JP3375351B2 - Liquid crystal display - Google Patents
Liquid crystal displayInfo
- Publication number
- JP3375351B2 JP3375351B2 JP25464492A JP25464492A JP3375351B2 JP 3375351 B2 JP3375351 B2 JP 3375351B2 JP 25464492 A JP25464492 A JP 25464492A JP 25464492 A JP25464492 A JP 25464492A JP 3375351 B2 JP3375351 B2 JP 3375351B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- viewing angle
- crystal cell
- display device
- crystal display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Liquid Crystal (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、ツイステッドネマテ
ィック(TN)型の液晶表示装置に関し、より詳細に
は、中間階調表示の際のコントラストと色の視角依存性
が改善されたTN型液晶表示装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a twisted nematic (TN) type liquid crystal display device, and more particularly to a TN type liquid crystal display in which the viewing angle dependence of contrast and color at the time of halftone display is improved. It relates to the device.
【0002】[0002]
【従来の技術】近年、ワードプロセッサやパーソナルコ
ンピュータ等のディスプレイとして用いられる液晶表示
装置には、TFT−TN型の液晶表示装置が用いられて
いる。この液晶表示装置は、通常、各画素ごとに駆動用
の薄膜トランジスタ(TFT)が配設されたTN型の液
晶セルの光入射側に偏光子がその透過軸を液晶セルの光
入射側基板の配向処理方向に平行させて配設され、液晶
セルの光出射側に検光子がその透過軸を前記偏光子の透
過軸にほぼ直交させて配設されている。この従来の液晶
表示装置は各画素にスタティック的な電圧を印加し駆動
することができるので、単純マトリックス型の液晶表示
装置に比べてコントラストが高く、視野角も比較的広
い。2. Description of the Related Art In recent years, a TFT-TN type liquid crystal display device has been used as a liquid crystal display device used as a display of a word processor, a personal computer or the like. In this liquid crystal display device, a polarizer normally has its transmission axis on the light incident side of a TN type liquid crystal cell in which a driving thin film transistor (TFT) is arranged for each pixel. The analyzer is arranged parallel to the processing direction, and the analyzer is arranged on the light emitting side of the liquid crystal cell with its transmission axis substantially orthogonal to the transmission axis of the polarizer. Since this conventional liquid crystal display device can be driven by applying a static voltage to each pixel, it has a higher contrast and a relatively wider viewing angle than a simple matrix type liquid crystal display device.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、このよ
うな従来のTFT−TN型液晶表示装置も、汎用ディス
プレイのCRTに比べると視野角が狭く、又、中間階調
を表示する際に視角(表示面の法線に対する視線の角
度)の変化に応じた色変化、即ち色変化の視角依存性が
顕著に現れるという欠点がある。However, such a conventional TFT-TN type liquid crystal display device also has a narrower viewing angle than a CRT of a general-purpose display, and the viewing angle (display There is a drawback in that the color change corresponding to the change of the angle of the line of sight with respect to the normal line of the surface, that is, the visual angle dependence of the color change becomes remarkable.
【0004】図21に、従来の典型的なTN型液晶表示
装置において印加電圧をV=0[V],V=4.38[V]でとった
等コントラスト曲線を示した。この図で、同心円は内側
からそれぞれ液晶表示装置の基板の法線方向に対し10
°、20°、30°、40°及び50°傾けた視角を表
わし、黒四角はコントラストが10、白四角はコントラ
ストが50、黒三角はコントラストが100、白三角は
コントラストが150をそれぞれ表している。又、矢印
Rは、光入射側基板の配向処理方向を示している。この
図によれば、コントラストの高い視角方向は、液晶セル
の光入射側基板の配向処理方向Rを基準にした表示面の
方位を表わす角度(以下、方位角という)が315°の
下方向にあり、そしてコントラストの高い領域は方位角
が225°と45°である左右方向で広がっており、方
位角が135°と315°である上下方向に比べて明ら
かに広い。又、上下方向においては、下方向の方が上方
向よりコントラストが高く、上方向近辺は反転領域は見
られないものの、コントラストが最も低い視角方向であ
る。FIG. 21 shows an isocontrast curve in which the applied voltage is V = 0 [V], V = 4.38 [V] in the conventional typical TN type liquid crystal display device. In this figure, the concentric circles are 10 from the inside with respect to the normal direction of the substrate of the liquid crystal display device.
Representing the viewing angle inclined by °, 20 °, 30 °, 40 ° and 50 °, the black square represents contrast 10, white square represents contrast 50, black triangle represents contrast 100, white triangle represents contrast 150, respectively. There is. Further, the arrow R indicates the alignment treatment direction of the light incident side substrate. According to this figure, in the high-contrast viewing angle direction, the angle (hereinafter, referred to as azimuth angle) representing the azimuth of the display surface based on the alignment treatment direction R of the light incident side substrate of the liquid crystal cell is 315 ° downward. The area of high contrast is wide in the horizontal direction with azimuth angles of 225 ° and 45 °, and is obviously wider than the vertical direction with azimuth angles of 135 ° and 315 °. Further, in the vertical direction, the contrast is lower in the lower direction than in the upper direction, and there is no inversion region in the vicinity of the upper direction, but the contrast is the lowest viewing angle direction.
【0005】図22(A)〜22(D)に、光透過率Y
と印加電圧Vの関係を示すY−V曲線の視角依存性を示
した。図22(A)に示すように、方位角が315°の
下方向へ視角を0°〜50°に振ると、Y−V曲線のV
=2.0〜4.0[V]の領域に大きな瘤部が現れ、中間階調を
表示する印加電圧領域はV=1.5〜4.0[V]であるから、
中間階調の表示を行った場合に明るさの逆転現象が目だ
ってしまう。22 (A) to 22 (D), the light transmittance Y
The viewing angle dependence of the Y-V curve showing the relationship between the applied voltage V and the applied voltage V is shown. As shown in FIG. 22A, when the azimuth angle is 315 ° downward and the viewing angle is swung from 0 ° to 50 °, V of the Y-V curve is reduced.
= 2.0 to 4.0 [V], a large bump appears in the area, and the applied voltage area for displaying the intermediate gradation is V = 1.5 to 4.0 [V].
The brightness reversal phenomenon is noticeable when displaying halftones.
【0006】一方、図22(B)および図22(C)に
示すように、表示面における方位角が45°の右方向と
225°の左方向では上述した現象は起こらないが、図
2(D)に示すように、方位角が135°の上方向で視
角を0°〜50°に振ると、Y−V曲線は徐々に平坦線
に近づき、中間階調間の明るさの差がなくなってしま
う。On the other hand, as shown in FIG. 22 (B) and FIG. 22 (C), the above-mentioned phenomenon does not occur in the right direction where the azimuth angle on the display surface is 45 ° and the left direction where the azimuth angle is 225 °, but FIG. As shown in D), when the azimuth angle is 135 ° upward and the viewing angle is swung from 0 ° to 50 °, the YV curve gradually approaches a flat line, and there is no difference in brightness between intermediate gradations. Will end up.
【0007】次に、従来のTN型液晶表示装置における
色変化の視角依存性について述べるが、その前に、色差
ΔE*、明度指数差ΔL*、クロマ差ΔC*について説明
する。色差ΔE*は各電圧印加時の正面視角における
〔表色〕を基準としたときの〔表色間の距離〕を意味す
る。この色差ΔE*は、明度指数差ΔL*とクロマ差ΔC
*によって決まる。これら物理量はCIE1976(L*,u
*,v*)表色空間において定義されている。Next, the viewing angle dependence of the color change in the conventional TN type liquid crystal display device will be described, but before that, the color difference ΔE *, the lightness index difference ΔL * and the chroma difference ΔC * will be described. The color difference ΔE * means a [distance between colors] based on the [color] at the front view angle when each voltage is applied. The color difference ΔE * is the lightness index difference ΔL * and the chroma difference ΔC.
Depends on * These physical quantities are CIE1976 (L *, u
*, V *) is defined in the color space.
【0008】通常の(X,Y,Z)表色空間からCIE
1976(L*,u*,v*)表色空間への変換式は、以下の
通りである。From the normal (X, Y, Z) color space, CIE
The conversion formula to the 1976 (L *, u *, v *) color space is as follows.
【0009】[0009]
【数1】 [Equation 1]
【0010】図23(A)〜23(F)、図24(A)
〜24(F)及び図25(A)〜25(F)は、夫々色
差ΔE*、明度指数差ΔL*、クロマ差ΔC*の上下左右
4方向(方位角:135°、315°、225°、45
°)における各視角依存性を6段階の印加電圧毎に夫々
示したグラフである。この場合の6段階の印加電圧は0
V,1.5V,2V,2.5V,3V,4Vである。又、
これらグラフ中、四角形は上方向へ、プラス印は下方向
へ、円形は左方向へ、三角形は右方向へ、夫々視角を変
化させた場合の各値を表わしている。23 (A) to 23 (F) and FIG. 24 (A)
24 (F) and FIGS. 25 (A) to 25 (F) show color difference ΔE *, lightness index difference ΔL *, and chroma difference ΔC * in four directions (azimuth: 135 °, 315 °, 225 °). , 45
6 is a graph showing the viewing angle dependency at each angle of 6 ° for each of 6 levels of applied voltage. In this case, the applied voltage in 6 steps is 0.
V, 1.5V, 2V, 2.5V, 3V, 4V. or,
In these graphs, a quadrangle represents an upward direction, a plus mark represents a downward direction, a circle represents a leftward direction, and a triangle represents a rightward direction.
【0011】これらのグラフから明らかなように、従来
のTFT−TN型の液晶表示装置では、中間階調表示に
おける視角変化に対する〔表色〕の差が大きいという問
題があった。この様な理由から、従来のTFT−TN型
の液晶表示装置については、コントラストと表示色の視
角依存性(以下、視角特性という)を改善し、多階調表
示の際の特に中間階調を視角に拘わらず正確に表示する
ことが要求されている。As is apparent from these graphs, the conventional TFT-TN type liquid crystal display device has a problem that there is a large difference in the [color] with respect to the change of the viewing angle in the halftone display. For these reasons, in the conventional TFT-TN type liquid crystal display device, the viewing angle dependence of the contrast and display color (hereinafter referred to as viewing angle characteristics) is improved, and especially in the case of multi-gradation display, the intermediate gradation is improved. Accurate display is required regardless of the viewing angle.
【0012】この発明は上述のような事情に鑑みてなさ
れたもので、その目的とするところは、優れた視角特性
を備え正確に階調を表示できる液晶表示装置を提供する
ことにある。The present invention has been made in view of the above circumstances, and an object thereof is to provide a liquid crystal display device having excellent viewing angle characteristics and capable of displaying gradation accurately.
【0013】[0013]
【課題を解決する為の手段】この発明の目的は、対向す
る面夫々に、互いに交差する電極とこの電極を覆って所
定の方向に配向処理が施された配向膜とが形成された一
対の基板間に、液晶材料を一方の基板から他方の基板に
向ってほぼ90°でツイスト配向させて封入して成る液
晶セルと、前記液晶セルの光入射側に配設された偏光子
と、前記液晶セルの光出射側に配設された検光子と、前
記液晶セルの基板と平行な面内で屈折率が最も大きい方
向の屈折率n X と、この方向と前記面内で直交する方向
の屈折率n Y と、これら両方向に直交する方向の屈折率
n Z とを有する共に、それぞれの屈折率の値がn Y <n
Z <n X を満たし、前記屈折率が最も大きい方向を前記
一対の基板のうちの一方の基板の配向処理方向と平行又
は直交させて前記液晶セルの片側に配置された2枚の位
相板とを備え、前記位相板により液晶セルを斜めに透過
する光と垂直に透過する光との位相差の相違を補償する
ことを特徴とする液晶表示装置により、達成される。SUMMARY OF THE INVENTION An object of the present invention is to provide a pair of electrodes, on each of which they face each other, electrodes which intersect each other and an alignment film which covers the electrodes and is subjected to an alignment treatment in a predetermined direction. A liquid crystal cell formed by enclosing a liquid crystal material between the substrates in a twist orientation of about 90 ° from one substrate to the other substrate; a polarizer disposed on the light incident side of the liquid crystal cell; an analyzer disposed on the light emitting side of the liquid crystal cell, before
The one with the largest refractive index in the plane parallel to the substrate of the liquid crystal cell
Direction of refractive index n x and the direction orthogonal to this direction in the plane
Refractive index n Y and the refractive index in the direction orthogonal to these two directions
n Z and the respective refractive index values are n Y <n
The direction in which Z <n X is satisfied and the refractive index is the largest is
In parallel with the alignment treatment direction of one of the pair of substrates,
Includes two phase plates arranged on one side of the liquid crystal cell so as to be orthogonal to each other, and the phase plate compensates for a difference in phase difference between light obliquely transmitted through the liquid crystal cell and light vertically transmitted through the liquid crystal cell. It is achieved by a liquid crystal display device characterized by:
【0014】[0014]
【作用】この発明によれば、液晶分子をほぼ90°でツ
イスト配向したTN型の液晶セルの外側にこれを挾むよ
うに偏光子と検光子を配置するとともに、検光子と液晶
セルとの間に、遅相軸が液晶セルの入射側配向処理方向
にほぼ平行又はほぼ直交し、かつ3方向の屈折率nY,
nZ,nXが
nY<nZ<nX
を満足する二軸性を有する位相板(以下、二軸性位相板
と言う)を少なくとも1枚配置したので、この二軸性位
相板によって、液晶セルを斜めに透過する光と垂直に透
過する光との位相差の相違が補償される。これにより、
視角方向のコントラストが高くなり、中間階調表示の際
の明るさの逆転現象が抑制されると共に左右の方向の色
変化が改善され、正確な階調を確実に表示することがで
きる。According to the present invention, the polarizer and the analyzer are arranged outside the TN type liquid crystal cell in which the liquid crystal molecules are twist-aligned at about 90 °, and the polarizer and the analyzer are arranged between the analyzer and the liquid crystal cell. , The slow axis is substantially parallel or substantially orthogonal to the incident side alignment treatment direction of the liquid crystal cell, and the refractive index n Y in three directions is
Since at least one biaxial phase plate (hereinafter referred to as a biaxial phase plate) in which n Z and n X satisfy n Y <n Z <n X is arranged, the biaxial phase plate is used. The difference in the phase difference between the light obliquely transmitted through the liquid crystal cell and the light vertically transmitted is compensated. This allows
The contrast in the viewing angle direction becomes high, the reversal phenomenon of the brightness at the time of displaying the intermediate gradation is suppressed, the color change in the left and right directions is improved, and accurate gradation can be surely displayed.
【0015】[0015]
【実施例】以下、この発明を図1乃至図20に示す実施
例に基づいて具体的に説明する。
(第1実施例)図1および図2に第1実施例としての液
晶表示装置の断面図および分解斜視図を示した。この液
晶表示装置では、ツイステッドネマティック型の液晶セ
ル101の光入射側に偏光子102が設けられ、液晶セル101
の光出射側に検光子103が設けられ、液晶セル101と検光
子103との間に1枚の二軸性位相板104が設けられてい
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on the embodiments shown in FIGS. (First Embodiment) FIGS. 1 and 2 show a sectional view and an exploded perspective view of a liquid crystal display device as a first embodiment. In this liquid crystal display device, a polarizer 102 is provided on the light incident side of a twisted nematic liquid crystal cell 101, and the liquid crystal cell 101
An analyzer 103 is provided on the light emission side of the, and one biaxial phase plate 104 is provided between the liquid crystal cell 101 and the analyzer 103.
【0016】液晶セル101は、一方の電極105およびこの
電極105の各画素ごとに配置された駆動用の薄膜トラン
ジスタ(TFT)106並びにこれらを覆う配向膜107が形
成された下基板108と、前記一方の電極105と直交して対
向する他方の電極109およびこの他方の電極109を覆う配
向膜110が形成された上基板111と、これら上下の基板10
8,111を所定の間隔を隔てて接合するシール材112と、こ
れらの上下基板108,111とシール材112とで囲われた領域
内に封入され、ギャップdとナチュラルピッチpの比d
/pの値が約0.05の液晶材料113とからなっている。な
お、この液晶セル101は図面上で下方から光が入射され
るものであり、以下では下基板を入射側基板108、上基
板を出射側基板111という。The liquid crystal cell 101 includes one electrode 105, a driving thin film transistor (TFT) 106 arranged in each pixel of the electrode 105, and a lower substrate 108 on which an alignment film 107 covering the electrodes is formed. Of the other electrode 109 which is orthogonal to the electrode 105 of the other electrode and an upper substrate 111 on which an alignment film 110 which covers the other electrode 109 is formed, and the upper and lower substrates 10
A sealing material 112 for joining 8,111 at a predetermined interval and a region surrounded by the upper and lower substrates 108,111 and the sealing material 112 is enclosed, and a ratio d of the gap d and the natural pitch p is set.
The liquid crystal material 113 has a value of / p of about 0.05. The liquid crystal cell 101 is one in which light is incident from below in the drawing, and hereinafter, the lower substrate is referred to as an incident side substrate 108 and the upper substrate is referred to as an emission side substrate 111.
【0017】入射側基板108と出射側基板111の対向する
それぞれの面に形成された配向膜107,110は、それぞれ
ラビングなどの配向処理が施されている。入射側基板10
8の配向膜107は図2に示すように、液晶セル101を正面
(光出射側)から観察する場合、水平方向に液晶セル10
1の長手方向を沿わせて液晶セル101を配置し、この液晶
セル101の左上から右下方向に約45°の傾きをもった
方向107aに配向処理が施されている。出射側基板111の
配向膜110は入射側配向膜107の配向処理方向107a(以
下、入射側配向処理方向という)に対して出射側から見
て左回りにほぼ90°回転した方向110aに配向処理が施
されている。このような配向処理により、液晶材料113
の分子が出射側から見て右回りにほぼ90°ツイストし
て配列されている。この場合、液晶分子はプレチルト角
が約1°で配向している。そして、この液晶セル101の
ギャップdと屈折率異方性Δnとの積Δn・dの値は3
50〜550nmの範囲で、好ましくは380nm(測
定波長:589nm)である。The alignment films 107 and 110 formed on the surfaces of the incident side substrate 108 and the outgoing side substrate 111 facing each other are subjected to an alignment treatment such as rubbing. Incident side substrate 10
As shown in FIG. 2, when the liquid crystal cell 101 is observed from the front (light emission side), the alignment film 107 of the liquid crystal cell 10 of FIG.
The liquid crystal cell 101 is arranged along the longitudinal direction of 1, and the alignment treatment is performed in the direction 107a having an inclination of about 45 ° from the upper left to the lower right of the liquid crystal cell 101. The orientation film 110 of the emitting side substrate 111 is oriented in a direction 110a which is rotated by about 90 ° counterclockwise when viewed from the emitting side with respect to the orientation treatment direction 107a of the incident side orientation film 107 (hereinafter referred to as the incident side orientation treatment direction). Has been applied. By such an alignment treatment, the liquid crystal material 113
Molecules are arranged with a twist of about 90 ° clockwise when viewed from the exit side. In this case, the liquid crystal molecules are aligned with a pretilt angle of about 1 °. The product Δn · d of the gap d of the liquid crystal cell 101 and the refractive index anisotropy Δn is 3
It is in the range of 50 to 550 nm, preferably 380 nm (measurement wavelength: 589 nm).
【0018】偏光子102は、その透過軸102aが液晶セル1
01の入射側配向処理方向107aとほぼ直交する配置で設置
されている。検光子103は、その透過軸103aが偏光子102
の透過軸102aとほぼ直交する配置で設置されている。The transmission axis 102a of the polarizer 102 is the liquid crystal cell 1
It is installed in an arrangement substantially orthogonal to the incident side alignment treatment direction 107a of 01. The analyzer 103 has the transmission axis 103a of the polarizer 102.
Are installed in an arrangement substantially orthogonal to the transmission axis 102a.
【0019】二軸性位相板104は、ポリカーボネートか
らなり、延伸方向屈折率nX、面内直交方向屈折率nY、
厚み方向屈折率nZの3方向の屈折率を有し、これら3
方向の屈折率が
nY<nZ<nX
の関係を満足し、延伸方向が遅相軸となり、Δn(=n
X−nY)と厚さdとの積Δn・dの値が300〜400
nmの範囲で、好ましくは365nm(測定波長:58
9nm)である。この二軸性位相板104はその延伸方向
の遅相軸104aが入射側配向処理方向107aに対してほぼ平
行する方向に配置されている。The biaxial phase plate 104 is made of polycarbonate and has a refractive index n X in the stretching direction, a refractive index n Y in the in-plane orthogonal direction,
It has a refractive index in three directions of the thickness direction refractive index n Z.
The refractive index in the direction satisfies the relationship of n Y <n Z <n X , the stretching direction is the slow axis, and Δn (= n
The value of the product Δn · d of X− n Y ) and the thickness d is 300 to 400.
nm range, preferably 365 nm (measurement wavelength: 58
9 nm). The biaxial phase plate 104 is arranged such that the slow axis 104a in the stretching direction is substantially parallel to the incident side alignment treatment direction 107a.
【0020】この様に構成した第1実施例の液晶表示装
置によれば、液晶セル101と検光子103との間に3方向の
屈折率がnY<nZ<nXの関係を満足する二軸性位相板1
04を配置したので、この二軸性位相板104によって、液
晶セル101を斜めに透過する光と垂直に透過する光との
位相差の相違が補正され、視角方向のコントラストが高
くなり、多階調表示における中間階調表示の際の明るさ
の逆転現象を抑制できる。その結果、中間階調を表示す
る際の左右方向の視角変化に対する色変化が抑制され、
視角特性が大幅に改善されて正確な階調を確実に表示す
ることが可能となる。According to the liquid crystal display device of the first embodiment having such a structure, the refractive index in the three directions between the liquid crystal cell 101 and the analyzer 103 satisfies the relationship of n Y <n Z <n X. Biaxial phase plate 1
Since 04 is arranged, the biaxial phase plate 104 corrects the difference in the phase difference between the light obliquely transmitted through the liquid crystal cell 101 and the light vertically transmitted, thereby increasing the contrast in the viewing angle direction and increasing the number of layers. It is possible to suppress the brightness reversal phenomenon during halftone display in gray scale display. As a result, the color change due to the change in the viewing angle in the left-right direction when displaying the intermediate gradation is suppressed,
The viewing angle characteristics are greatly improved, and accurate gradation can be displayed reliably.
【0021】次に、上述の様に構成したTN型液晶表示
装置による視角特性の具体的な測定結果について、従来
のものと比較しながら説明する。本実施例の液晶表示装
置は、ポジタイプで、偏光子の透過軸を液晶セルの入射
側配向処理方向に直交させたものであり、二軸性位相板
104は、例えば、Δn・dの値が368.8nmで、厚さ
dが64μmのとき、延伸方向屈折率nXが1.5857、面
内直交方向屈折率nYが1.5802、厚み方向屈折率nZが1.
5836であり、(nZ−nY)と(nX−nZ)との比が3
4:21で、ほぼ6対4の比率になっている。この二軸
性位相板104は材料のポリカーボネートがその構造式中
にベンゼン環をもつので、図3に示すようにΔn・dの
波長依存性がある。Next, a concrete measurement result of the viewing angle characteristic by the TN type liquid crystal display device constructed as described above will be explained in comparison with the conventional one. The liquid crystal display device of the present embodiment is a positive type, in which the transmission axis of the polarizer is orthogonal to the incident side alignment treatment direction of the liquid crystal cell, and the biaxial phase plate is used.
104 is, for example, when the value of Δn · d is 368.8 nm and the thickness d is 64 μm, the stretching direction refractive index n X is 1.5857, the in-plane orthogonal direction refractive index n Y is 1.5802, and the thickness direction refractive index n Z Is 1.
Is 5836, (n Z -n Y) and (n X -n Z) ratio of 3
The ratio was 4:21 at 4:21. This biaxial phase plate 104 has a benzene ring in the structural formula of polycarbonate, and therefore has a wavelength dependence of Δn · d as shown in FIG.
【0022】図4(A)〜4(F),図5(A)〜5
(F)及び図6(A)〜6(F)は、夫々、本例の液晶
表示装置による色差ΔE*、明度指数差ΔL*、クロマ差
ΔC*の各視角依存性を6段階の印加電圧毎に示すグラ
フである。各グラフは、上下左右の4方向(方位角13
5°,315°,225°,45°の方向)へ視角θを
変化させた際の色差ΔE*、明度指数差ΔL*、クロマ差
ΔC*の各変化を示し、6段階の印加電圧は、0V,1.
5V,2V,2.5V,3V,4Vである。又、これら
グラフ中、四角形は上方向へ、プラス印は下方向へ、円
形は左方向へ、三角形は右方向へ、夫々視角を変化させ
た場合の各値を表わしている。これらの各視角依存性を
図23乃至図25に示す従来例のものと比較する。4 (A) to 4 (F) and 5 (A) to 5
6F and FIGS. 6A to 6F respectively show the viewing angle dependences of the color difference ΔE *, the lightness index difference ΔL *, and the chroma difference ΔC * in the liquid crystal display device of the present example in 6 levels of applied voltage. It is a graph which shows every. Each graph has four directions (up and down, left and right)
5 °, 315 °, 225 °, 45 ° directions) shows changes in color difference ΔE *, lightness index difference ΔL *, and chroma difference ΔC * when the viewing angle θ is changed. 0V, 1.
They are 5V, 2V, 2.5V, 3V and 4V. Further, in these graphs, a quadrangle indicates an upward direction, a plus mark indicates a downward direction, a circle indicates a leftward direction, and a triangle indicates a rightward direction, and respective values when the viewing angle is changed. These visual angle dependences are compared with those of the conventional example shown in FIGS.
【0023】印加電圧が0V〜1.5Vの明表示状態下
では、明度指数差ΔL*の視角依存性が、上下方向にお
いて本例の方が従来例より小さくなっている。又、クロ
マ差ΔC*の視角依存性は、全方向において本例の方が
従来例より小さい。従って、色差ΔE*の視角依存性
も、全方向において本例の方が従来例より小さくなって
いる。In the bright display state in which the applied voltage is 0 V to 1.5 V, the viewing angle dependency of the brightness index difference ΔL * is smaller in the vertical direction than in the conventional example. The viewing angle dependency of the chroma difference ΔC * is smaller in this example than in the conventional example in all directions. Therefore, the viewing angle dependency of the color difference ΔE * is also smaller in this example than in the conventional example in all directions.
【0024】印加電圧が1.5V〜3.0Vの中間階調表
示状態下では、クロマ差ΔC*の視角依存性が、左右方
向(方位角が225°と45°)において本例の方が従
来例より小さくなっている。これに応じて、色差ΔE*
の視角依存性も左右方向において本例の方が従来例より
小さくなっている。In an intermediate gradation display state in which the applied voltage is 1.5 V to 3.0 V, the viewing angle dependency of the chroma difference ΔC * is higher in this example in the horizontal direction (azimuth angles of 225 ° and 45 °). It is smaller than the conventional example. Accordingly, the color difference ΔE *
The viewing angle dependency of is smaller in the present example than in the conventional example in the left-right direction.
【0025】以上の様に、TN型液晶表示装置における
中間階調表示の際の色変化の視角依存性は、本例の様に
1枚の二軸性位相板を液晶セルと検光子間に適正に配置
することにより、従来のTN型液晶表示装置に比べて顕
著に改善される。その結果、正確な階調を確実に表示す
ることが可能となる。As described above, the viewing angle dependence of the color change in the gray scale display in the TN type liquid crystal display device is one biaxial phase plate between the liquid crystal cell and the analyzer as in this example. When properly arranged, it is remarkably improved as compared with the conventional TN type liquid crystal display device. As a result, it is possible to reliably display accurate gradation.
【0026】なお、上述の第1実施例では偏光子102の
透過軸2aを液晶セルの入射側配向処理方向7aに対し
て直交させたが、これに限らず、透過軸を入射側配向処
理方向7aに対し平行させてもよい。In the first embodiment described above, the transmission axis 2a of the polarizer 102 is orthogonal to the incident side alignment treatment direction 7a of the liquid crystal cell, but the invention is not limited to this. It may be parallel to 7a.
【0027】(第2実施例)第2実施例は、TN型液晶
セルを挟んでその光入射側と光出射側に二軸性位相板を
夫々1枚づつ配置した例である。尚、以下の実施例にお
いては、第1実施例に用いられている部材と同一の部材
については、同一符号を付してその説明を省略する。(Second Embodiment) The second embodiment is an example in which one biaxial phase plate is arranged on each of the light incident side and the light emitting side of a TN type liquid crystal cell sandwiched therebetween. In the following embodiments, the same members as those used in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
【0028】図7及び図8に第2実施例としての液晶表
示装置の断面図及び分解斜視図を示した。図7に示す様
に、本例の液晶表示装置は、液晶セル101を挟んでその
光入射側に第1の二軸性位相板114、光出射側に第2の
二軸性位相板115を配置した構成となっている。この場
合、第1の二軸性位相板114の遅相軸114aが液晶セル101
の入射側配向処理方向107aに平行となり、第2の二軸性
位相板115の遅相軸115aも第1二軸性位相板114の遅相軸
114aに平行となる様に、両二軸性位相板114,115を配置
してある。又、偏光子102はその透過軸102aが入射側配
向処理方向107aに平行となる様に、検光子103はその透
過軸103aが透過軸102aに直交する様に、夫々配置してあ
る。その他の構成は、第1実施例と同一である。7 and 8 are a sectional view and an exploded perspective view of a liquid crystal display device as a second embodiment. As shown in FIG. 7, the liquid crystal display device of the present example has a first biaxial phase plate 114 on the light incident side and a second biaxial phase plate 115 on the light emitting side with the liquid crystal cell 101 interposed therebetween. It is arranged. In this case, the slow axis 114a of the first biaxial phase plate 114 is the liquid crystal cell 101.
Of the second biaxial phase plate 115, and the slow axis 115a of the second biaxial phase plate 115 is also the slow axis of the first biaxial phase plate 114.
Both biaxial phase plates 114 and 115 are arranged so as to be parallel to 114a. Further, the polarizer 102 is arranged so that its transmission axis 102a is parallel to the incident side alignment treatment direction 107a, and the analyzer 103 is arranged so that its transmission axis 103a is orthogonal to the transmission axis 102a. Other configurations are the same as those in the first embodiment.
【0029】この様な構成の液晶表示装置では、第1実
施例の液晶表示装置と同様に、液晶セル101を斜めに通
過する光と垂直に透過する光が2枚の二軸性位相板114,
115を通過することによりこれらの間の位相差の相違が
補正される。その結果、視角方向のコントラストが高く
なり、中間階調表示における明るさの逆転現象を抑制で
きると共に、中間階調表示における左右方向での視角の
変化に対する色変化が以下に示す様に改善され、ディス
プレイとしての視角特性が大幅に向上する。In the liquid crystal display device having such a structure, as in the liquid crystal display device of the first embodiment, two biaxial phase plates 114 are provided for the light passing obliquely through the liquid crystal cell 101 and the light passing vertically. ,
By passing through 115, the difference in phase difference between them is corrected. As a result, the contrast in the viewing angle direction becomes high, the reversal phenomenon of the brightness in the halftone display can be suppressed, and the color change with respect to the change in the viewing angle in the horizontal direction in the halftone display is improved as shown below. The viewing angle characteristics as a display are significantly improved.
【0030】図8に、本例の液晶表示装置において印加
電圧をV=0[V]とV=4.38[V]でとった等コントラスト
曲線を示した。この図においても、図1と同様に、同心
円は内側からそれぞれ液晶表示装置の基板の法線方向か
ら10°、20°、30°、40°、および50°傾け
た視角を表わし、黒四角はコントラストが10、白四角
はコントラストが50、黒三角はコントラストが10
0、白三角はコントラストが150をそれぞれ表してい
る。この図14と図1に示した従来のTN型液晶表示装
置の等コントラスト曲線とを比べると明らかなように、
本例の液晶セル101は従来のものに比べて左右方向(方
位角45°、225°の方向)において視野角が少し狭
くなっているが、液晶セル101の下方向(方位角315
°の方向)近辺では広くなっている。FIG. 8 shows isocontrast curves obtained when the applied voltage is V = 0 [V] and V = 4.38 [V] in the liquid crystal display device of this example. Also in this figure, as in FIG. 1, the concentric circles represent the viewing angles tilted from the inside by 10 °, 20 °, 30 °, 40 °, and 50 ° from the normal direction of the substrate of the liquid crystal display device, and the black squares represent Contrast is 10, white squares have a contrast of 50, and black triangles have a contrast of 10.
0 and white triangles indicate a contrast of 150, respectively. As is clear from comparing FIG. 14 with the isocontrast curve of the conventional TN type liquid crystal display device shown in FIG.
The liquid crystal cell 101 of this example has a slightly narrower viewing angle in the left-right direction (direction of azimuth angles of 45 ° and 225 °) than the conventional liquid crystal cell 101.
It becomes wider in the vicinity.
【0031】図10(A)〜10(D)に夫々各方向に
おける光透過率Yと印加電圧Vとの関係を示すY−V曲
線の視角依存性を示した。図10(A)は、液晶セル10
1の下方向(方位角が315°の方向)に視角を0°〜
50°に振った際のY−V曲線を示し、図22(A)と
比べて深い谷が底上げされて浅くなり、電圧無印加時で
のY値の減少が少ない。図10(D)に示すように、液
晶セル101の上方向(方位角135°の方向)へ視角を
変化させた場合も、電圧無印加時でのY値の変化が少な
い。FIGS. 10A to 10D show the viewing angle dependence of the YV curve showing the relationship between the light transmittance Y and the applied voltage V in each direction. FIG. 10A shows a liquid crystal cell 10.
In the downward direction of 1 (direction of azimuth 315 °), the viewing angle is 0 ° ~
22 shows a Y-V curve when shaken at 50 °, where deep valleys are raised and become shallower as compared with FIG. 22A, and the Y value decreases little when no voltage is applied. As shown in FIG. 10D, even when the viewing angle is changed in the upward direction (direction of azimuth angle 135 °) of the liquid crystal cell 101, the Y value changes little when no voltage is applied.
【0032】図11(A)〜11(F),図12(A)
〜12(F)及び図13(A)〜13(F)は、夫々、
本例の液晶表示装置における色差ΔE*、明度指数差Δ
L*、クロマ差ΔC*についての各視角依存性を6段階の
印加電圧毎に示す各グラフである。ここで、各グラフ
は、上下左右の4方向(方位角135°,315°,2
25°,45°の方向)へ視角θを変化させた際の色差
ΔE*、明度指数差ΔL*、クロマ差ΔC*の各変化を示
し、6段階の印加電圧は、0V,1.5V,2V,2.5
V,3V,4Vである。又、これらグラフ中、四角形は
上方向へ、プラス印は下方向へ、菱形は左方向へ、三角
形は右方向へ、夫々視角を変化させた場合の各値を表わ
している。これらのグラフに示される視角依存性と図2
3(A)〜図25(F)に示された従来の液晶表示装置
によるそれらとを比較する。11 (A) to 11 (F) and FIG. 12 (A)
12 (F) and FIGS. 13 (A) to 13 (F), respectively.
Color difference ΔE * and brightness index difference Δ in the liquid crystal display device of this example
6 is a graph showing the viewing angle dependence of L * and the chroma difference ΔC * for each of 6 levels of applied voltage. Here, each graph has four directions of up, down, left, and right (azimuth angle 135 °, 315 °, 2
The changes in the color difference ΔE *, the lightness index difference ΔL *, and the chroma difference ΔC * when the viewing angle θ is changed in the directions of 25 ° and 45 ° are shown, and the applied voltages of 6 levels are 0V, 1.5V, 2V, 2.5
V, 3V and 4V. Further, in these graphs, a quadrangle indicates an upward direction, a plus mark indicates a downward direction, a rhombus indicates a leftward direction, and a triangle indicates a rightward direction. The viewing angle dependence shown in these graphs and FIG.
3 (A) to FIG. 25 (F) will be compared with those of the conventional liquid crystal display device.
【0033】印加電圧領域が0.0V〜1.5Vの明表示
状態下では、上下左右の4方向すべてにおいて、明度指
数差およびクロマ差が共に改善されたため、色差の視角
依存性が従来例のそれに比べて大幅に抑制されている。
因みに、第1実施例における色差ΔE*の視角依存性と
比べると、上方向を除く左右と下の3方向において本例
の色差ΔE*の視角依存性の方が第1実施例のそれに比
べて若干小さい。In the bright display state in which the applied voltage region is 0.0V to 1.5V, the brightness index difference and the chroma difference are improved in all four directions of up, down, left and right, so that the visual angle dependence of the color difference is different from that of the conventional example. Compared to that, it is greatly suppressed.
By the way, as compared with the viewing angle dependence of the color difference ΔE * in the first embodiment, the viewing angle dependence of the color difference ΔE * in this example in the three directions of the left, right, and bottom excluding the upper direction is more than that of the first embodiment. A little small.
【0034】印加電圧領域が1.5V〜3.0Vの中間階
調表示状態下では、クロマ差が改善されたため、液晶セ
ル101の左右方向、すなわち方位角225°、45°の
方向の色差の視角依存性が他方向よりも改善されてい
る。この場合の色差ΔE*の視角依存性と第1実施例の
それとは、略同程度である。Under an intermediate gradation display state in which the applied voltage region is 1.5 V to 3.0 V, the chroma difference is improved, so that the color difference in the horizontal direction of the liquid crystal cell 101, that is, in the azimuth angles of 225 ° and 45 °. The viewing angle dependency is improved compared to other directions. The viewing angle dependency of the color difference ΔE * in this case is substantially the same as that of the first embodiment.
【0035】以上のように、この第2実施例の液晶表示
装置によれば、視角方向のコントラストが高くなり、中
間階調表示状態下の明るさの逆転現象が抑制されると共
に、中間階調表示において、左右方向の視角変化に応じ
た色変化が抑制され、視角特性が従来例に対し第1実施
例よりも更に改善され、より確実な階調表示が可能とな
る。As described above, according to the liquid crystal display device of the second embodiment, the contrast in the viewing angle direction becomes high, the reversal phenomenon of the brightness under the intermediate gradation display state is suppressed, and the intermediate gradation is obtained. In the display, the color change according to the change of the viewing angle in the left-right direction is suppressed, the viewing angle characteristics are further improved as compared with the first embodiment, and more reliable gradation display is possible.
【0036】なお、上述した実施例等では、液晶セルの
Δn・dを350〜550nmの範囲に、二軸性位相板
のΔn・dを300〜400nmの範囲に設定したが、
これに限らず、液晶セルのΔn・dを350〜700n
mの範囲に、二軸性位相板のΔn・dを200乃至60
0nmの範囲に設定しても、上述した実施例と同様に視
角特性を改善することができる。In the above-mentioned embodiments, etc., Δn · d of the liquid crystal cell is set in the range of 350 to 550 nm, and Δn · d of the biaxial phase plate is set in the range of 300 to 400 nm.
Not limited to this, the Δn · d of the liquid crystal cell should be 350 to 700n.
In the range of m, the biaxial phase plate has Δn · d of 200 to 60.
Even if it is set in the range of 0 nm, the viewing angle characteristics can be improved as in the above-described embodiment.
【0037】(第3実施例)第3実施例は、液晶セルの
光出射側に2枚の二軸性位相板を配置したものである。(Third Embodiment) In the third embodiment, two biaxial phase plates are arranged on the light emitting side of a liquid crystal cell.
【0038】図14および図15に、第3実施例として
の液晶表示装置の断面図および分解斜視図を示した。こ
の液晶表示装置では、ツイステッドネマティック型の液
晶セル101の入射側に偏光子102が設けられ、液晶セル10
1の出射側に検光子103が設けられ、液晶セル101と検光
子103との間に液晶セル101側から順に第1、第2の2軸
性位相板116,117を配置してある。14 and 15 are a sectional view and an exploded perspective view of a liquid crystal display device as a third embodiment. In this liquid crystal display device, a polarizer 102 is provided on the incident side of a twisted nematic liquid crystal cell 101, and the liquid crystal cell 10 is provided.
An analyzer 103 is provided on the emission side of 1, and first and second biaxial phase plates 116 and 117 are arranged between the liquid crystal cell 101 and the analyzer 103 in this order from the liquid crystal cell 101 side.
【0039】入射側基板108と出射側基板111に形成され
た配向膜107,110は、それぞれラビングなどの配向処理
が施されている。入射側基板108の配向膜107は、図15
に示すように液晶セル101を正面(光出射側)から観察
する場合において水平方向に液晶セル101の長手方向を
沿わせて液晶セル101を配置し、この液晶セル101の左上
から右下方向に約45°の傾きをもった方向107aに、配
向処理が施されている。出射側基板111の配向膜110は入
射側配向処理方向107aに対して光出射側から見て左回り
にほぼ90°回転した方向110aに配向処理が施されてい
る。このような配向処理により、液晶材料113の分子は
光出射側から見て右回りにほぼ90°ツイストして配列
されている。液晶材料113のギャップdとナチュラルピ
ッチpの比d/pは約0.05で、液晶分子のプレチルト角
は約1゜である。また、この液晶セル101のギャップd
と屈折率異方性Δnとの積Δn・dの値は350〜70
0nmの範囲で、好ましくは380nm(測定波長:5
89nm)である。The alignment films 107 and 110 formed on the entrance-side substrate 108 and the exit-side substrate 111 are subjected to an alignment treatment such as rubbing. The alignment film 107 on the incident side substrate 108 is shown in FIG.
When observing the liquid crystal cell 101 from the front (light emission side), the liquid crystal cell 101 is arranged horizontally along the longitudinal direction of the liquid crystal cell 101, and the liquid crystal cell 101 is arranged from the upper left to the lower right. The orientation treatment is applied in the direction 107a having an inclination of about 45 °. The alignment film 110 on the emission side substrate 111 is subjected to the alignment treatment in a direction 110a which is rotated by approximately 90 ° counterclockwise when viewed from the light emission side with respect to the incident side alignment treatment direction 107a. By such an alignment treatment, the molecules of the liquid crystal material 113 are arranged with a twist of about 90 ° clockwise when viewed from the light emitting side. The ratio d / p of the gap d and the natural pitch p of the liquid crystal material 113 is about 0.05, and the pretilt angle of the liquid crystal molecules is about 1 °. In addition, the gap d of the liquid crystal cell 101
The value of the product Δn · d of the refractive index anisotropy Δn is 350 to 70.
In the range of 0 nm, preferably 380 nm (measurement wavelength: 5
89 nm).
【0040】偏光子102は、その透過軸102aが液晶セル1
01の入射配向処理方向107aとほぼ直交するように配設さ
れている。検光子103は、その透過軸103aが偏光子102の
透過軸102aとほぼ直交するように配設されている。The transmission axis 102a of the polarizer 102 is the liquid crystal cell 1
It is arranged so as to be substantially orthogonal to the incident orientation processing direction 107a of 01. The analyzer 103 is arranged so that its transmission axis 103a is substantially orthogonal to the transmission axis 102a of the polarizer 102.
【0041】第1、第2の2軸性位相板116,117は、そ
れぞれポリカーボネートからなり、延伸方向屈折率
nX、面内直交方向屈折率nY、厚み方向屈折率nZの3
方向の屈折率を有し、これら3方向の屈折率がnY<nZ
<nXの関係を満足し、延伸方向が遅相軸となり、屈折
率異方性Δn(=nX−nY)と厚さdとの積Δn・dの
値が200〜600nmの範囲で、好ましくは365n
m(測定波長:589nm)に設定されている。この第
1の2軸性位相板116はその延伸方向の遅相軸116aが入
射側配向処理方向107aに対してほぼ平行する方向に配置
され、第2の2軸性位相板117はその遅相軸117aが第1
の2軸性位相板116の遅相軸116aに対してほぼ直交する
ように配置されている。Each of the first and second biaxial phase plates 116 and 117 is made of polycarbonate and has a refractive index n x in the stretching direction, a refractive index n y in the in-plane orthogonal direction, and a refractive index n z in the thickness direction.
Has a refractive index in one direction, and the refractive index in these three directions is n Y <n Z
<N x is satisfied, the stretching direction is the slow axis, and the product of refractive index anisotropy Δn (= n x −n y ) and thickness d is Δn · d in the range of 200 to 600 nm. , Preferably 365n
m (measurement wavelength: 589 nm). The first biaxial phase plate 116 is arranged such that the slow axis 116a in the stretching direction is substantially parallel to the incident side alignment treatment direction 107a, and the second biaxial phase plate 117 has the slow phase. Axis 117a is first
The biaxial phase plate 116 is arranged so as to be substantially orthogonal to the slow axis 116a.
【0042】この実施例では、液晶セル101と検光子103
との間に3方向の屈折率がnY<nZ<nXの関係を満足
する第1、第2の2軸性位相板116,117を配置したの
で、これらの2枚の2軸性位相板116,117によって、液
晶セル101を垂直に透過する光と斜めに透過する光の位
相差の相違が補正され、中間階調表示の際の明るさの逆
転現象が抑制され、左右の方向の中間階調表示における
色変化の視角依存性が小さくなり、視角特性を大幅に改
善することができる。In this embodiment, the liquid crystal cell 101 and the analyzer 103 are used.
Since the first and second biaxial phase plates 116 and 117 satisfying the relationship of n Y <n Z <n X in the three directions are arranged between the two biaxial phase plates, By 116 and 117, the difference in phase difference between the light vertically transmitted through the liquid crystal cell 101 and the light obliquely transmitted is corrected, the inversion phenomenon of the brightness at the time of halftone display is suppressed, and the halftone in the left and right directions is suppressed. The viewing angle dependency of the color change in display is reduced, and the viewing angle characteristics can be significantly improved.
【0043】次に、このようなTN型の液晶表示装置に
よる視角特性について、従来の液晶表示装置の視角特性
と比較しながら説明する。本例の液晶表示装置で用いる
第1、第2の2軸性位相板116,117は、Δn・dの値が3
68.8nmで、厚さdが64μmのとき、延伸方向屈
折率nXが1.5857、面内直交方向屈折率nYが1.5802、厚
み方向屈折率nZが1.5836であり、(nZ−nY)と(nX
−nZ)との比が34:21で、ほぼ6対4の比率にな
っている。この2軸性位相板116,117はポリカーボネー
トで形成されている。Next, the viewing angle characteristics of such a TN type liquid crystal display device will be described in comparison with the viewing angle characteristics of the conventional liquid crystal display device. The first and second biaxial phase plates 116 and 117 used in the liquid crystal display device of this example have a value of Δn · d of 3
When the thickness d is 6 μm and the thickness d is 64 μm, the drawing direction refractive index n X is 1.5857, the in-plane orthogonal direction refractive index n Y is 1.5802, and the thickness direction refractive index n Z is 1.5836, and (n Z −n Y ) And (n X
The ratio to −n Z ) is 34:21, which is a ratio of about 6 to 4. The biaxial phase plates 116 and 117 are made of polycarbonate.
【0044】図16に、上述した第1、第2の2軸性位
相板116,117を用いた液晶表示装置において印加電圧を
V=0[V]とV=4.38[V]でとった等コントラスト曲線を
示した。この図においても、同心円は内側からそれぞれ
液晶表示装置の基板の法線方向から10°、20°、3
0°、40°、および50°傾けた視角を表わし、黒四
角はコントラストが10、白四角はコントラストが5
0、黒三角はコントラストが100、白三角はコントラ
ストが150をそれぞれ表している。この図16に示す
等コントラスト曲線の形状は、図21に示した従来の液
晶表示装置よる等コントラスト曲線の形状に近くなって
いる。FIG. 16 shows isocontrast curves obtained when the applied voltage is V = 0 [V] and V = 4.38 [V] in the liquid crystal display device using the first and second biaxial phase plates 116 and 117 described above. showed that. Also in this figure, the concentric circles are 10 °, 20 °, and 3 ° from the normal direction of the substrate of the liquid crystal display device from the inside, respectively.
Represents viewing angles at 0 °, 40 °, and 50 °, with black squares having a contrast of 10 and white squares having a contrast of 5.
0, the black triangle represents a contrast of 100, and the white triangle represents a contrast of 150. The shape of the isocontrast curve shown in FIG. 16 is close to that of the conventional liquid crystal display device shown in FIG.
【0045】図17(A)〜17(D)に本例の液晶表
示装置によるY−V曲線の視角依存性を示した。図17
(A)は液晶セル101の下方向(方位角が315°の方
向)に、図17(B)および図17(C)は液晶セル10
1の左、右の方向(方位角が45°、225°の方向)
に、図17(D)は液晶セル1の上方向(方位角135
°の方向)に、夫々視角を0°〜50°に振った際の各
Y−V曲線である。これら図17(A)〜17(D)と
従来の液晶表示装置による同様のY−V曲線である図2
2(A)〜22(D)を比べると明らかな様に、両者に
おけるY−V曲線の視角依存性は略同一である。17A to 17D show the viewing angle dependence of the YV curve in the liquid crystal display device of this example. FIG. 17
17A shows the liquid crystal cell 101 in the downward direction (the azimuth angle is 315 °), and FIGS. 17B and 17C show the liquid crystal cell 10.
Left, right direction of 1 (direction of azimuth angle 45 °, 225 °)
17D shows the liquid crystal cell 1 in the upward direction (azimuth angle 135
(Y direction), each Y-V curve when the viewing angle is swung from 0 ° to 50 °. 2 (A) to FIG. 17 (D), which are similar YV curves of the conventional liquid crystal display device.
As is clear by comparing 2 (A) to 22 (D), the viewing angle dependences of the YV curves in both are almost the same.
【0046】図18(A)〜18(F)、図19(A)
〜19(F)及び図20(A)〜20(F)は、夫々本
例の液晶表示装置による色差ΔE*、明度指数差ΔL*、
クロマ差ΔC*の上下左右4方向(方位角:135°、
315°、225°、45°)における各視角依存性を
6段階の印加電圧毎に夫々示したグラフである。この場
合の6段階の印加電圧は0V,1.5V,2V,2.5
V,3V,4Vである。又、これらグラフ中、四角形は
上方向へ、プラス印は下方向へ、円形は左方向へ、三角
形は右方向へ、夫々視角を変化させた場合の各値を表わ
している。これらのグラフに示される視角依存性と図2
3(A)〜図25(F)に示された従来の液晶表示装置
によるそれらとを比較する。18 (A) to 18 (F) and FIG. 19 (A)
19 (F) and 20 (A) to 20 (F), the color difference ΔE *, the lightness index difference ΔL *, and the lightness index difference ΔL *, respectively, according to the liquid crystal display device of the present example.
4 directions of chroma difference ΔC * up / down / left / right (azimuth: 135 °,
315 °, 225 °, 45 °) is a graph showing each viewing angle dependency for each of 6 levels of applied voltage. In this case, the applied voltage in 6 steps is 0V, 1.5V, 2V, 2.5.
V, 3V and 4V. Further, in these graphs, a quadrangle indicates an upward direction, a plus mark indicates a downward direction, a circle indicates a leftward direction, and a triangle indicates a rightward direction, and respective values when the viewing angle is changed. The viewing angle dependence shown in these graphs and FIG.
3 (A) to FIG. 25 (F) will be compared with those of the conventional liquid crystal display device.
【0047】まず、印加電圧領域がV=0.0〜1.5[V]の
明表示状態下では、本例の液晶表示装置によるクロマ差
の視角依存性が従来例のそれよりも小さく抑制されてい
る。即ち、本例におけるクロマ差の視角依存性が従来例
よりも改善されている。この為、本例の液晶表示装置に
よる方位角225°、45°の左右方向における色差の
各視角依存性も従来例のそれらより改善されている。ま
た、印加電圧領域がV=1.5〜3.0[V]の中間階調表示状
態下では、やはりクロマ差の視角依存性が改善されたた
め、方位角225°、45°の左右方向(特に方位角2
25°の左方向)における色差の視角依存性が改善され
ている。さらに、印加電圧領域がV=3.0〜4.0[V]の暗
表示状態下では、方位角135°の上方向における色差
の視角依存性が従来と同程度に保たれている。First, in the bright display state in which the applied voltage region is V = 0.0 to 1.5 [V], the viewing angle dependence of the chroma difference by the liquid crystal display device of this example is suppressed to be smaller than that of the conventional example. That is, the viewing angle dependency of the chroma difference in this example is improved as compared with the conventional example. Therefore, the viewing angle dependence of the color difference in the left and right directions of azimuth angles of 225 ° and 45 ° by the liquid crystal display device of this example is also improved as compared with those of the conventional example. Further, in the intermediate gradation display state in which the applied voltage region is V = 1.5 to 3.0 [V], the viewing angle dependency of the chroma difference is also improved, so that the azimuth angles of 225 ° and 45 ° in the left and right directions (especially azimuth angle 2
The viewing angle dependency of the color difference in the left direction (25 °) is improved. Further, in the dark display state in which the applied voltage region is V = 3.0 to 4.0 [V], the viewing angle dependence of the color difference in the upward direction of the azimuth angle of 135 ° is maintained at the same level as in the conventional case.
【0048】以上のように、本例の液晶表示装置では、
中間階調表示の際の明るさの逆転現象が抑制され、中間
階調を表示する際の左右の方向の視角の変化に対する色
変化が従来例に比べて小さく抑制される。その結果、本
例の液晶表示装置は視角特性が改善され、階調を正確に
表示できる。As described above, in the liquid crystal display device of this example,
The brightness reversal phenomenon during the halftone display is suppressed, and the color change due to the change in the viewing angle in the left and right directions during the halftone display is suppressed to be smaller than that in the conventional example. As a result, the liquid crystal display device of the present example has improved viewing angle characteristics and can accurately display gradation.
【0049】なお、上述した実施例では、液晶セル101
と検光子103との間に第1、第2の2軸性位相板116,117
を配置したが、これに限らず、例えば液晶セル101と偏
光子102との間に第1、第2の2軸性位相板116,117をそ
の順で配置してもよい。In the embodiment described above, the liquid crystal cell 101
And the analyzer 103 between the first and second biaxial phase plates 116 and 117.
However, the present invention is not limited to this, and for example, the first and second biaxial phase plates 116 and 117 may be arranged in this order between the liquid crystal cell 101 and the polarizer 102.
【0050】また、上述した実施例では、偏光子102が
その透過軸102aを液晶セル101の入射側配向処理方向107
aに対してほぼ直交させて配置されているが、これに限
らず、偏光子102と検光子103を90°回転させ、偏光子
102の透過軸102aが液晶セル101の入射側配向処理方向10
7aに対してほぼ平行となる様に配置してもよいく、この
場合にも上述した実施例と同様の作用効果がある。Further, in the above-described embodiment, the polarizer 102 has its transmission axis 102a as the incident side alignment treatment direction 107 of the liquid crystal cell 101.
Although it is arranged almost orthogonal to a, the invention is not limited to this, and the polarizer 102 and the analyzer 103 are rotated by 90 °, and
A transmission axis 102a of the liquid crystal cell 102 has an incident side alignment treatment direction 10 of the liquid crystal cell 101.
It may be arranged so as to be substantially parallel to 7a, and in this case also, the same effect as that of the above-described embodiment can be obtained.
【0051】[0051]
【発明の効果】以上、詳細に説明した様に、この発明
は、一対の基板間に液晶分子をほぼ90°にわたりツイ
スト配向させてなるTN型の液晶セルの外側にこれを挟
むように偏光子と検光子を配置するとともに、前記液晶
セルの片側に、前記液晶セルの基板と平行な面内で屈折
率が最も大きい方向の屈折率n X と、この方向と前記面
内で直交する方向の屈折率n Y と、これら両方向に直交
する方向の屈折率n Z とを有する共に、それぞれの屈折
率の値がn Y <n Z <n X を満たす2枚の位相板を、そ
の屈折率が最も大きい方向を前記一対の基板のうちの一
方の基板の配向処理方向と平行又は直交させて配置し、
これらの位相板により液晶セルを斜めに透過する光と垂
直に透過する光との位相差の相違を補償する構成とし
た。その結果、視角方向のコントラストが高くなり、中
間階調表示の際における明るさの逆転現象が抑制される
と共に左右方向における色変化の視角依存性が低下し、
視角特性を大幅に改善して正確に階調を表示することが
可能となる。As described above in detail, according to the present invention, a polarizer is arranged so that liquid crystal molecules are twisted in a 90-degree orientation between a pair of substrates so as to be sandwiched outside a TN type liquid crystal cell. And the analyzer is placed and the liquid crystal
Refraction on one side of the cell in a plane parallel to the liquid crystal cell substrate
Refractive index n X in the direction with the largest index , this direction and the surface
The refractive index n Y in the directions orthogonal to each other and
Both have a direction of the refractive index n Z for each refraction
The two phase plates whose ratio values satisfy n Y <n Z <n X are
The direction of the largest refractive index of the one of the pair of substrates.
Arranged in parallel or orthogonal to the orientation processing direction of one substrate,
These phase plates are configured to compensate for the difference in phase difference between the light obliquely transmitted through the liquid crystal cell and the light vertically transmitted. As a result, the contrast in the viewing angle direction becomes high, the reversal phenomenon of the brightness at the time of halftone display is suppressed, and the viewing angle dependency of the color change in the left and right directions is reduced,
It is possible to significantly improve the viewing angle characteristics and display the gradation accurately.
【図1】本発明の第1実施例としての液晶表示装置を示
す断面図である。FIG. 1 is a cross-sectional view showing a liquid crystal display device as a first embodiment of the present invention.
【図2】上記第1実施例の概略構成を示す分解斜視図で
ある。FIG. 2 is an exploded perspective view showing a schematic configuration of the first embodiment.
【図3】二軸性位相板のΔn・dの波長依存性を示すグ
ラフである。FIG. 3 is a graph showing the wavelength dependence of Δn · d of the biaxial phase plate.
【図4】(A)〜(F)は、夫々、上記第1実施例の液
晶表示装置による視角を変える方向毎の色差ΔE*の視
角依存性を6段階の印加電圧毎に示す各グラフである。4A to 4F are graphs showing the viewing angle dependence of the color difference ΔE * for each direction in which the viewing angle is changed by the liquid crystal display device of the first embodiment for each of 6 levels of applied voltage. is there.
【図5】(A)〜(F)は、夫々、上記第1実施例の液
晶表示装置による視角を変える方向毎の明度指数差ΔL
*の視角依存性を6段階の印加電圧毎に示す各グラフで
ある。5A to 5F are lightness index differences ΔL for respective directions in which the viewing angle is changed by the liquid crystal display device of the first embodiment.
8 is a graph showing the viewing angle dependence of * for each of 6 levels of applied voltage.
【図6】(A)〜(F)は、夫々、上記第1実施例の液
晶表示装置による視角を変える方向毎のクロマ差ΔC*
の視角依存性を6段階の印加電圧毎に示す各グラフであ
る。6A to 6F are chroma difference ΔC * for each direction in which the viewing angle is changed by the liquid crystal display device of the first embodiment.
3 is a graph showing the viewing angle dependence of the above for each of 6 levels of applied voltage.
【図7】本発明の第2実施例としての液晶表示装置を示
す断面図である。FIG. 7 is a sectional view showing a liquid crystal display device as a second embodiment of the present invention.
【図8】上記第2実施例の概略構成を示す分解斜視図で
ある。FIG. 8 is an exploded perspective view showing a schematic configuration of the second embodiment.
【図9】上記第2実施例の液晶表示装置による等コント
ラスト曲線図である。FIG. 9 is an isocontrast curve diagram of the liquid crystal display device of the second embodiment.
【図10】(A)〜(D)は、夫々、上記第2実施例の
液晶表示装置による異なる視角毎の光透過率Yと印加電
圧Vとの特性を視角変える方向毎に示す各Y−V特性図
である。FIGS. 10A to 10D respectively show characteristics of the light transmittance Y and the applied voltage V at different viewing angles in the liquid crystal display device of the second embodiment for each Y-direction for each viewing angle changing direction. It is a V characteristic view.
【図11】(A)〜(F)は、夫々、上記第2実施例の
液晶表示装置による視角を変える方向毎の色差ΔE*の
視角依存性を6段階の印加電圧毎に示す各グラフであ
る。11A to 11F are graphs showing the viewing angle dependence of the color difference ΔE * for each direction in which the viewing angle is changed by the liquid crystal display device of the second embodiment, for each of 6 levels of applied voltage. is there.
【図12】(A)〜(F)は、夫々、上記第2実施例の
液晶表示装置による視角を変える方向毎の明度指数差Δ
L*の視角依存性を6段階の印加電圧毎に示す各グラフ
である。12 (A) to (F) are lightness index differences Δ for each direction in which the viewing angle is changed by the liquid crystal display device of the second embodiment.
6 is a graph showing the viewing angle dependence of L * for each of 6 levels of applied voltage.
【図13】(A)〜(F)は、夫々、上記第2実施例の
液晶表示装置による視角を変える方向毎のクロマ差ΔC
*の視角依存性を6段階の印加電圧毎に示す各グラフで
ある。13A to 13F are chroma differences ΔC for respective directions in which the viewing angle is changed by the liquid crystal display device of the second embodiment.
8 is a graph showing the viewing angle dependence of * for each of 6 levels of applied voltage.
【図14】本発明の第3実施例としての液晶表示装置を
示す断面図である。FIG. 14 is a sectional view showing a liquid crystal display device as a third embodiment of the present invention.
【図15】上記第3実施例の概略構成を示す分解斜視図
である。FIG. 15 is an exploded perspective view showing a schematic configuration of the third embodiment.
【図16】上記第3実施例の液晶表示装置による等コン
トラスト曲線図である。FIG. 16 is an isocontrast curve diagram of the liquid crystal display device of the third embodiment.
【図17】(A)〜(D)は、夫々、上記第3実施例の
液晶表示装置による異なる視角毎の光透過率Yと印加電
圧Vとの特性を視角変える方向毎に示す各Y−V特性図
である。FIGS. 17A to 17D respectively show Y- characteristics of the light transmittance Y and the applied voltage V for different viewing angles in the liquid crystal display device of the third embodiment for each viewing angle changing direction. It is a V characteristic view.
【図18】(A)〜(F)は、夫々、上記第3実施例の
液晶表示装置による視角を変える方向毎の色差ΔE*の
視角依存性を6段階の印加電圧毎に示す各グラフであ
る。18A to 18F are graphs showing the viewing angle dependence of the color difference ΔE * for each direction in which the viewing angle is changed by the liquid crystal display device of the third embodiment, for each of 6 levels of applied voltage. is there.
【図19】(A)〜(F)は、夫々、上記第3実施例の
液晶表示装置による視角を変える方向毎の明度指数差Δ
L*の視角依存性を6段階の印加電圧毎に示す各グラフ
である。19 (A) to (F) are lightness index differences Δ for each direction in which the viewing angle is changed by the liquid crystal display device of the third embodiment.
6 is a graph showing the viewing angle dependence of L * for each of 6 levels of applied voltage.
【図20】(A)〜(F)は、夫々、上記第3実施例の
液晶表示装置による視角を変える方向毎のクロマ差ΔC
*の視角依存性を6段階の印加電圧毎に示す各グラフで
ある。20A to 20F are chroma difference ΔC for each direction in which the viewing angle is changed by the liquid crystal display device of the third embodiment.
8 is a graph showing the viewing angle dependence of * for each of 6 levels of applied voltage.
【図21】従来の液晶表示装置による等コントラスト曲
線図である。FIG. 21 is an isocontrast curve diagram of a conventional liquid crystal display device.
【図22】(A)〜(D)は、夫々、従来の液晶表示装
置による異なる視角毎の光透過率Yと印加電圧Vとの特
性を視角変える方向毎に示す各Y−V特性図である。22A to 22D are Y-V characteristic diagrams showing the characteristics of the light transmittance Y and the applied voltage V for different viewing angles according to the conventional liquid crystal display device for each viewing angle changing direction. is there.
【図23】(A)〜(F)は、夫々、従来の液晶表示装
置による視角を変える方向毎の色差ΔE*の視角依存性
を6段階の印加電圧毎に示す各グラフである。23A to 23F are graphs showing the viewing angle dependence of the color difference ΔE * for each direction in which the viewing angle is changed by the conventional liquid crystal display device, for each of 6 levels of applied voltage.
【図24】(A)〜(F)は、夫々、従来の液晶表示装
置による視角を変える方向毎の明度指数差ΔL*の視角
依存性を6段階の印加電圧毎に示す各グラフである。24A to 24F are graphs showing the viewing angle dependence of the brightness index difference ΔL * for each direction in which the viewing angle is changed by the conventional liquid crystal display device, for each of 6 levels of applied voltage.
【図25】(A)〜(F)は、夫々、従来の液晶表示装
置による視角を変える方向毎のクロマ差ΔC*の視角依
存性を6段階の印加電圧毎に示す各グラフである。25A to 25F are graphs showing the viewing angle dependence of the chroma difference ΔC * for each direction in which the viewing angle is changed by the conventional liquid crystal display device, for each of 6 levels of applied voltage.
101 液晶セル 102 偏光子 103 検光子 104,114,115,116,117 二軸性位相板 105,109 電極 106 薄膜トランジスタ 107,110 配向膜 108 下基板(入射側基板) 111 上基板(出射側基板) 112 シール材 113 液晶材料 101 LCD cell 102 Polarizer 103 Analyzer 104,114,115,116,117 Biaxial phase plate 105,109 electrodes 106 thin film transistor 107,110 Alignment film 108 Lower substrate (incident side substrate) 111 Upper substrate (outgoing side substrate) 112 Seal material 113 Liquid crystal material
Claims (2)
とこの電極を覆って所定の方向に配向処理が施された配
向膜とが形成された一対の基板間に、一方の基板から他
方の基板に向ってほぼ90°でツイスト配向させた液晶
材料を封入して成る液晶セルと、 前記液晶セルの光入射側に配設された偏光子と、 前記液晶セルの光出射側に配設された検光子と、前記液晶セルの基板と平行な面内で屈折率が最も大きい
方向の屈折率n X と、この方向と前記面内で直交する方
向の屈折率n Y と、これら両方向に直交する方向の屈折
率n Z とを有する共に、それぞれの屈折率の値がn Y <
n Z <n X を満たし、前記屈折率が最も大きい方向を前
記一対の基板のうちの一方の基板の配向処理方向と平行
又は直交させて前記液晶セルの片側に配置された2枚の
位相板とを備え、 前記位相板により液晶セルを斜めに透過する光と垂直に
透過する光との位相差の相違を補償することを特徴とす
る液晶表示装置。1. Between a pair of substrates each having an electrode intersecting with each other and an alignment film covering the electrodes and subjected to an alignment treatment in a predetermined direction on each of the facing surfaces, one substrate to the other A liquid crystal cell formed by enclosing a liquid crystal material twisted at about 90 ° toward the substrate, a polarizer arranged on the light incident side of the liquid crystal cell, and a light emitting side arranged on the light emitting side of the liquid crystal cell. The highest refractive index in the plane parallel to the analyzer and the liquid crystal cell substrate.
Refractive index n x in the direction and the direction orthogonal to this direction in the plane
Direction refractive index n Y and refraction in the direction orthogonal to these two directions
Has a refractive index n Z, and the value of each refractive index is n Y <
n Z <n X is satisfied, and the direction in which the refractive index is the largest is the front
Parallel to the alignment treatment direction of one of the pair of substrates
Or two phase plates arranged on one side of the liquid crystal cell so as to be orthogonal to each other, and a phase difference between the light obliquely transmitted through the liquid crystal cell and the light vertically transmitted by the phase plate. A liquid crystal display device, characterized in that
晶セル間に配置されている請求項1記載の液晶表示装
置。2. A liquid crystal display device according to claim 1, wherein said two phase plates are disposed between the said analyzer crystal cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25464492A JP3375351B2 (en) | 1991-09-30 | 1992-09-24 | Liquid crystal display |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27845591 | 1991-09-30 | ||
JP3-278455 | 1991-09-30 | ||
JP4-177083 | 1992-07-03 | ||
JP17708392 | 1992-07-03 | ||
JP21573592 | 1992-07-22 | ||
JP4-215735 | 1992-07-22 | ||
JP25464492A JP3375351B2 (en) | 1991-09-30 | 1992-09-24 | Liquid crystal display |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0688962A JPH0688962A (en) | 1994-03-29 |
JP3375351B2 true JP3375351B2 (en) | 2003-02-10 |
Family
ID=27474745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25464492A Expired - Fee Related JP3375351B2 (en) | 1991-09-30 | 1992-09-24 | Liquid crystal display |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3375351B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2933261B2 (en) * | 1993-12-27 | 1999-08-09 | シャープ株式会社 | Liquid crystal display |
FR2726919B1 (en) * | 1994-11-14 | 1996-12-13 | Thomson Lcd | LIQUID CRYSTAL DISPLAY DEVICE USING BIREFRINGENT FILMS |
DE60313864T2 (en) | 2003-08-14 | 2008-01-17 | Fujifilm Manufacturing Europe B.V. | Arrangement, method and electrode for generating a plasma |
JP4687507B2 (en) * | 2005-03-09 | 2011-05-25 | カシオ計算機株式会社 | Liquid crystal display element |
US7864278B2 (en) | 2005-03-09 | 2011-01-04 | Casio Computer Co., Ltd. | Liquid crystal display device with a pair of discotic liquid crystal compensating films |
TWI381217B (en) * | 2008-06-27 | 2013-01-01 | Chimei Innolux Corp | Liquid crystal display panel |
CN102077132A (en) * | 2008-07-02 | 2011-05-25 | 夏普株式会社 | Liquid crystal display device |
BR112012001903A2 (en) * | 2009-07-30 | 2016-03-15 | Sharp Kk | liquid crystal display device |
-
1992
- 1992-09-24 JP JP25464492A patent/JP3375351B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0688962A (en) | 1994-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5440413A (en) | Liquid crystal display device with 2 adjacent biaxial retardation plates having Ny <Nz <Nx | |
US7167222B2 (en) | Liquid crystal display with antiglare layer on viewer side having haze equal to or greater than 40 | |
US6285430B1 (en) | Liquid crystal display device | |
KR0181980B1 (en) | Liquid crystal display device | |
US7995887B2 (en) | Liquid crystal display device and electronic device using the same | |
JPH0349412B2 (en) | ||
US6259503B1 (en) | Active matrix liquid crystal display device having a wide viewing angle without color shift | |
JP2007249243A (en) | Liquid crystal display device | |
JP3375351B2 (en) | Liquid crystal display | |
US20060250547A1 (en) | Optically compensated birefringence (OCB) mode liquid crystal display device | |
US7804567B2 (en) | Normally-white twisted-nematic-mode LCD device | |
JPH06194645A (en) | Liquid crystal display element | |
KR100357359B1 (en) | Liquid crystal display device using a birefringent film | |
JPH0519249A (en) | Liquid crystal display device | |
JP2713328B2 (en) | Twisted nematic liquid crystal display device | |
JPH04289818A (en) | Liquid crystal display | |
JP2007272252A (en) | Liquid crystal display device | |
JP3261763B2 (en) | Liquid crystal display | |
JP3237216B2 (en) | Liquid crystal display | |
JPH063663A (en) | Liquid crystal display device | |
JP3246014B2 (en) | Liquid crystal display | |
JPH06167706A (en) | Liquid crystal display device | |
JP3309283B2 (en) | Liquid crystal display | |
JP4285467B2 (en) | Liquid crystal device and electronic device | |
JP2001147450A (en) | Liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071129 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081129 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081129 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091129 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101129 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101129 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111129 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |