JP3383338B2 - Corrosion-resistant permanent magnet and its manufacturing method - Google Patents
Corrosion-resistant permanent magnet and its manufacturing methodInfo
- Publication number
- JP3383338B2 JP3383338B2 JP35300792A JP35300792A JP3383338B2 JP 3383338 B2 JP3383338 B2 JP 3383338B2 JP 35300792 A JP35300792 A JP 35300792A JP 35300792 A JP35300792 A JP 35300792A JP 3383338 B2 JP3383338 B2 JP 3383338B2
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- corrosion
- magnet
- magnet body
- resin layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005260 corrosion Methods 0.000 title claims description 32
- 230000007797 corrosion Effects 0.000 title claims description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000011347 resin Substances 0.000 claims description 25
- 229920005989 resin Polymers 0.000 claims description 25
- 238000004070 electrodeposition Methods 0.000 claims description 22
- 238000000576 coating method Methods 0.000 claims description 21
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 17
- 229910001887 tin oxide Inorganic materials 0.000 claims description 17
- 239000011248 coating agent Substances 0.000 claims description 16
- -1 tin alkoxide compound Chemical class 0.000 claims description 7
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims 1
- 238000007598 dipping method Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 229910052761 rare earth metal Inorganic materials 0.000 description 9
- 230000006866 deterioration Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 6
- 230000004907 flux Effects 0.000 description 5
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910052777 Praseodymium Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910000722 Didymium Inorganic materials 0.000 description 1
- 241000224487 Didymium Species 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- FIGKHTSYFBRKDV-UHFFFAOYSA-N strontium zinc dioxido(dioxo)chromium Chemical compound [Zn++].[Sr++].[O-][Cr]([O-])(=O)=O.[O-][Cr]([O-])(=O)=O FIGKHTSYFBRKDV-UHFFFAOYSA-N 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- NDKWCCLKSWNDBG-UHFFFAOYSA-N zinc;dioxido(dioxo)chromium Chemical compound [Zn+2].[O-][Cr]([O-])(=O)=O NDKWCCLKSWNDBG-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/026—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、高磁気特性を有しか
つ耐食性にすぐれたFe−B−Ra系永久磁石に係り、
磁石体表面に酸化錫膜を介して電着塗装による耐食性樹
脂層を設けて、耐食性、特に80℃、相対湿度90%の
雰囲気に長時間放置した場合の初期磁石特性からの劣化
が少なく、きわめて安定した磁石特性を有するFe−B
−Ra系永久磁石とその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Fe-B-Ra-based permanent magnet having high magnetic properties and excellent corrosion resistance,
By providing a corrosion-resistant resin layer by electrodeposition coating on the surface of the magnet through a tin oxide film, corrosion resistance, especially deterioration from the initial magnet characteristics when left in an atmosphere of 80 ° C and 90% relative humidity for a long time, is extremely low. Fe-B having stable magnet characteristics
-Ra type permanent magnet and its manufacturing method.
【0002】[0002]
【従来の技術】先に、NdやPrを中心とする資源的に
豊富な軽希土類を用いてB,Feを主成分とし、高価な
SmやCoを含有せず、従来の希土類コバルト磁石の最
高特性を大幅に超える新しい高性能永久磁石として、F
e−B−Ra系永久磁石が提案されている(特開昭59
−46008号公報、特開昭59−89401号公
報)。2. Description of the Related Art First, a light rare earth which is rich in resources centering on Nd and Pr is used as a main component of B and Fe, and does not contain expensive Sm or Co. As a new high-performance permanent magnet that greatly exceeds the characteristics, F
An e-B-Ra type permanent magnet has been proposed (Japanese Patent Laid-Open No. 59-59).
-46008, JP-A-59-89401).
【0003】前記磁石合金のキュリー点は、一般に30
0℃〜370℃であるが、Feの一部をCoにて置換す
ることにより、より高いキュリー点を有するFe−B−
Ra系永久磁石(特開昭59−64733号、特開昭5
9−132104号)を得ており、さらに、前記Co含
有のFe−B−Ra系希土類永久磁石と同等以上のキュ
リー点並びにより高い(BH)maxを有し、その温度
特性、特にiHcを向上させるため、希土類元素(R
a)としてNdやPr等の軽希土類を中心としたCo含
有のFe−B−Ra系希土類永久磁石のRaの一部にD
y、Tb等の重希土類のうち少なくとも1種を含有する
ことにより、25MGOe以上の極めて高い(BH)m
axを保有したままで、iHcをさらに向上させたCo
含有のFe−B−Ra系希土類永久磁石が提案(特開昭
60−34005号)されている。The Curie point of the magnet alloy is generally 30.
It is 0 ° C to 370 ° C, but Fe-B- having a higher Curie point by substituting a part of Fe with Co.
Ra-based permanent magnet (JP-A-59-64733, JP-A-5-64733)
9-132104), and further has a Curie point equal to or higher than that of the Fe-B-Ra-based rare earth permanent magnet containing Co and a higher (BH) max, and improves its temperature characteristics, particularly iHc. In order to make the rare earth element (R
As a), a part of Ra of Co-containing Fe-B-Ra-based rare earth permanent magnets centering on light rare earths such as Nd and Pr is used as D.
By containing at least one of heavy rare earth elements such as y and Tb, extremely high (BH) m of 25 MGOe or more.
Co that has further improved iHc while holding ax
A Fe-B-Ra-based rare earth permanent magnet containing is proposed (Japanese Patent Laid-Open No. 60-34005).
【0004】しかしながら、上記のすぐれた磁気特性を
有するFe−B−Ra系磁気異方性焼結体からなる永久
磁石は主成分として、空気中で酸化し易い希土類元素及
び鉄を含有するため、磁気回路に組込んだ場合に、磁石
表面に生成する酸化物により、磁気回路の出力低下及び
磁気回路間のばらつきを惹起し、また、表面酸化物の脱
落による周辺機器への汚染の問題があった。However, the permanent magnet made of the Fe--B--Ra type magnetic anisotropic sintered body having the above-mentioned excellent magnetic characteristics contains iron as a main component, which is a rare earth element which is easily oxidized in air, and iron. When incorporated into a magnetic circuit, the oxide generated on the surface of the magnet causes a decrease in the output of the magnetic circuit and variations among the magnetic circuits, and there is a problem of contamination of peripheral equipment due to the loss of the surface oxide. It was
【0005】[0005]
【発明が解決しようとする課題】そこで、上記のFe−
B−Ra系永久磁石の耐食性の改善のため、磁石体表面
に電着塗装による耐食性樹脂層を被覆した永久磁石(特
開昭61−130453号)が提案されているが、この
方法では永久磁石体が焼結体で有孔性のため、この孔内
に十分に電着液が侵入せず、経年変化とともに腐食する
恐れがあり、密着性、防蝕性が劣る問題があった。Therefore, the above Fe-
In order to improve the corrosion resistance of B-Ra type permanent magnets, a permanent magnet (JP-A-61-130453) in which the surface of the magnet body is coated with a corrosion-resistant resin layer by electrodeposition coating has been proposed. Since the body is a sintered body and has porosity, there is a problem that the electrodeposition liquid does not sufficiently penetrate into the pores and may corrode with aging, resulting in poor adhesion and corrosion resistance.
【0006】この発明は、Fe−B−Ra系永久磁石下
地との密着性にすぐれ、磁石表面の溶出を防止し、その
耐食性の改善を目的とし、特に温度80℃、相対湿度9
0%の雰囲気条件下で長時間放置した場合の初期磁石特
性からの劣化を極力少なくし、安定した高磁石特性を有
するFe−B−Ra系永久磁石とその製造方法の提供を
目的としている。The present invention has excellent adhesion to an Fe-B-Ra type permanent magnet base, prevents elution of the magnet surface, and improves its corrosion resistance. Particularly, the temperature is 80 ° C. and the relative humidity is 9
It is an object of the present invention to provide a Fe-B-Ra-based permanent magnet having stable high magnet characteristics and minimizing the deterioration from the initial magnet characteristics when left for a long time under 0% atmosphere condition, and a method for manufacturing the same.
【0007】[0007]
【課題を解決するための手段】この発明は、すぐれた耐
食性、特に温度80℃、相対湿度90%の雰囲気条件下で長
時間放置した場合においても、下地との密着性がすぐれ
磁石表面の溶出を防止し、その磁石特性が安定したFe-B
-Ra系永久磁石を目的に、永久磁石体の表面処理につい
て種々研究した結果、特定成分を有するFe-B-Ra系磁石
体表面に、スズアルコキシド化合物溶液を用いて熱分解
法により酸化錫膜を被着、さらに、電着塗装による耐食
性樹脂層を被着することにより、すぐれた耐食性と共に
Fe-B-Ra磁石表面との密着性がすぐれ、すぐれた耐食性
ときわめて安定した磁石特性が安価に得られることを知
見し、この発明を完成したものである。The present invention has excellent corrosion resistance, and in particular, even when left for a long time under an atmospheric condition of a temperature of 80 ° C. and a relative humidity of 90%, the adhesion to the base is excellent and the elution of the magnet surface is achieved. Fe-B with stable magnet characteristics
As a result of various studies on the surface treatment of permanent magnets for the purpose of -Ra-based permanent magnets, a tin oxide film was formed on the surface of Fe-B-Ra based magnets with specific components by a thermal decomposition method using a tin alkoxide compound solution. And excellent corrosion resistance by applying a corrosion resistant resin layer by electrodeposition coating.
Excellent adhesion between the Fe-B-Ra magnet surface, extremely stable magnetic characteristics to grade corrosion is found that the resulting low cost, and completed the present invention.
【0008】すなわち、この発明は、主相が正方晶相か
らなるFe−B−Ra系永久磁石体表面に、Cを100
ppm〜1000ppm含有する膜厚500Å以下の酸
化錫膜を介して、電着塗装による耐食性樹脂層を有する
ことを特徴とする耐食性永久磁石である。That is, according to the present invention, 100 C is added to the surface of the Fe-B-Ra type permanent magnet body whose main phase is a tetragonal phase.
It is a corrosion-resistant permanent magnet having a corrosion-resistant resin layer formed by electrodeposition coating through a tin oxide film having a film thickness of 500 Å or less containing ppm to 1000 ppm.
【0009】また、この発明は、主相が正方晶相からな
るFe−B−Ra系永久磁石体表面を清浄化処理した
後、前記磁石体をスズアルコキシド化合物溶液に浸漬す
るか前記磁石表面にスズアルコキシド化合物溶液を塗布
した後、200℃〜450℃に30分〜10時間保持す
る熱処理によりCを100ppm〜1000ppm含有
する酸化錫膜層を形成し、さらに、該磁石体を樹脂液に
浸漬して電着塗装処理し、該磁石体表面に耐食性樹脂層
を形成することを特徴とする耐食性永久磁石の製造方法
である。Further, according to the present invention, after the surface of the Fe-B-Ra type permanent magnet body whose main phase is a tetragonal phase is cleaned, the magnet body is immersed in a tin alkoxide compound solution or the magnet surface is applied. After applying the tin alkoxide compound solution, a tin oxide film layer containing 100 ppm to 1000 ppm of C is formed by a heat treatment of holding at 200 ° C. to 450 ° C. for 30 minutes to 10 hours, and further, the magnet body is dipped in a resin solution. Electrodeposition coating treatment to form a corrosion-resistant resin layer on the surface of the magnet body, which is a method for producing a corrosion-resistant permanent magnet.
【0010】この発明において、磁石体表面の酸化錫被
膜層は、スズアルコキシド化合物溶液(一般式 Sn
(OR)n、R:アルキル基またはアルキル基+他の官
能基、n:酸化数)に浸漬又はスプレーした磁石体表面
を乾燥後、200℃〜450℃に30分〜10時間の熱
処理により被膜され、酸化錫膜の厚みは500Å以下が
好ましい。かかる酸化錫膜厚が500Åを超えると、膜
の密着強度が低下して、酸化錫膜表面に被着の耐食性樹
脂層が剥離する恐れがあるため、500Å以下の厚みと
する。また、この発明の酸化錫膜中には、Cを100p
pm〜1000ppm含有することを特徴とするが、C
量が100ppmでは膜内でクラックが生じ、1000
ppmを超えると熱分解が十分でなく、好ましくないた
めである。In the present invention, the tin oxide coating layer on the surface of the magnet is a tin alkoxide compound solution (general formula Sn).
(OR) n, R: alkyl group or alkyl group + other functional group, n: oxidation number) The surface of the magnet body dipped or sprayed is dried and then heat-treated at 200 ° C to 450 ° C for 30 minutes to 10 hours to form a film. Therefore, the thickness of the tin oxide film is preferably 500 Å or less. If the tin oxide film thickness exceeds 500Å, the adhesion strength of the film is reduced, and the corrosion-resistant resin layer adhered to the surface of the tin oxide film may peel off. Therefore, the thickness is set to 500Å or less. Further, in the tin oxide film of the present invention, C of 100 p
It is characterized by containing pm to 1000 ppm, but C
When the amount is 100 ppm, cracks occur in the film,
This is because if it exceeds ppm, thermal decomposition is not sufficient, which is not preferable.
【0011】また、この発明において、電着塗装による
耐食性樹脂層を形成するには、表面に酸化錫膜を被着し
た永久磁石体を水性塗料中に浸漬し、永久磁石体を陽極
または陰極として、永久磁石体と対極との間に直流電流
を給電して、該永久磁石体全体に電気的に塗装を施し、
表面に耐食性樹脂層を形成する電着塗装法を採用するこ
とができ、被処理永久磁石体を陽極にしたアニオン電着
塗装法、あるいは被処理永久磁石体を陰極にしたカチオ
ン電着塗装法を採用することができる。アニオン電着塗
装法に使用される樹脂は、乾性油、ポリエステル、ポリ
ブタジエン、エポキシエステル、ポリアクリル酸エステ
ルなどを骨核としたポリカルボン酸樹脂であり、通常、
有機アミンあるいは苛性カリなどの塩基で中和し、水溶
液化あるいは水分散化されて負に荷電する。また、カチ
オン電着塗装法に使用される樹脂は、主としてエポキシ
系樹脂、アクリル系樹脂等を骨核としたポリアミン樹脂
であり、通常、有機酸で中和し、水溶液化あるいは水分
散化されて正に荷電する。また、電着塗装による耐食性
樹脂層厚みは、50μm以下の厚みに被着されるのが好
ましく、更に好ましくは5〜30μmの厚みである。さ
らに、防錆塗膜補強改善の目的で、上記樹脂中に酸化亜
鉛、クロム酸亜鉛、クロム酸亜鉛ストロンチウム、鉛丹
などの防錆用顔料を含有してもよく、あるいはベンゾト
リアゾールを含有するものでもよい。Further, in the present invention, in order to form the corrosion resistant resin layer by electrodeposition coating, the permanent magnet body having the tin oxide film adhered on the surface is dipped in the aqueous paint, and the permanent magnet body is used as an anode or a cathode. , Supplying a direct current between the permanent magnet body and the counter electrode to electrically coat the entire permanent magnet body,
An electrodeposition coating method for forming a corrosion-resistant resin layer on the surface can be adopted.Anion electrodeposition coating method with the treated permanent magnet body as the anode or cation electrodeposition coating method with the treated permanent magnet body as the cathode is used. Can be adopted. The resin used in the anion electrodeposition coating method is a polycarboxylic acid resin having a drying oil, polyester, polybutadiene, epoxy ester, polyacrylic acid ester and the like as a nucleus, and usually,
It is neutralized with an organic amine or a base such as caustic potash, made into an aqueous solution or dispersed in water, and becomes negatively charged. The resin used in the cationic electrodeposition coating method is mainly a polyamine resin having an epoxy resin, an acrylic resin or the like as a nucleus, and is usually neutralized with an organic acid to be an aqueous solution or a water dispersion. It is positively charged. The thickness of the corrosion-resistant resin layer formed by electrodeposition coating is preferably 50 μm or less, and more preferably 5 to 30 μm. Further, for the purpose of improving the rust preventive coating reinforcement, the above resin may contain a rust preventive pigment such as zinc oxide, zinc chromate, zinc strontium chromate, and red lead, or one containing benzotriazole. But it's okay.
【0012】この発明の永久磁石に用いる希土類元素R
aは、組成の10原子%〜30原子%を占めるが、N
d、Pr、Dy、Ho、Tbのうち少なくとも1種、あ
るいはさらに、La、Ce、Sm、Gd、Er、Eu、
Tm、Yb、Lu、Yのうち少なくとも1種を含むもの
が好ましい。また、通常Raのうち1種をもって足りる
が、実用上は2種以上の混合物(ミッシュメタル,ジジ
ム等)を入手上の便宜等の理由により用いることができ
る。なお、このRaは純希土類元素でなくてもよく、工
業上入手可能な範囲で製造上不可避な不純物を含有する
ものでも差支えない。Raは、上記系永久磁石における
必須元素であって、10原子%未満では結晶構造がα−
鉄と同一構造の立方晶組織となるため、高磁気特性、特
に高保磁力が得られず、30原子%を超えるとRaリッ
チな非磁性相が多くなり、残留磁束密度(Br)が低下
してすぐれた特性の永久磁石が得られない。よって、R
a10原子%〜30原子%の範囲が望ましい。Rare earth element R used in the permanent magnet of the present invention
a occupies 10 atomic% to 30 atomic% of the composition, but N
At least one of d, Pr, Dy, Ho, Tb, or further La, Ce, Sm, Gd, Er, Eu,
Those containing at least one of Tm, Yb, Lu and Y are preferable. Usually, only one kind of Ra is sufficient, but in practice, a mixture of two or more kinds (Misch metal, didymium, etc.) can be used for reasons of availability. It should be noted that this Ra does not have to be a pure rare earth element, and may contain impurities that are unavoidable in manufacturing within a range that is industrially available. Ra is an essential element in the above-mentioned permanent magnet, and if less than 10 atomic%, the crystal structure is α-.
Since it has a cubic structure with the same structure as iron, high magnetic properties, especially high coercive force, cannot be obtained. If it exceeds 30 atomic%, the Ra-rich nonmagnetic phase increases and the residual magnetic flux density (Br) decreases. A permanent magnet with excellent characteristics cannot be obtained. Therefore, R
The range of 10 at% to 30 at% is desirable.
【0013】Bは、上記系永久磁石における必須元素で
あって、2原子%未満では菱面体構造が主相となり、高
い保磁力(iHc)は得られず、28原子%を超えると
Bリッチな非磁性相が多くなり、残留磁束密度(Br)
が低下するため、すぐれた永久磁石が得られない。よっ
て、Bは2原子%〜28原子%の範囲が望ましい。B is an essential element in the above-mentioned permanent magnet, and if it is less than 2 atomic%, the rhombohedral structure becomes the main phase and a high coercive force (iHc) cannot be obtained, and if it exceeds 28 atomic%, it is rich in B. Non-magnetic phase increases and residual magnetic flux density (Br)
, The excellent permanent magnet cannot be obtained. Therefore, B is preferably in the range of 2 atom% to 28 atom%.
【0014】Feは、上記系永久磁石において必須元素
であり、65原子%未満では残留磁束密度(Br)が低
下し、80原子%を超えると高い保磁力が得られないの
で、Feは65原子%〜80原子%の含有が望ましい。
また、Feの一部をCoで置換することは、得られる磁
石の磁気特性を損うことなく、温度特性を改善すること
ができるが、Co置換量がFeの20%を超えると、逆
に磁気特性が劣化するため、好ましくない。Coの置換
量がFeとCoの合計量で5原子%〜15原子%の場合
は、(Br)は置換しない場合に比較して増加するた
め、高磁束密度を得るために好ましい。Fe is an essential element in the above-mentioned permanent magnets. If it is less than 65 atomic%, the residual magnetic flux density (Br) is lowered, and if it exceeds 80 atomic%, a high coercive force cannot be obtained. % To 80 atomic% is desirable.
Further, substituting a part of Fe with Co can improve the temperature characteristics without deteriorating the magnetic characteristics of the obtained magnet. However, when the Co substitution amount exceeds 20% of Fe, it is contrary. It is not preferable because the magnetic properties deteriorate. When the amount of substitution of Co is 5 at% to 15 at% in terms of the total amount of Fe and Co, (Br) is increased as compared with the case where no substitution is made, which is preferable for obtaining a high magnetic flux density.
【0015】また、Ra、B、Feの他、工業的生産上
不可避的不純物の存在を許容でき、例えば、Bの一部を
4.0wt%以下のC、2.0wt%以下のP、2.0
wt%以下のS、2.0wt%以下のCuのうち少なく
とも1種、合計量で2.0wt%以下で置換することに
より、永久磁石の製造性改善、低価格化が可能である。
さらに、Al、Ti、V、Cr、Mn、Bi、Nb、T
a、Mo、W、Sb、Ge、Sn、Zr、Ni、Si、
Zn、Hf、のうち少なくとも1種は、Fe−B−Ra
系永久磁石材料に対してその保磁力、減磁曲線の角型性
を改善あるいは製造性の改善、低価格化に効果があるた
め添加することができる。なお、添加量の上限は、磁石
材料の(BH)maxを20MGOe以上とするには、
(Br)が少なくとも9kG以上必要となるため、該条
件を満す範囲が望ましい。In addition to Ra, B, and Fe, the presence of impurities that are inevitable in industrial production can be tolerated. For example, part of B is 4.0 wt% or less of C, 2.0 wt% or less of P, 2 .0
By substituting at least one of S of 2.0 wt% or less and Cu of 2.0 wt% or less with a total amount of 2.0 wt% or less, it is possible to improve the manufacturability of the permanent magnet and reduce the cost.
Furthermore, Al, Ti, V, Cr, Mn, Bi, Nb, T
a, Mo, W, Sb, Ge, Sn, Zr, Ni, Si,
At least one of Zn and Hf is Fe-B-Ra.
It can be added to a permanent magnet material because it is effective in improving the coercive force, squareness of demagnetization curve, improving manufacturability, and reducing cost. In addition, the upper limit of the addition amount is to set (BH) max of the magnetic material to 20 MGOe or more,
Since (Br) is required to be at least 9 kG or more, a range satisfying the condition is desirable.
【0016】また、この発明の永久磁石は平均結晶粒径
が1〜80μmの範囲にある正方晶系の結晶構造を有す
る化合物を主相とし、体積比で1%〜50%の非磁性相
(酸化物相を除く)を含むことを特徴とする。この発明
による永久磁石は、保磁力iHc≧1kOe、残留磁束
密度Br>4kG、を示し、最大エネルギー積(BH)
maxは、(BH)max≧10MGOeを示し、最大
値は25MGOe以上に達する。The permanent magnet of the present invention comprises a compound having a tetragonal crystal structure having an average crystal grain size in the range of 1 to 80 μm as a main phase, and a volume ratio of 1% to 50% of a nonmagnetic phase ( (Excluding an oxide phase). The permanent magnet according to the present invention exhibits a coercive force iHc ≧ 1 kOe, a residual magnetic flux density Br> 4 kG, and a maximum energy product (BH).
max indicates (BH) max ≧ 10 MGOe, and the maximum value reaches 25 MGOe or more.
【0017】[0017]
【作用】この発明による酸化錫膜を介して電着塗装によ
る耐食性樹脂層を有するFe−B−Ra系永久磁石が、
苛酷な雰囲気条件下において、初期磁石特性からの劣化
が少なく、磁石特性値が極めて安定する理由は未だ明ら
かではない。しかし、前記Fe−B−Ra系焼結磁石体
表面に、直接電着塗装による耐食性樹脂層を被着した場
合は、温度60℃、相対湿度90%に100時間放置の
苛酷な耐食性試験条件で、その磁石特性値は劣化し不安
定となるが、これに対して、前記焼結磁石体表面に特定
膜厚を有する酸化錫膜を介して、電着塗装による耐食性
樹脂層を形成することにより、下地との密着性が改善し
該耐食性樹脂層は緻密となり、湿気、ガス等の外部環境
の変化に対して、永久磁石を完全に保護できることが明
らかとなった。The Fe-B-Ra-based permanent magnet having the corrosion-resistant resin layer formed by electrodeposition coating through the tin oxide film according to the present invention is
Under severe atmospheric conditions, there is little deterioration from the initial magnet characteristics, and the reason why the magnet characteristic values are extremely stable is not yet clear. However, when the surface of the Fe-B-Ra-based sintered magnet body is directly coated with the corrosion-resistant resin layer by electrodeposition coating, the temperature is kept at 60 ° C. and the relative humidity is 90% under the severe corrosion resistance test conditions for 100 hours. , The magnet characteristic value deteriorates and becomes unstable. On the other hand, by forming a corrosion resistant resin layer by electrodeposition coating on the surface of the sintered magnet body through a tin oxide film having a specific film thickness, It has been revealed that the adhesion to the base is improved and the corrosion-resistant resin layer becomes dense, and the permanent magnet can be completely protected against changes in the external environment such as moisture and gas.
【0018】[0018]
実施例1
公知の鋳造インゴットを粉砕し、微粉砕後に成形、焼
結、熱処理後に、14Nd−0.5Dy−7B−78.
5Fe組成の径12mm×厚み2mm寸法の磁石体試験
片を得た。その磁石特性を表1に示す。次に、Sn(O
C3H7)4 1grをトリエタノールアミン1lに溶解
して、Snアルコキシド溶液を調製し、この溶液をよく
撹拌した後、前記磁石体試験片を浸漬し、引き上げて余
分な液を除去して、80℃で乾燥後、Ar雰囲気中で4
00℃に5時間の熱処理にて酸化錫被膜を生成し、膜厚
200Åの被膜を得た。膜中のC量は300ppmであ
った。Example 1 A known casting ingot was crushed, finely crushed, molded, sintered, and heat-treated, and then 14Nd-0.5Dy-7B-78.
A magnet body test piece of 5Fe composition having a diameter of 12 mm and a thickness of 2 mm was obtained. The magnet characteristics are shown in Table 1. Next, Sn (O
C 3 H 7 ) 4 1 gr was dissolved in triethanolamine 1 l to prepare a Sn alkoxide solution, and this solution was well stirred, and then the magnet test piece was dipped and pulled up to remove excess liquid. After drying at 80 ° C, 4 in Ar atmosphere
A tin oxide film was formed by heat treatment at 00 ° C. for 5 hours to obtain a film having a film thickness of 200Å. The amount of C in the film was 300 ppm.
【0019】さらに、カチオン電着塗料として、エポキ
シ系のエスビアCED,S−20(神東塗料社製)を使
用し、前記の酸化錫膜を表面に被着したNd−Dy−B
−Fe系永久磁石を陰極とし、SUS316材を陽極と
して、温度28℃、電圧150V、3分間の条件で電着
塗装を施した後、水洗、乾燥し、さらに180℃で30
分間保持して、表面にエポキシ系樹脂層を形成した。な
お、樹脂層厚は16μmであった。Further, epoxy-based Svia CED, S-20 (manufactured by Shinto Paint Co., Ltd.) is used as the cationic electrodeposition paint, and Nd-Dy-B coated with the tin oxide film on the surface is used.
Using an Fe-based permanent magnet as a cathode and a SUS316 material as an anode, electrodeposition coating was performed at a temperature of 28 ° C., a voltage of 150 V for 3 minutes, followed by washing with water, drying, and further heating at 180 ° C. for 30 minutes.
After holding for a minute, an epoxy resin layer was formed on the surface. The resin layer thickness was 16 μm.
【0020】その後、得られたこの発明による酸化錫膜
を介して電着塗装による耐食性樹脂層を設けた永久磁石
を、温度80℃、相対湿度90%の条件下で500時間
放置した後の磁石特性、及びその劣化状況を測定した。
その結果を表1に表す。After that, the obtained permanent magnet having a corrosion-resistant resin layer formed by electrodeposition coating through the tin oxide film according to the present invention was allowed to stand for 500 hours at a temperature of 80 ° C. and a relative humidity of 90%. The characteristics and the deterioration status thereof were measured.
The results are shown in Table 1.
【0021】比較例1
実施例1と同一組成、同一製造条件にて得られた焼結磁
石体に、直接実施例1と同一の電着塗装によるエポキシ
系樹脂層を形成した。樹脂層厚は17μmであった。そ
の後、比較例永久磁石を、温度80℃、相対湿度90%
の条件下で300時間放置したところ、エッジ部に膨れ
が生じ、500時間放置した後では一部に錆びが発生し
ていた。なお、500時間放置した後の磁石特性、及び
その劣化状況を測定した結果を表1に表す。Comparative Example 1 On the sintered magnet body obtained under the same composition and under the same manufacturing conditions as in Example 1, an epoxy resin layer was directly formed by the same electrodeposition coating as in Example 1. The resin layer thickness was 17 μm. Then, the permanent magnet of Comparative Example was heated at a temperature of 80 ° C. and a relative humidity of 90%
When left for 300 hours under the above condition, swelling occurred in the edge portion, and after leaving for 500 hours, rust was partially generated. Table 1 shows the results of measuring the magnet characteristics after leaving for 500 hours and the deterioration thereof.
【0022】[0022]
【表1】 [Table 1]
【0023】この発明の永久磁石を、温度80℃、相対湿
度90%の条件下で500時間放置した後の磁石特性、及びそ
の劣化状況を測定した結果を表1に表すが、さらに1000
時間後の表面においても、錆は発生せず、磁石特性もほ
とんど変わらない。これに対して、比較焼結磁石体の耐
食試験前後の磁石特性の劣化は、温度80℃、相対湿度90
%の条件下で500時間放置後の特性を表1に示すとおりで
あり、その後1000時間では表面に部分的に錆が発生し
た。[0023] The permanent magnet of this invention, the temperature 80 ° C., magnetic properties after 500 hours under a relative humidity of 90%, and the result of measuring the deterioration condition represents the Table 1, further 1000
No rust is generated even on the surface after a lapse of time, and the magnet characteristics are almost unchanged. On the other hand, the deterioration of the magnet characteristics of the comparative sintered magnet body before and after the corrosion resistance test was as follows: temperature 80 ℃, relative humidity 90
The characteristics after standing for 500 hours under the condition of 100% are as shown in Table 1, and after 1000 hours, rust was partially generated on the surface.
【0024】[0024]
【発明の効果】この発明によるFe−B−Ra系永久磁
石体は、実施例の如く、苛酷な耐食試験条件、特に、温
度80℃、相対湿度90%の条件下で、1000時間放
置した後、その磁石特性の劣化はほとんどなく、現在、
最も要求されている高性能かつ安価な永久磁石として極
めて適している。The Fe-B-Ra-based permanent magnet body according to the present invention was left standing for 1000 hours under severe corrosion resistance test conditions, particularly at a temperature of 80 ° C. and a relative humidity of 90%, as in Examples. , There is almost no deterioration of its magnet characteristics,
It is extremely suitable as the most demanded high-performance and inexpensive permanent magnet.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−77102(JP,A) 特開 平2−162035(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/00 C25D 13/12 C22C 38/00 303 C23C 28/00 H01F 41/00 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-63-77102 (JP, A) JP-A-2-162035 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01F 1/00 C25D 13/12 C22C 38/00 303 C23C 28/00 H01F 41/00
Claims (2)
系永久磁石体表面に、Cを100ppm〜1000pp
m含有する膜厚500Å以下の酸化錫膜を介して、電着
塗装による耐食性樹脂層を有することを特徴とする耐食
性永久磁石。1. Fe-B-Ra whose main phase is a tetragonal phase
100ppm-1000pp of C on the system permanent magnet body surface
A corrosion-resistant permanent magnet, characterized in that it has a corrosion-resistant resin layer formed by electrodeposition coating through a tin oxide film having a thickness of 500 Å or less and containing m.
系永久磁石体表面を清浄化処理した後、前記磁石体をス
ズアルコキシド化合物溶液に浸漬するか前記磁石表面に
スズアルコキシド化合物溶液を塗布した後、200℃〜
450℃に30分〜10時間保持する熱処理によりCを
100ppm〜1000ppm含有する酸化錫膜層を形
成し、さらに、該磁石体を樹脂液に浸漬して電着塗装処
理し、該磁石体表面に耐食性樹脂層を形成することを特
徴とする耐食性永久磁石の製造方法。2. Fe-B-Ra whose main phase is a tetragonal phase
After cleaning the surface of the system permanent magnet body, after dipping the magnet body in a tin alkoxide compound solution or applying a tin alkoxide compound solution to the magnet surface,
A tin oxide film layer containing 100 ppm to 1000 ppm of C is formed by a heat treatment of holding at 450 ° C. for 30 minutes to 10 hours, and further, the magnet body is immersed in a resin solution and subjected to electrodeposition coating treatment, and then the surface of the magnet body is coated. A method for producing a corrosion-resistant permanent magnet, which comprises forming a corrosion-resistant resin layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35300792A JP3383338B2 (en) | 1992-12-10 | 1992-12-10 | Corrosion-resistant permanent magnet and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35300792A JP3383338B2 (en) | 1992-12-10 | 1992-12-10 | Corrosion-resistant permanent magnet and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06176911A JPH06176911A (en) | 1994-06-24 |
JP3383338B2 true JP3383338B2 (en) | 2003-03-04 |
Family
ID=18427935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35300792A Expired - Lifetime JP3383338B2 (en) | 1992-12-10 | 1992-12-10 | Corrosion-resistant permanent magnet and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3383338B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0984460B1 (en) * | 1998-08-31 | 2004-03-17 | Sumitomo Special Metals Co., Ltd. | Fe-B-R based permanent magnet having corrosion-resistant film, and process for producing the same |
JP2001076914A (en) * | 1998-12-17 | 2001-03-23 | Sumitomo Special Metals Co Ltd | Rare-earth based permanent magnet and manufacture thereof |
JP4655540B2 (en) * | 2004-08-06 | 2011-03-23 | 株式会社豊田中央研究所 | Surface layer coating metal and green compact |
CN112289538A (en) * | 2020-12-22 | 2021-01-29 | 安费诺定制连接器(常州)有限公司 | Corrosion-resistant and wear-resistant magnet and treatment method thereof |
-
1992
- 1992-12-10 JP JP35300792A patent/JP3383338B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06176911A (en) | 1994-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11307328A (en) | Corrosion resistant permanent magnet and its manufacture | |
KR100607293B1 (en) | Fe-B-R BASED PERMANENT MAGNET HAVING CORROSION-RESISTANT FILM, AND PROCESS FOR PRODUCING THE SAME | |
JPH053722B2 (en) | ||
JP3383338B2 (en) | Corrosion-resistant permanent magnet and its manufacturing method | |
JPH0422007B2 (en) | ||
JPS63217601A (en) | Corrosion-resistant permanent magnet and manufacture thereof | |
US6211762B1 (en) | Corrosion-resistant permanent magnet and method for manufacturing the same | |
JPH0569282B2 (en) | ||
JPH0422008B2 (en) | ||
JP3108400B2 (en) | Permanent magnet with excellent corrosion resistance | |
JP3234306B2 (en) | Corrosion resistant permanent magnet | |
JPH09289108A (en) | R-fe-b permanent magnet having electric insulating film excellent in adhesion and its manufacture | |
JPH09326308A (en) | Manufacture of r-fe-b permanent magnet having electric insulation coating with excellent adhesion | |
JP3208057B2 (en) | Corrosion resistant permanent magnet | |
JPH06140226A (en) | Corrosion-resistant permanent magnet | |
JP3411605B2 (en) | Corrosion resistant permanent magnet | |
JPH08279407A (en) | R-fe-b permanent magnet being excellent in electrical insulating properties, heat resistance and corrosion resistance and manufacture thereof | |
JPH07249509A (en) | Corrosion-resistant permanent magnet and its manufacture | |
JPH0535216B2 (en) | ||
JPH0554683B2 (en) | ||
JP3652816B2 (en) | Corrosion-resistant permanent magnet and method for manufacturing the same | |
JP3676513B2 (en) | Corrosion-resistant permanent magnet and method for manufacturing the same | |
JPH06349619A (en) | Corrosion-resistant permanent magnet and manufacture thereof | |
JP3652818B2 (en) | Corrosion-resistant permanent magnet and method for manufacturing the same | |
JP2003224024A (en) | Method for producing corrosion resistant permanent magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071220 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081220 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091220 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101220 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101220 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111220 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121220 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |