 of FIG. 1 is replaced by two thin short-circuit plates as shown in FIG. Not only the waves in the direction parallel to the slit 7 from the short-circuit plate but also the waves of different wavelengths up to the diagonal direction are carried, so that the bandwidth is widened. Other operations are the same as those in FIG.

【0018】図2のアンテナを図13Aの金属筐体11
に取り付け、リターンロス特性及び放射パターン測定を
行った。アンテナエレメントの寸法は図2においてアン
テナ長L=30mm,アンテナ幅W=30mm,アンテナ高
さt=4.8mmである。また、誘電率εr =2.6の誘電体
を用い、コンデンサC1は約3pF,コンデンサC2,C
3は約0.5pFとしてある。ここではC1側のエレメント
でf=820MHzに共振させ、C2側のエレメントでf
=2.14GHzに共振させている。図3にリターンロス特
性図を示す。
The antenna of FIG. 2 is replaced by the metal housing 11 of FIG. 13A.
Then, the return loss characteristics and the radiation pattern were measured. The dimensions of the antenna element are antenna length L = 30 mm, antenna width W = 30 mm, and antenna height t = 4.8 mm in FIG. Further, a dielectric having a dielectric constant ε r = 2.6 is used, the capacitor C1 is about 3 pF, and the capacitors C2 and C are
3 is about 0.5 pF. Here, the element on the C1 side resonates at f = 820 MHz, and the element on the C2 side f
= Resonating at 2.14 GHz. Figure 3 shows the return loss characteristics.

【0019】図4に各共振周波数における放射パターン
を示す。パターン面は図13AにおけるX−Y面であ
る。f=820MHzにおける放射パターンを図4Aに、
f=2.14GHzにおける放射パターンを図4Bにそれぞ
れ示す。図4A,BのEθ成分をみると、共に放射レベ
ルが高くなっている。効率はそれぞれf=820MHzで
0dB,2.14GHzで−1.2dBと各周波数で高効率になっ
ている。また、従来の技術で述べた図16Bの放射パタ
ーンと違い、f=2.14GHzでEθ成分が強くなってお
り、+X軸でほぼ0dBd となっている。
FIG. 4 shows a radiation pattern at each resonance frequency. The pattern surface is the XY plane in FIG. 13A. The radiation pattern at f = 820 MHz is shown in FIG.
The radiation patterns at f = 2.14 GHz are shown in FIG. 4B, respectively. Looking at the Eθ components in FIGS. 4A and 4B, the radiation level is high. The efficiencies are 0 dB at f = 820 MHz and -1.2 dB at 2.14 GHz, which are high efficiencies at each frequency. Also, unlike the radiation pattern of FIG. 16B described in the related art, the Eθ component is strong at f = 2.14 GHz and is almost 0 dBd on the + X axis.

【0020】図2のアンテナの管内波長λe=c/f√
εr を計算する。ここでcは光速=3×1011mm,fは
周波数、εr は比誘電率である。λe1をC1を付けた
エレメントに対応する低い周波数f1の管内波長、λe
2をC2を付けたエレメントに対応する高い周波数f2
の管内波長とする。f1=820MHz,f2=2.14G
Hz,εr =2.6であるので、λe1=227mm,λe2
=87mmとなる。従って、1/4λe1=57mm,1/
2λe2=44mmであるので、L<1/4λe1とL<
1/2λe2を満足している。
The guide wavelength of the antenna of FIG. 2 is λe = c / f√
Calculate ε r . Here, c is the speed of light = 3 × 10 11 mm, f is the frequency, and ε r is the relative permittivity. λe1 is the guide wavelength of the low frequency f1 corresponding to the element with C1
2 is a high frequency f2 corresponding to the element with C2
The in-tube wavelength of. f1 = 820MHz, f2 = 2.14G
Since Hz and ε r = 2.6, λe1 = 227 mm, λe2
= 87 mm. Therefore, 1 / 4λe1 = 57mm, 1 /
Since 2λe2 = 44 mm, L <1 / 4λe1 and L <
It satisfies 1 / 2λe2.

【0021】この様に放射板に細隙を設けてアンテナを
2分割し、高効率な2共振アンテナが実現できることが
わかる。また、片方のアンテナ素子を1/2λMSAと
することによって、2.14GHzのX−Y面のEθ成分の
レベルを高くすることが可能である。 (実施例3)図5は請求項3の発明の実施例を示したも
のであり、図2のコンデンサC1を接続した分割辺に第
2の細隙14を形成し、λ/4として動作するエレメン
トが2分割(n=2)され、それぞれにコンデンサC1
−1,C1−2を接続した構造になっている。さらに細
隙を入れることで、アンテナを(n+1)共振させるこ
とができる。
Thus, it is understood that a highly efficient two-resonance antenna can be realized by dividing the antenna into two by providing the radiation plate with a slit. Also, by setting one antenna element to 1/2 λMSA, it is possible to increase the level of the Eθ component on the XY plane at 2.14 GHz. (Embodiment 3) FIG. 5 shows an embodiment of the invention of claim 3, in which a second slit 14 is formed on the divided side to which the capacitor C1 of FIG. 2 is connected, and operates as λ / 4. The element is divided into two (n = 2) and each has a capacitor C1.
It has a structure in which -1, C1-2 are connected. By inserting a narrower gap, the antenna can resonate (n + 1).

【0022】(実施例4)図6は請求項4の発明の実施
例を示したものである。図5のアンテナにコンデンサC
4が追加されている。コンデンサC4がないと、隣接し
た放射素子は互いに影響し合うため、2つの共振周波数
を任意に近づけることができない。しかし、コンデンサ
C4を設置するとコンデンサC1−1とC1−2で各々
の共振点を別々に調整することが可能になる。
(Embodiment 4) FIG. 6 shows an embodiment of the invention of claim 4. Capacitor C on the antenna of FIG.
4 has been added. Without the capacitor C4, the adjacent radiating elements influence each other and the two resonance frequencies cannot be arbitrarily approximated. However, when the capacitor C4 is installed, the resonance points of the capacitors C1-1 and C1-2 can be adjusted separately.

【0023】図6のアンテナを図13Aの金属筐体11
に取り付け、リターンロス及び放射パターンを測定し
た。アンテナ寸法はL=W=30mm,細線7の長さ=2
8mm,細線14の幅及び長さは6mm及び5mm,t=4.8
mmで、比誘電率2.6の誘電体を用いている。C2,C3
及びC1−1が約0.5pF,C1−2が約1.5pF,C4が
約3.0pFである。リターンロス図を図7に示す。f=8
36MHz,f=860MHz,f=2.14GHzで3共振し
ている。さらに、f=836MHz,f=860MHzと近
接した周波数で共振しており、コンデンサC4によって
コンデンサC1−1とC1−2で別々に共振させること
が可能なことがわかる。
The antenna of FIG. 6 is replaced by the metal housing 11 of FIG. 13A.
And the return loss and radiation pattern were measured. Antenna size is L = W = 30mm, length of thin wire = 2
8mm, width and length of fine wire 14 are 6mm and 5mm, t = 4.8
A dielectric material having a relative permittivity of 2.6 in mm is used. C2, C3
C1-1 is about 0.5 pF, C1-2 is about 1.5 pF, and C4 is about 3.0 pF. The return loss diagram is shown in Fig. 7. f = 8
It resonates at 36 MHz, f = 860 MHz and f = 2.14 GHz. Furthermore, it is understood that the resonance occurs at frequencies close to f = 836 MHz and f = 860 MHz, and that the capacitors C1-1 and C1-2 can be separately resonated by the capacitor C4.

【0024】図8にそれぞれの共振周波数における放射
パターンを示す。図4の放射パターンと比較して、形状
は変化していないこと及びレベルがほとんど劣化してい
ないことがわかる。効率はf=836MHzで−0.4dB,
f=860MHzで−1.1dB,f=2.14MHzで−1.0dB
となっており、3共振構造にしても効率劣化がない。本
実施例は細隙を2本入れて3共振させたアンテナである
が、さらに細隙を増やすことで多共振化が可能である。
このことは、図5の実施例3においても同様である。
FIG. 8 shows the radiation pattern at each resonance frequency. As compared with the radiation pattern of FIG. 4, it can be seen that the shape has not changed and the level has hardly deteriorated. Efficiency is -0.4dB at f = 836MHz,
-1.1 dB at f = 860 MHz, -1.0 dB at f = 2.14 MHz
Therefore, even with the three-resonance structure, there is no efficiency deterioration. Although the present embodiment is an antenna in which two slits are inserted to cause three resonances, it is possible to realize multiple resonances by further increasing the slits.
This also applies to the third embodiment shown in FIG.

【0025】(実施例5)図9Aは請求項5の発明の実
施例を示したものである。図1の短絡板4の代わりにコ
ンデンサC5を接続し、2素子とも1/2λMSAのア
ンテナ構造としたものである。2共振とも1.5GHzを越
えた周波数になった場合に、この構造にした方が、筐体
の影響を抑えることができ、図2の実施例2と同様にX
−Y面のEθ成分のレベルを高くすることができる。
(Embodiment 5) FIG. 9A shows an embodiment of the invention of claim 5. A capacitor C5 is connected instead of the short-circuit plate 4 in FIG. 1, and the two elements have an antenna structure of ½λMSA. When the frequencies of both resonances exceed 1.5 GHz, this structure can suppress the influence of the housing, and the X-ray frequency can be reduced as in the second embodiment of FIG.
The level of the Eθ component on the −Y plane can be increased.

【0026】図13Aの金属筐体11に取り付けた場合
のリターンロス図を図9Bに示す。アンテナ寸法は、L
=30mm,W=25mm,t=4.8mm,誘電体は比誘電率
2.6のものを用いている。C1,C2及びC3は約0.5
pF,C5は約1.0pFである。1.5GHzと2.26GHzで2
共振していることがわかる。λe1/2=62mm,λe
2/2=41.1mmであるので、いずれもL=30mmより
大きい。
FIG. 9B shows a return loss diagram when it is attached to the metal casing 11 of FIG. 13A. Antenna size is L
= 30mm, W = 25mm, t = 4.8mm, dielectric is the relative permittivity
I'm using 2.6. C1, C2 and C3 are about 0.5
pF and C5 are about 1.0 pF. 2 at 1.5 GHz and 2.26 GHz
You can see that they are resonating. λe1 / 2 = 62mm, λe
Since 2/2 = 41.1 mm, both are larger than L = 30 mm.

【0027】[0027]

【発明の効果】以上説明したように、アンテナに1個以
上の細隙を入れ、分割した方形放射導体板の端とグラン
ド導体板の間にコンデンサを取り付けた構造にすること
で、小型のまま2共振またはそれ以上多共振するアンテ
ナを得ることができると共に、Eθ成分のレベルを大き
くすることができる。周波数が高いほど筐体による影響
が大きくなり放射パターンに影響が出てくるが、アンテ
ナの少なくとも半部を1/2λMSAにすることで筐体
の影響を軽減できる。さらに、分割された方形放射導体
板の先に橋渡しするようにコンデンサを設置すること
で、共振を任意に調整することが可能になる。
As described above, the antenna is provided with one or more slits, and the capacitor is attached between the end of the divided rectangular radiating conductor plate and the ground conductor plate. Alternatively, it is possible to obtain an antenna having multiple resonances and increase the level of the Eθ component. The higher the frequency, the greater the influence of the casing and the radiation pattern. However, the influence of the casing can be reduced by setting at least half of the antenna to 1 / 2λMSA. Furthermore, the resonance can be arbitrarily adjusted by installing the capacitor so as to bridge the divided rectangular radiation conductor plate.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1のアンテナ装置を示す図。FIG. 1 is a diagram showing an antenna device according to claim 1.

【図2】請求項2のアンテナ装置を示す図。FIG. 2 is a diagram showing the antenna device according to claim 2;

【図3】図2のアンテナのリターンロス特性図。FIG. 3 is a return loss characteristic diagram of the antenna of FIG.

【図4】図2のアンテナの放射パターン図。FIG. 4 is a radiation pattern diagram of the antenna of FIG.

【図5】請求項3のアンテナ装置を示す図。FIG. 5 is a diagram showing the antenna device according to claim 3;

【図6】請求項4のアンテナ装置を示す図。FIG. 6 is a diagram showing the antenna device according to claim 4;

【図7】図6のアンテナのリターンロス特性図。7 is a return loss characteristic diagram of the antenna of FIG.

【図8】図6のアンテナの放射パターン図。FIG. 8 is a radiation pattern diagram of the antenna of FIG.

【図9】Aは請求項5のアンテナ装置を示す図、BはA
のアンテナのリターンロス特性図。
9A is a diagram showing the antenna device according to claim 5, and B is A
Of antenna return loss characteristics.

【図10】従来のアンテナ装置を示す図。FIG. 10 is a diagram showing a conventional antenna device.

【図11】従来の他のアンテナ装置を示す図。FIG. 11 is a diagram showing another conventional antenna device.

【図12】従来の更に他のアンテナ装置を示す図。FIG. 12 is a diagram showing still another conventional antenna device.

【図13】Aは被測定アンテナ装置を取付ける金属筐体
の外形を示す図、Bは図12のアンテナのリターンロス
特性図。
13A is a diagram showing the outer shape of a metal housing to which the antenna device to be measured is mounted, and B is a return loss characteristic diagram of the antenna of FIG.

【図14】図12のアンテナの放射パターン特性図。14 is a radiation pattern characteristic diagram of the antenna of FIG.

【図15】図12のアンテナのC2側の放射板の長さを
短くした場合のリターンロス特性図。
15 is a return loss characteristic diagram when the length of a radiation plate on the C2 side of the antenna of FIG. 12 is shortened.

【図16】図15と対応する放射バターン図。16 is a radiation pattern diagram corresponding to FIG. 15. FIG.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01Q 13/08 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01Q 13/08

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 グランド導体板、方形放射導体板、短絡
板,同軸給電線及び複数のコンデンサから成るマイクロ
ストリップアンテナ装置であって、 前記グランド導体板と方形放射導体板とは平行に配さ
れ、 前記方形放射導体板の一辺のほぼ中央部よりほぼ直角に
細隙が、前記一辺と対向する他辺に達することなく形成
され、 前記同軸給電線の内導体は、前記方形放射導体板に、外
導体は前記グランド導体板にそれぞれ接続され、 前記方形放射導体板の前記一辺の前記細隙で2分割され
た各々の分割辺とその直下の前記グランド導体板の間に
コンデンサがそれぞれ接続され、 前記方形放射導体板の前記一辺と対向する前記他辺の、
前記分割辺の一方と対向する部分とその直下の前記グラ
ンド導体板との間に前記短絡板が接続され、 前記方形放射導体板の前記他辺の、前記分割辺の他方と
対向する部分とその直下の前記グランド導体板の間にコ
ンデンサが接続され、 前記方形放射導体板の前記細隙で区分され、前記他辺に
前記短絡板が接続されて、λ/4(λは波長)放射板と
して動作する一方の半部と対応するアンテナの第1種の
共振周波数(f1)における管内波長をλe1とし、 前記方形放射導体板の前記細隙で区分され、前記他辺に
前記コンデンサが接続されて、λ/2放射板として動作
する他方の半部と対応するアンテナの第2種の共振周波
数(f2;f1<f2)における管内波長をλe2とし
たとき、 前記方形放射導体板の前記細隙の形成された辺と直角な
辺の長さが、(1/4)λe1及び(1/2)λe2よ
り小さいことを特徴とするマイクロストリップアンテナ
装置。
1. A microstrip antenna device comprising a ground conductor plate, a rectangular radiation conductor plate, a short-circuit plate, a coaxial feed line, and a plurality of capacitors, wherein the ground conductor plate and the rectangular radiation conductor plate are arranged in parallel. A slit is formed at a right angle from a substantially central portion of one side of the rectangular radiating conductor plate without reaching the other side facing the one side. conductors are connected to the ground conductor plate, a capacitor is connected the said one side said slit in two divided each divided side of the rectangular radiating conductor plate and the ground conductor plates immediately below, the rectangular radiation of the other side opposite to the side of the conductor plate,
Wherein said short-circuiting plate between one portion facing the split sides and said ground conductor plate immediately below is connected to the other side of the rectangular radiating conductor plate and the other facing the portion of the divided side and its capacitor is connected to the ground conductor plates immediately below, the is partitioned by the narrow gap of the rectangular radiating conductor plate, said short-circuiting plate is connected to the other side, (the lambda wavelength) lambda / 4 operates as a radiation plate the guide wavelength and λe1 in the one of the resonant frequency of the corresponding antenna and one half portion (f1), the is divided by the fine gap of the rectangular radiating conductor plate, the capacitor is connected to the other side, lambda When the guide wavelength at the second-type resonance frequency (f2; f1 <f2) of the antenna corresponding to the other half that operates as a 1/2 radiation plate is λe2, the slit of the rectangular radiation conductor plate is formed. Right angle Length of, (1/4) λe1 and (1/2) λe2 microstrip antenna and wherein the smaller.
【請求項2】 請求項1において、前記短絡板が複数で
あることを特徴とするマイクロストリップアンテナ装
置。
2. The microstrip antenna device according to claim 1, wherein the short-circuit plate is plural.
【請求項3】 請求項1において、前記方形放射導体板
の前記細隙で2分割された分割辺の前記一方で、かつ前
記短絡板が接続された部分と対向した前記分割辺にほぼ
直角に1個または複数個の第2の細隙が形成され、それ
らの第2の細隙によって前記分割辺の前記一方がn個
(n≧2)に分割され、それらの分割された各々の部分
とその直下のグランド導体板の間に、それぞれコンデン
サが接続され、 前記方形放射導体板の前記一方の半部の前記第2の細隙
によりn個に再分割された部分とそれぞれ対応するアン
テナの第1種の共振周波数(f1−1…f1−n)にお
ける管内波長をλe1−1…λe1−nとしたとき、 前記方形放射導体板の前記細隙の形成された辺と直角な
辺の長さが、(1/4)λe1−i(i=2…n)より
小さいことを特徴とするマイクロストリップアンテナ装
置。
3. The method of claim 1, wherein in one of said slit in two divided divided side of the rectangular radiating conductor plate, and before
Serial second slit substantially perpendicular to one or more on the divided side short-circuiting plate is opposed to the connection portion is formed, the one n number of the divided edges by their second slit (N ≧ 2), capacitors are respectively connected between the respective divided portions and the ground conductor plate immediately below, and the second slit of the one half of the rectangular radiation conductor plate is connected. When the guide wavelength at the first-type resonance frequency (f1-1 ... f1-n) of the antenna corresponding to each of the parts subdivided into n by the above is set to λe1-1 ... λe1-n, the rectangular radiation conductor plate The length of a side perpendicular to the side in which the slit is formed is smaller than (1/4) λe1-i (i = 2 ... n).
【請求項4】 請求項3において、前記方形放射導体板
の前記一方の半部の前記第2細隙によりn個に分割され
た各々をコンデンサで接続したことを特徴とするマイク
ロストリップアンテナ装置。
4. The microstrip antenna device according to claim 3, wherein each of the one half of the rectangular radiating conductor plate divided into n pieces by the second slits is connected by a capacitor.
【請求項5】 グランド導体板、方形放射導体板、同軸
給電線及び複数のコンデンサから成るマイクロストリッ
プアンテナ装置であって、 前記グランド導体板と方形放射導体板とは平行に配さ
れ、 前記方形放射導体板の一辺のほぼ中央部よりほぼ直角に
細隙が形成され、 前記同軸給電線の内導体は、前記方形放射導体板に、外
導体は前記グランド導体板にそれぞれ接続され、 前記方形放射導体板の一辺の前記細隙で2分割された各
々の分割辺とその直下の前記グランド導体板の間にコン
デンサがそれぞれ接続され、 前記方形放射導体板の前記一辺と対向する他辺の、前記
分割辺の各々と対向する部分とその直下の前記グランド
導体板との間にそれぞれコンデンサが接続され、 前記方形放射導体板の前記細隙で2区分され、それぞれ
λ/2(λは波長)放射板として動作する二つの半部と
それぞれ対応するアンテナの第1種、第2種の共振周波
数(f1,f2)における管内波長をλe1,λe2と
したとき、 前記方形放射導体板の前記細隙の形成された辺と直角な
辺の長さが、(1/2)λe1及び(1/2)λe2よ
り小さいことを特徴とするマイクロストリップアンテナ
装置。
5. A microstrip antenna device comprising a ground conductor plate, a rectangular radiation conductor plate, a coaxial feed line and a plurality of capacitors, wherein the ground conductor plate and the rectangular radiation conductor plate are arranged in parallel, A slit is formed at a right angle from a substantially central portion of one side of the conductor plate, the inner conductor of the coaxial feed line is connected to the rectangular radiating conductor plate, and the outer conductor is connected to the ground conductor plate. Capacitors are respectively connected between the respective divided sides divided by the slit on one side of the plate and the ground conductor plate immediately below, and the divided side of the other side opposite to the one side of the rectangular radiating conductor plate. Capacitors are respectively connected between the portions facing each other and the ground conductor plate immediately below, and are divided into two by the slits of the rectangular radiating conductor plate, each of which has a wavelength of λ / 2 ( The two halves and the one of the corresponding antenna, Ramudai1 the guide wavelength in the two resonant frequencies (f1, f2), when the Ramudai2, the rectangular radiating conductor plate that operates as a wave) radiation plate The length of the side perpendicular to the side where the slit is formed is smaller than (1/2) λe1 and (1/2) λe2.
【請求項6】 請求項1または5において、前記方形放
射導体板と前記グランド導体板との間に誘電体を挿入し
たことを特徴とするマイクロストリップアンテナ装置。
6. The microstrip antenna device according to claim 1, wherein a dielectric is inserted between the rectangular radiation conductor plate and the ground conductor plate.
JP24756196A 1996-09-19 1996-09-19 Microstrip antenna device Expired - Fee Related JP3384524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24756196A JP3384524B2 (en) 1996-09-19 1996-09-19 Microstrip antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24756196A JP3384524B2 (en) 1996-09-19 1996-09-19 Microstrip antenna device

Publications (2)

Publication Number Publication Date
JPH1093331A JPH1093331A (en) 1998-04-10
JP3384524B2 true JP3384524B2 (en) 2003-03-10

Family

ID=17165334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24756196A Expired - Fee Related JP3384524B2 (en) 1996-09-19 1996-09-19 Microstrip antenna device

Country Status (1)

Country Link
JP (1) JP3384524B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244232A (en) * 1999-02-17 2000-09-08 Ngk Spark Plug Co Ltd Micro-strip antenna
FI113588B (en) * 1999-05-10 2004-05-14 Nokia Corp Antenna Design
JP3646782B2 (en) * 1999-12-14 2005-05-11 株式会社村田製作所 ANTENNA DEVICE AND COMMUNICATION DEVICE USING THE SAME
JP2002185238A (en) * 2000-12-11 2002-06-28 Sony Corp Built-in antenna device corresponding to dual band, and portable wireless terminal equipped therewith
JP2003158419A (en) * 2001-09-07 2003-05-30 Tdk Corp Inverted f antenna, and its feeding method and its antenna adjusting method
WO2004010532A1 (en) 2002-07-15 2004-01-29 Fractus, S.A. Antenna with one or more holes
US6903686B2 (en) * 2002-12-17 2005-06-07 Sony Ericsson Mobile Communications Ab Multi-branch planar antennas having multiple resonant frequency bands and wireless terminals incorporating the same
US7162264B2 (en) * 2003-08-07 2007-01-09 Sony Ericsson Mobile Communications Ab Tunable parasitic resonators
JP2005269301A (en) * 2004-03-19 2005-09-29 Nec Corp Built-in antenna and electronic equipment having the same
JP4941202B2 (en) * 2007-09-26 2012-05-30 Tdk株式会社 Antenna device and characteristic adjustment method thereof
JP4987846B2 (en) * 2008-12-26 2012-07-25 株式会社東芝 Antenna device

Also Published As

Publication number Publication date
JPH1093331A (en) 1998-04-10

Similar Documents

Publication Publication Date Title
US4477813A (en) Microstrip antenna system having nonconductively coupled feedline
US7071889B2 (en) Low frequency enhanced frequency selective surface technology and applications
US5917450A (en) Antenna device having two resonance frequencies
CA1056942A (en) Stripline antenna arrays
US7355559B2 (en) Small planar antenna with enhanced bandwidth and small strip radiator
US4197544A (en) Windowed dual ground plane microstrip antennas
US4291312A (en) Dual ground plane coplanar fed microstrip antennas
EP0969547B1 (en) Antenna device
JP3340374B2 (en) Multi-frequency antenna
US20060017621A1 (en) Antenna
GB2402552A (en) Broadband dielectric resonator antenna system
EP0398554A2 (en) Multiband gridded focal plane array antenna
JP2007049674A (en) Antenna structure
CN109845031B (en) Integrated band stop filtering in antenna unit
JP6980861B2 (en) Flat panel antenna
JP2005312062A (en) Small antenna
JP3384524B2 (en) Microstrip antenna device
EP0526457A1 (en) Antenna
KR20150052172A (en) Broadband multi-strip patch antenna
WO2002035652A1 (en) Internal antennas for portable terminals and mounting method thereof
US9698480B2 (en) Small antenna apparatus operable in multiple frequency bands
US11862869B2 (en) Antenna structure
US6567047B2 (en) Multi-band in-series antenna assembly
US11362442B2 (en) Dual antenna support and isolation enhancer
CN112952371A (en) Low-frequency radiation unit and separable multi-frequency base station antenna

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071227

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101227

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101227

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111227

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111227

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121227

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121227

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131227

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees