JP3367388B2 - High ductility and high toughness steel sheet and manufacturing method thereof - Google Patents
High ductility and high toughness steel sheet and manufacturing method thereofInfo
- Publication number
- JP3367388B2 JP3367388B2 JP20889297A JP20889297A JP3367388B2 JP 3367388 B2 JP3367388 B2 JP 3367388B2 JP 20889297 A JP20889297 A JP 20889297A JP 20889297 A JP20889297 A JP 20889297A JP 3367388 B2 JP3367388 B2 JP 3367388B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- point
- ferrite
- temperature
- during
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高度の安全性が要
求される鋼構造物、例えば極地用海洋構造物、タンク、
低温圧力容器、橋梁、建材等の使用に好適な高延性高靭
性鋼板およびその製造方法に関する。TECHNICAL FIELD The present invention relates to a steel structure requiring a high degree of safety, such as a polar offshore structure, a tank,
The present invention relates to a high-ductility and high-toughness steel sheet suitable for use in low-temperature pressure vessels, bridges, building materials, etc., and a method for producing the same.
【0002】[0002]
【従来の技術】従来から、鋼材の諸特性、例えば低温靱
性、延性、降伏強さ、耐食性等はその金属組織が微細に
なるほど向上するという事実が知られていた。このた
め、金属組織の微細化を目的とする加工熱処理(TMC
P:Thermo-Mechanical ControlProcess )技術、その
効果を最大限に発揮する化学組成の調整技術等の鋼材の
製造技術が開発され、高品質の鋼材の生産、供給に多大
な効果を上げてきた。しかしながら、鋼材の組織微細化
に大きな効果をもたらしたTMCP技術をもってして
も、例えば平均フェライト粒径が10μm以下の均一な
微細組織を得ることはきわめて困難であり、ましてや粒
径が3μm以下の均一な微細組織を得ることは事実上不
可能とされていた。2. Description of the Related Art It has been known that various properties of steel materials such as low temperature toughness, ductility, yield strength, and corrosion resistance are improved as the metal structure becomes finer. Therefore, a thermomechanical treatment (TMC) for the purpose of refining the metal structure is performed.
P: Thermo-Mechanical Control Process) technology and steel material manufacturing technology such as chemical composition adjustment technology that maximizes its effects have been developed, and have produced great effects on the production and supply of high-quality steel materials. However, it is extremely difficult to obtain a uniform microstructure with an average ferrite grain size of 10 μm or less, even with the TMCP technology, which has a great effect on the refinement of the microstructure of steel, let alone a uniform grain size of 3 μm or less. It was virtually impossible to obtain a fine microstructure.
【0003】これに対し、Ar3点以下に冷却し冷却途中
停止された鋼板を外部熱源、加工熱等で加熱して圧延を
開始し、Ac3点−50℃からAc3点温度の範囲で圧延を
終了し、均一な微細結晶粒とする製造方法が提案された
(特開平4−304312号公報、4−304313号
公報、特開平5−202444号公報等)。この発明に
おいては「昇温中のフェライトに必要量の加工を与え、
かつオーステナイトへの逆変態を防止すれば、加工フェ
ライトに導入された転位は回復、再配列を起こしフェラ
イトの微細化が達成される」ことによるとされている。
以後の説明において、フェライトをα、オーステナイト
をγと略記する場合がある。On the other hand, a steel sheet cooled to below the Ar 3 point and stopped during cooling is heated by an external heat source, working heat or the like to start rolling, and within the range of Ac 3 point −50 ° C. to Ac 3 point temperature. A manufacturing method has been proposed in which rolling is completed and uniform fine crystal grains are formed (JP-A-4-304312, JP-A-4-304313, JP-A-5-202444, etc.). In the present invention, "the necessary amount of processing is applied to ferrite during heating,
Moreover, if the reverse transformation to austenite is prevented, the dislocations introduced into the worked ferrite are recovered and rearranged to achieve the refinement of ferrite. "
In the following description, ferrite may be abbreviated as α and austenite may be abbreviated as γ.
【0004】しかし、この方法では(α+γ)二相域の
高温側への昇温途中で圧延するので微細化が不十分であ
り、かつ組織の微細化に伴う延性低下、したがって延性
破壊エネルギーの低下に対する配慮がなされていない。However, in this method, since rolling is performed while the temperature of the (α + γ) two-phase region is being increased to the high temperature side, the refinement is insufficient, and the ductility is reduced due to the refinement of the structure, and thus the ductile fracture energy is reduced. Is not taken into consideration.
【0005】[0005]
【発明が解決しようとする課題】本発明は、フェライト
粒をこれまで達成されたことのない程度にまで微細化し
高靭化をはかるとともに、高延性の高張力鋼板およびそ
の製造方法を提供することを目的とする。具体的にはつ
ぎの金属組織および性能を有する高張力鋼板およびその
製造方法の提供を目的とする。DISCLOSURE OF THE INVENTION The present invention provides a high-tensile steel sheet having a high ductility as well as a fine grained ferrite grain to a degree never achieved before and a high toughness. With the goal. Specifically, the object is to provide a high-strength steel sheet having the following metallographic structure and performance and a method for producing the same.
【0006】平均フェライト粒径 ≦ 3μm以下
伸び ≧ 50%
母材のvTs ≦ −110℃
3.5kJ/cm入熱のサフ゛マーシ゛アーク溶接継手部ボンドvE-20 ≧
100JAverage ferrite grain size ≤ 3 µm or less Elongation ≥ 50% vTs of base metal ≤ -110 ° C 3.5kJ / cm heat input submarine arc welding joint bond vE-20 ≥
100J
【0007】[0007]
【課題を解決するための手段】本発明者等は、微細フェ
ライト粒を含む金属組織を有する高延性高靭性高張力鋼
板およびその製造方法を鋭意検討した結果、つぎのよう
な事項を確認することができた。Means for Solving the Problems The inventors of the present invention have made extensive studies on a high ductility, high toughness, high strength steel sheet having a metal structure containing fine ferrite grains and a method for producing the steel sheet, and as a result, have confirmed the following matters. I was able to.
【0008】(a)最初の冷却でのAr3点以下での変態
相の体積率(以下、「変態率」という)を70%以上と
して、その後Ac1点から“Ac1点とAc3点の中間温度”
(以後、単に「中間温度」と略記する)以下の温度域に
復熱させるとき、中間温度を超えて加熱するよりも最終
的に得られるフェライト粒径は微細化される。(A) The volume ratio of the transformation phase below the Ar 3 point in the first cooling (hereinafter referred to as “transformation rate”) is set to 70% or more, and then from Ac 1 point to “Ac 1 point and Ac 3 point”. Intermediate temperature ”
When the heat is reheated to a temperature range below (hereinafter simply referred to as “intermediate temperature”), the ferrite grain size finally obtained is made finer than when heating is performed above the intermediate temperature.
【0009】(b)上記の最初の冷却、その後の復
熱、および最後の冷却の際には必要に応じて加工を加
えるが、それぞれの加工の圧下率の単純和を50%以上
とすると、最終的に得られるフェライト粒径は大幅に微
細化される。(B) Processing is added as necessary during the above-described first cooling, subsequent reheat, and final cooling, but if the simple sum of the rolling reductions of each processing is 50% or more, The ferrite grain size finally obtained is greatly reduced.
【0010】(c)復熱途中および最終の冷却において
は、加工フェライトから再結晶したフェライトの体積率
が全体の40%以上および加工されたγから変態するフ
ェライトの体積率が40%以上とすることにより延性を
大きく向上させることができる。(C) During recuperation and during final cooling, the volume ratio of ferrite recrystallized from worked ferrite is 40% or more of the whole and the volume ratio of ferrite transformed from worked γ is 40% or more. Thereby, the ductility can be greatly improved.
【0011】(d)上記の最初の冷却、復熱、最
後の冷却、の3段階の加工熱処理を受ける領域は板厚全
体でなく表層領域だけでも鋼板として効果は認められ
る。(D) The effect of the steel sheet can be recognized not only in the entire thickness but also in the surface layer area as the area subjected to the three stages of work heat treatment of the above-mentioned first cooling, reheating, and final cooling.
【0012】本発明は上記の事項を組み合わせ、実験室
での加工熱処理実験装置での実験を重ね、製造現場での
試作試験を経て完成されたもので、その要旨はつぎの高
張力鋼板およびその製造方法にある。The present invention was completed through a combination of the above items, repeated experiments in a thermomechanical processing experimental apparatus in a laboratory, and a trial test at a manufacturing site. The gist thereof is the following high-tensile steel plate and its production. On the way.
【0013】(1)重量比にて、C:0.02〜0.2
%、Si:0.02〜0.5%、Mn:0.4〜2.5
%、sol.Al:0.08%以下、N:0.008%以
下、Cu:0〜0.6%、Ni:0〜2%、Cr:0〜
0.8%、Mo:0〜0.8%、Nb:0〜0.05
%、V:0〜0.08%、B:0〜0.005%および
Ti:0〜0.05%を含み残部がFeおよび不可避不
純物からなり、少なくとも表層領域において未再結晶オ
ーステナイトから変態したフェライトおよび加工された
フェライトから再結晶したフェライトが各々40体積%
以上を占め、かつ両方のフェライトについての平均粒径
が3μm以下であることを特徴とする高延性高靭性鋼板
(〔発明1〕とする)。(1) By weight ratio, C: 0.02 to 0.2
%, Si: 0.02-0.5%, Mn: 0.4-2.5
%, Sol.Al: 0.08% or less, N: 0.008% or less, Cu: 0 to 0.6%, Ni: 0 to 2%, Cr: 0 to
0.8%, Mo: 0-0.8%, Nb: 0-0.05
%, V: 0 to 0.08%, B: 0 to 0.005%, and Ti: 0 to 0.05%, with the balance being Fe and inevitable impurities, and transformed from unrecrystallized austenite at least in the surface layer region. 40% by volume of ferrite and ferrite recrystallized from processed ferrite
A high ductility and high toughness steel sheet (referred to as [invention 1]) characterized by occupying the above and having an average grain size of 3 μm or less for both ferrites.
【0014】(2)〔発明1〕に記載する化学組成を有
する鋼片をAc3点以上に加熱した後、少なくとも表層領
域が下記の、およびの条件を満足する3つの加工
熱処理を順に施す製造方法であって、、およびで
の加工の圧下率の和が50%以上である〔発明1〕に記
載する高延性高靭性鋼板の製造方法(〔発明2〕とす
る)。(2) A steel piece having the chemical composition described in [Invention 1] is heated to a point of Ac 3 or more, and then subjected to three thermomechanical treatments in which at least the surface layer region satisfies the following conditions, A method for producing a high ductility and high toughness steel sheet according to [Invention 1], which has a sum of rolling reductions of 50% or more.
【0015】Ar3点以下での変態相の体積率が70%
以上となるように冷却し、途中で冷却を停止する。この
冷却中に必要に応じて加工を加える。The volume ratio of the transformation phase below the Ar 3 point is 70%.
Cooling is performed as described above, and cooling is stopped midway. If necessary, processing is added during this cooling.
【0016】上記の冷却停止後、Ac1点以上でAc1
点とAc3点の中間温度以下に復熱させる。この復熱途中
および復熱終了後放冷中に必要に応じて加工を加える。After the above cooling is stopped, Ac 1 is exceeded by 1 or more points.
Reheat to a temperature below the midpoint between the point and the Ac 3 point. If necessary, processing is performed during this recuperation and during cooling after recuperation.
【0017】鋼板を冷却する。この冷却中にAc1点−
100℃までの温度域で必要に応じて加工を加える。The steel sheet is cooled. Ac 1 point during this cooling
Processing is performed as necessary in the temperature range up to 100 ° C.
【0018】上記において高張力鋼板は厚鋼板および熱
延鋼板をさす。上記の〔発明1〕および〔発明2〕にお
いては、板厚方向のすべての位置でそれぞれの発明に記
載する金属組織の条件を満足してもよいし、“板厚の5
%以上に相当する表層領域”でのみ上記の金属組織の条
件を満たしてもよい。したがって、表層領域が板厚の5
0%に相当する場合は全ての板厚部分が表層領域に該当
する。In the above, the high-strength steel plate refers to a thick steel plate and a hot-rolled steel plate. In the above [Invention 1] and [Invention 2], the metallographic conditions described in the respective inventions may be satisfied at all positions in the plate thickness direction, or the "plate thickness 5
%, The above condition of the metallographic structure may be satisfied only in the surface area corresponding to 5% or more of the surface area.
When it corresponds to 0%, all the plate thickness portions correspond to the surface layer region.
【0019】〔発明2〕のAr3点、Ac1点、中間温度等
の温度は表面での計測値をさす。復熱途中で加工を施す
場合は、加工時の表面温度が中間温度以下であればよ
く、加工により内部の温度が中間温度以上になり、その
結果、加工後に表面温度が中間温度以上になってもよ
い。Temperatures such as Ar 3 point, Ac 1 point, and intermediate temperature in [Invention 2] are measured values on the surface. When processing is performed during reheating, the surface temperature at the time of processing should be below the intermediate temperature, the internal temperature becomes above the intermediate temperature due to processing, and as a result, the surface temperature after processing becomes above the intermediate temperature. Good.
【0020】[0020]
【発明の実施の形態】まず、鋼の組成の限定理由につい
て説明する。以後の説明において、合金元素の「%」は
「重量%」を表示するものとする。BEST MODE FOR CARRYING OUT THE INVENTION First, the reasons for limiting the composition of steel will be described. In the following description, "%" of the alloying element shall indicate "% by weight".
【0021】1.鋼の化学組成
C:0.02〜0.2%
Cは強度上昇に有効な元素であり、所望の強度を得るた
めに0.02%以上が必要であるが、0.2%を超えて
過剰に含むと鋼の靭性を劣化させるとともに、溶接施工
の対象となる本発明鋼において溶接熱影響部の靱性が著
しく劣化するため上限を0.2%とする。1. Chemical composition of steel C: 0.02-0.2% C is an element effective for increasing strength, and 0.02% or more is necessary to obtain desired strength, but exceeding 0.2% If it is contained excessively, the toughness of the steel is deteriorated, and in the steel of the present invention to be welded, the toughness of the heat-affected zone of welding is significantly deteriorated, so the upper limit is made 0.2%.
【0022】Si:0.02〜0.5%
Siは脱酸に有効な元素であるが、0.5%を超えると
溶接熱影響部の靭性を低下させるため上限を0.5%と
する。Siが0.02%未満になると、脱酸時にAlの
損失が大きくなるので、Siの下限は0.02%とす
る。Si: 0.02-0.5% Si is an element effective for deoxidation, but if it exceeds 0.5%, the toughness of the heat-affected zone of the weld is reduced, so the upper limit is made 0.5%. . If the Si content is less than 0.02%, the loss of Al increases during deoxidation, so the lower limit of Si is made 0.02%.
【0023】Mn:0.4〜2.5%
Mnは強度上昇に有効な元素であり、そのためには、
0.4%以上が必要である。しかし、2.5%を超える
と溶接熱影響部の靭性が劣化するとともにAc3点やAc1
点が著しく低下し、そのために中間温度以下の温度域で
は復熱時の圧延による加工フェライトの再結晶が十分に
達成されなくなる。このためMnの上限は2.5%とす
る。Mn: 0.4 to 2.5% Mn is an element effective in increasing strength, and for that purpose,
0.4% or more is required. However, if it exceeds 2.5%, the toughness of the heat-affected zone of the weld deteriorates and Ac 3 point and Ac 1
The points are remarkably lowered, and therefore, in the temperature range below the intermediate temperature, recrystallization of the worked ferrite by rolling during recuperation cannot be sufficiently achieved. Therefore, the upper limit of Mn is 2.5%.
【0024】sol.Al:0.08%以下
sol.Alが実質的に0でもよい。ただし、板厚が厚いた
めに圧延の全圧下率[{(スラブ厚さ−製品板厚)/スラブ
厚さ}×100(%) ]を50%以上とれず凝固時のピンホ
−ルの圧着が期待できない場合には、ピンホールの発生
を抑えるためにsol.Alは0.001%以上とすること
が望ましい。sol.Alが0.001%未満では、凝固後
のスラブにピンホールが発生しやすい。一方、sol.Al
が0.08%を超えると脆性破壊伝播停止特性等の靭性
が劣化するので0.08%とする。Sol.Al: 0.08% or less sol.Al may be substantially zero. However, since the plate thickness is thick, the total rolling reduction ratio [{(slab thickness-product plate thickness) / slab thickness} × 100 (%)] cannot be 50% or more, and the pinholes are not crimped during solidification. If it cannot be expected, it is desirable to set sol.Al to 0.001% or more in order to suppress the generation of pinholes. If sol.Al is less than 0.001%, pinholes are likely to occur in the slab after solidification. On the other hand, sol.Al
Is more than 0.08%, the toughness such as brittle fracture propagation stopping property deteriorates, so it is set to 0.08%.
【0025】N:0.008%以下
Nは、Alとともに窒化物を生成し、結晶粒の微細化に
有効であるが、Nが高すぎると溶接部の靭性を損なうの
で、上限を0.008%とする。一方、適量のNには溶
接性の向上という効果がある。この効果を得る場合に
は、0.0015%以上含有させることが望ましい。N: 0.008% or less N forms a nitride together with Al and is effective for refining the crystal grains, but if N is too high, the toughness of the welded portion is impaired, so the upper limit is 0.008. %. On the other hand, a proper amount of N has the effect of improving weldability. To obtain this effect, it is desirable to contain 0.0015% or more.
【0026】Cu:0〜0.6%
Cuは含まなくてもよい。Cuは強度上昇に有効なので
特に強度を調整するためには添加しても良い。0.15
%未満では効果が明確でないので含ませる場合には0.
15%以上とすることが望ましい。しかし、0.6%を
超えると母材や溶接部の靱性を劣化させるので0.6%
以下とする。さらに良好な靱性と強度とのバランスを確
保するには、0.3%以下とすることが望ましい。Cu: 0 to 0.6% Cu may not be contained. Since Cu is effective in increasing the strength, it may be added particularly for adjusting the strength. 0.15
If the content is less than%, the effect is not clear.
It is desirable to be 15% or more. However, if it exceeds 0.6%, the toughness of the base material and the weld will deteriorate, so 0.6%.
Below. In order to secure a good balance between toughness and strength, it is desirable that the content be 0.3% or less.
【0027】Ni:0〜2%
Niは含まなくてもよい。Niはマトリックスの靭性を
向上させるので、とくに脆性亀裂伝播停止特性を向上さ
せる場合には、その効果を明確に得るために0.15%
以上含ませることが望ましい。一方、Niが2%を超え
ると焼入性が必要以上に高くなり、冷却時にAr3点以下
での変態率が十分高くとれないばかりか、Ac3点やAc1
点を著しく低下させるために復熱時の圧延の際に加工フ
ェライトの再結晶が達成されなくなる。従ってNiの上
限は2%とする。Ni: 0 to 2% Ni may not be contained. Since Ni improves the toughness of the matrix, 0.15% is added to obtain the effect clearly, especially when improving the brittle crack propagation stopping property.
It is desirable to include the above. On the other hand, Ni becomes higher than necessary hardenability exceeds 2%, not only the transformation rate below Ar 3 point can not be obtained sufficiently high during cooling, Ac 3 point or Ac 1
Since the point is remarkably lowered, recrystallization of the worked ferrite is not achieved during rolling during recuperation. Therefore, the upper limit of Ni is 2%.
【0028】Cr:0〜0.8%
Crは含まなくてもよい。Crは強度上昇に有効なので
特に強度を調整するために、その効果を確実に得るため
に0.2%以上含むことが望ましい。一方、0.8%を
超えると母材や溶接熱影響部の靱性が劣化するので上限
を0.8%とする。より良好な強度と靭性のバランスを
得る場合には0.4%以下とすることが望ましい。Cr: 0 to 0.8% Cr may not be contained. Since Cr is effective in increasing the strength, it is preferable to contain 0.2% or more in order to reliably obtain the effect, especially for adjusting the strength. On the other hand, if it exceeds 0.8%, the toughness of the base material and the weld heat affected zone deteriorates, so the upper limit is made 0.8%. In order to obtain a better balance between strength and toughness, it is desirable to set it to 0.4% or less.
【0029】Mo:0〜0.8%
Moは含まなくてもよい。Moは強度上昇に有効なので
特に強度を向上させる場合には添加する。0.05%未
満では強度向上の効果が明確でないので、含ませる場合
には0.05%以上とすることが望ましい。一方、0.
8%を超えて含むと母材や溶接熱影響部の靱性を劣化す
るので上限を0.8%とする。Mo: 0 to 0.8% Mo may not be included. Mo is effective in increasing the strength, so is added especially when improving the strength. If the content is less than 0.05%, the effect of improving the strength is not clear, so when it is included, it is desirable to set it to 0.05% or more. On the other hand, 0.
If the content exceeds 8%, the toughness of the base material and the weld heat affected zone deteriorates, so the upper limit is made 0.8%.
【0030】Nb:0〜0.05%
Nbは含まなくてもよい。NbはCやNと結合して微細
な析出物を生成し、加熱時のγ粒の微細化や加工γの再
結晶を抑制し、フェライト粒の微細化に有効なので、こ
の効果を確保する場合には添加する。0.01%未満で
はこの効果を確実に得ることができないので含む場合に
は0.01%以上とすることが望ましい。一方、0.0
5%を超えると靭性が劣化するため、上限を0.05%
とする。Nb: 0 to 0.05% Nb may not be included. Nb combines with C and N to form fine precipitates, suppresses γ grain refinement during heating and recrystallization of processed γ, and is effective for ferrite grain refinement. Add to. If it is less than 0.01%, this effect cannot be obtained reliably, so when it is included, it is desirable to set it to 0.01% or more. On the other hand, 0.0
If it exceeds 5%, the toughness will deteriorate, so the upper limit is 0.05%.
And
【0031】V:0〜0.08%
Vは含まなくてもよい。しかし、Vは強度上昇に有効な
ので特に強度を調整する場合には、その効果を確実に得
るために0.02%以上含むことが望ましい。しかし、
0.08%を超えると母材や溶接熱影響部の靱性を劣化
させるので、上限を0.08%とする。さらに良好な靭
性と強度を均衡させて確保する場合には0.05%以下
とすることが望ましい。V: 0 to 0.08% V may not be contained. However, since V is effective in increasing the strength, it is desirable to contain 0.02% or more in order to surely obtain the effect, particularly when the strength is adjusted. But,
If it exceeds 0.08%, the toughness of the base material and the weld heat affected zone deteriorates, so the upper limit is made 0.08%. In order to balance and secure good toughness and strength, it is desirable that the content be 0.05% or less.
【0032】B:0〜0.005%
Bは無添加でもよい。しかしBは、M23(CB)6 やBN
を形成しないで固溶状態でγ粒界に偏析すると極微量で
著しい焼入性向上効果を発揮するので、特に強度を調整
する場合には添加する。0.0003%未満では加工熱
処理条件によっては明確な効果を得られない場合がある
ので、含む場合には0.0003%以上とすることが望
ましい。一方、0.005%を超えると母材や熱影響部
の靱性を劣化させるので、上限は0.005%とする。B: 0 to 0.005% B may be added without addition. But B is M 23 (CB) 6 or BN
If it is segregated to the γ grain boundary in the solid solution state without forming the above, a very small amount will exert a remarkable effect of improving the hardenability, so that it is added particularly when the strength is adjusted. If it is less than 0.0003%, a clear effect may not be obtained depending on the thermomechanical treatment conditions, so when it is included, it is preferably 0.0003% or more. On the other hand, if it exceeds 0.005%, the toughness of the base material and the heat-affected zone deteriorates, so the upper limit is made 0.005%.
【0033】Ti:0〜0.05%
Tiは添加しなくてもよい。Tiは微量でNをTiNと
して固定しγの結晶粒を微細化する効果を有すると同時
に、Nb含有鋼の場合には、Nbによって助長される連
続鋳造鋼片表面のヒビワレを抑制するのに有効であるの
で添加することが望ましい。0.005%未満ではこの
ような効果は小さいので含む場合には0.005%以上
とすることが望ましい。0.05%を超えると母材や溶
接部の靭性が劣化するので、上限は0.05%とする。Ti: 0 to 0.05% Ti may not be added. Ti has the effect of refining the crystal grains of γ by fixing N as TiN in a trace amount, and at the same time, in the case of Nb-containing steel, it is effective in suppressing the cracking of the surface of the continuously cast billet promoted by Nb. Therefore, it is desirable to add it. If it is less than 0.005%, such an effect is small. Therefore, if it is included, it is preferably 0.005% or more. If it exceeds 0.05%, the toughness of the base material and the welded portion deteriorates, so the upper limit is made 0.05%.
【0034】不可避不純物:不可避不純物のうち、Pは
0.01%以下とすることが望ましい。0.01%を超
えると、凝固する際に生成する偏析部にPのみならず
C、Mn、S等を濃縮させ、硬さを高くして靱性と溶接
性を劣化させる。Sは、0.007%以下とすることが
望ましい。0.007%を超えると、偏析部に粗大なM
nSを生成し、溶接低温割れの起点や水素性欠陥の起点
となる。その他の不純物は通常の精錬により得られるレ
ベルまで減少させる。Inevitable impurities: Of the inevitable impurities, P is preferably 0.01% or less. If it exceeds 0.01%, not only P but also C, Mn, S, and the like are concentrated in the segregated portion formed during solidification to increase hardness and deteriorate toughness and weldability. S is preferably 0.007% or less. If it exceeds 0.007%, coarse M in the segregation part
It produces nS and becomes the starting point of welding cold cracking and the starting point of hydrogen defects. Other impurities are reduced to the levels obtained by normal refining.
【0035】2.製造方法 次に製造方法について説明する。2. Production method Next, the manufacturing method will be described.
【0036】まず鋼片をAc3点以上に加熱する。これは
Ac3点以上に加熱することによって凝固時にできた粗大
な金属組織を均一なγ粒にするためである。加熱温度は
低いほどγ粒の細粒化に有効であるが、Nbなどを添加
している場合はNbの炭窒化物を固溶させるために11
00℃程度に加熱される方が望ましい。続いて鋼板をA
r3以下に冷却してγをフェライトとその他の組織に変態
させる。このときの冷却は圧延ライン上に備えた通常の
冷却設備により行うことができる。この時、冷却停止温
度を適切に制御することによってAr3点以下での変態相
の体積率(以下、「変態率」と記す)が70%以上とな
るようにする必要がある。変態率は、加工連続冷却曲線
(加工CCT図)作成の際、熱膨張等の測定により変態
率70%となる温度が定められので、微細な組織とする
表層領域の深さに応じて板厚中心部または表層領域でそ
の温度となるように表面温度によって制御することがで
きる。表面温度を知れば板厚方向の任意の位置の温度は
計算によって知ることができ、したがって、表層領域の
深さを知ることができる。First, the steel slab is heated to Ac 3 point or more. This is to make the coarse metallographic structure formed during solidification into uniform γ grains by heating to the Ac 3 point or higher. The lower the heating temperature is, the more effective it is in the refinement of γ grains, but when Nb or the like is added, it is necessary to form a solid solution of carbonitrides of Nb.
It is desirable to heat to about 00 ° C. Then the steel plate A
Cool to r 3 or less to transform γ into ferrite and other structures. Cooling at this time can be performed by a normal cooling facility provided on the rolling line. At this time, it is necessary to appropriately control the cooling stop temperature so that the volume ratio of the transformation phase below the Ar 3 point (hereinafter referred to as “transformation rate”) becomes 70% or more. The transformation rate is determined as the temperature at which the transformation rate becomes 70% by measuring the thermal expansion when creating a working continuous cooling curve (working CCT diagram), so the plate thickness depends on the depth of the surface layer region that has a fine structure. It can be controlled by the surface temperature so as to reach the temperature in the central portion or the surface layer region. If the surface temperature is known, the temperature at any position in the plate thickness direction can be known by calculation, and thus the depth of the surface layer region can be known.
【0037】一方、変態率の上限はとくに定めないが、
90%以下とすることが望ましい。90%を超えるまで
冷却すると復熱に時間がかかり圧延能率が低下する場合
がある。On the other hand, although the upper limit of the transformation rate is not specified,
It is desirable to be 90% or less. If cooled to more than 90%, it may take time to reheat and the rolling efficiency may decrease.
【0038】変態相は、特に575℃以上での変態相の
変態率が50%以上となることが望ましい。575℃以
下での変態相は主としてラス状の上部ベイナイト組織と
なる。この上部ベイナイトのラス状フェライトは、結晶
方位が揃い、かつその長さは最大でほぼγ粒径に一致し
γの未再結晶域で極めて大きな圧下を加えない限り、微
細な組織とすることは困難である。これに対し、575
℃以上で変態した変態相は、フェライトが粒状で結晶方
位がランダムであるため、復熱過程で方位の異なるγ粒
が生成し、最終のフェライト組織を微細にするうえでも
有効である。この最初の冷却時に圧延を加えると、結晶
方位の揃ったラス状フェライトの生成を防止し、粒状フ
ェライト比率を高め、かつこの粒状フェライトの粒径を
微細にするうえで有効に働く。最初の冷却において圧延
加工を加える場合は、その圧下率は30%以上とするこ
とが望ましい。The transformation phase preferably has a transformation rate of 50% or more at 575 ° C. or higher. The transformation phase at 575 ° C. or lower mainly has a lath-like upper bainite structure. This upper bainite lath-like ferrite has a uniform crystallographic orientation, and its length corresponds to a maximum grain size of approximately γ, and unless a very large reduction is applied in the unrecrystallized region of γ, a fine structure cannot be obtained. Have difficulty. In contrast, 575
In the transformation phase transformed at a temperature of ℃ or more, since the ferrite is granular and the crystal orientation is random, γ grains having different orientations are generated in the reheating process, which is also effective in making the final ferrite structure fine. If rolling is applied during this first cooling, the formation of lath-shaped ferrite with a uniform crystal orientation is prevented, the ratio of granular ferrite is increased, and the grain size of this granular ferrite is effectively reduced. When rolling is added in the first cooling, the reduction rate is preferably 30% or more.
【0039】つぎにこのγと変態相からなる金属組織の
鋼をAc1点以上でAc1点とAc3点の中間温度以下の温度
に復熱する。中間温度を超えて加熱するとα粒等が成長
するからである。一方、復熱温度が“Ac1点+40℃”
未満ではγの生成が十分でなく、加工γから変態するα
の変態率を40%以上にすることが困難になる場合があ
るので、復熱の下限温度は“Ac1点+40℃”とするこ
とが望ましい。Next condensate heat the steel metal structure consisting of the γ and transformation phase to an intermediate temperature below the temperature of the Ac 1 point and the Ac 3 point at Ac 1 point or more. This is because α grains and the like grow when heated above the intermediate temperature. On the other hand, the recuperation temperature is “Ac 1 point + 40 ° C”
If it is less than γ, the production of γ is not sufficient and α is transformed from processing γ.
Since it may be difficult to make the transformation rate of 40% or more, it is desirable that the lower limit temperature of the recuperation be "Ac 1 point + 40 ° C".
【0040】この復熱の熱源には高周波加熱、直接通電
加熱、サブラインでの簡易ガス加熱等を用いることがで
きる。復熱途中に圧延加工を加える場合は、鋼板の表面
温度が中間温度以下であれば加えてもよい。しかし、圧
延加工後に加工熱によって表面温度が中間温度を超えた
場合には圧延を加えてはならない。この温度域への復熱
によりフェライト組織は粒成長により粗大化するが、フ
ェライト粒界より一部がγへと逆変態を起こすため、微
細な(α+γ)の二相組織となり互いの粒成長を抑制し
合う。復熱を終了し放冷中、表面温度が中間温度以下に
ある限り圧延加工を加えてもよい。この復熱途中、また
は復熱終了後放冷中最終の冷却までの間に必要に応じて
加工を加える場合には、加工の圧下率は30%以上とす
ることが望ましい。As the heat source for this recuperation, high frequency heating, direct current heating, simple gas heating in a sub line, or the like can be used. When the rolling process is performed during the recuperation, it may be added as long as the surface temperature of the steel sheet is not higher than the intermediate temperature. However, if the surface temperature exceeds the intermediate temperature due to processing heat after rolling, rolling should not be applied. By returning to this temperature range, the ferrite structure becomes coarse due to grain growth, but part of the ferrite grain boundary undergoes reverse transformation to γ, resulting in a fine (α + γ) two-phase structure and mutual grain growth. Restrain each other. Rolling may be added as long as the surface temperature is not higher than the intermediate temperature while the recuperation is completed and the material is allowed to cool. When processing is added as needed during this recuperation or during the period from the end of recuperation to the final cooling during cooling, it is desirable that the reduction rate of the processing be 30% or more.
【0041】復熱を終了し放冷後または放冷を経由しな
いで続いて冷却を行う。この冷却は微細なα粒を得るた
めに600〜650℃まで水冷することが望ましい。こ
のとき、冷却開始温度以下で、かつ“Ac1点−100
℃”以上の温度域で加工を加える場合は、圧下率30%
以上の圧下を行うことが望ましい。After completion of the recuperation and cooling, the cooling is continued without passing through the cooling. This cooling is preferably water cooling to 600 to 650 ° C. in order to obtain fine α particles. At this time, the temperature is below the cooling start temperature and "Ac 1 point-100"
When processing in the temperature range above ℃ ”, the reduction rate is 30%
It is desirable to carry out the above reduction.
【0042】上記の最初の冷却、復熱途中および復
熱後放冷中、および最後の冷却にそれぞれにおいて加
える圧延加工の圧下率の総和は、微細なフェライト粒と
するために50%以上とする。この圧下率の総和は高い
ほうが望ましいが、圧延機の圧下能力等の観点から15
0%以下にすることが望ましい。これらの加工によって
γとαはともに回復と再結晶の過程を経てより一層細粒
化し、一方、これらの加工によりγ中にも加工歪が蓄積
され、最終の冷却時に微細なフェライトに変態する。The sum of the rolling reductions applied during the first cooling, during the recuperation and during the cooling after the recuperation, and during the final cooling is 50% or more in order to obtain fine ferrite grains. . It is desirable that the total sum of the rolling reductions is high, but it is 15 from the viewpoint of the rolling mill rolling capacity.
It is desirable to set it to 0% or less. By these workings, both γ and α are further refined through the process of recovery and recrystallization, and on the other hand, working strains are also accumulated in γ by these workings, and transformed into fine ferrite during the final cooling.
【0043】3.金属組織
上記の化学組成および製造条件により、加工γから変態
するαの体積率が40%以上、加工αから再結晶したα
の体積率が40%以上で、かつ両方のαにわたる平均粒
径を3μm以下とすることができる。加工γから変態す
るαの周囲ではγから排出されたCが高濃度で分布する
のでパーライト、ベイナイト等が生成する。すなわち、
セメンタイトが高密度で分布する隣接組織を有する。鋼
の中には必ずある程度の偏析が凝固のときに生じ、これ
が圧延加工を受けても残っている。この部分にはMn等
が高濃度に分布し、γ化しやすいので、二相域の温度域
にあるとき偏析部分はγ化している。加工γから変態す
るαはこの偏析部分のMn等の濃度が比較的低い部分の
周囲の部分であり、偏析部の中核部分は、上記のように
セメンタイトが高密度で分布するパーライト等に変態す
る。これに対して、加工αから再結晶したαは負偏析部
の偏析部の中間部分を占める。したがって、両方のαは
光学顕微鏡写真等により識別される。3. Metal structure Due to the above chemical composition and manufacturing conditions, the volume ratio of α transformed from processing γ is 40% or more, α recrystallized from processing α
And the average particle size over both α can be 3 μm or less. Since C discharged from γ is distributed at a high concentration around α transformed from processing γ, pearlite, bainite and the like are generated. That is,
It has an adjacent structure in which cementite is densely distributed. In steel, some degree of segregation always occurs during solidification, which remains even after rolling. Since Mn and the like are distributed in a high concentration in this portion and are likely to be gamma-ized, the segregation portion is gamma-ized in the temperature range of the two-phase region. The α that transforms from the processing γ is a portion around the portion where the concentration of Mn or the like in the segregation portion is relatively low, and the core portion of the segregation portion transforms into pearlite or the like in which cementite is distributed at a high density as described above. . On the other hand, α recrystallized from the processed α occupies the intermediate portion of the segregation portion of the negative segregation portion. Therefore, both α are identified by the optical micrograph or the like.
【0044】板厚の表層領域のみがこのような金属組織
となっても目標とする機械的性質を確保することができ
る。このような再結晶と逆変態、さらに二相組織化によ
る粒成長の抑制によって所望する微細組織が得られる。
最終の金属組織はフェライト、上部ベイナイトおよびパ
ーライトの混合組織を主体とし、一部マルテンサイトが
加わる場合もある。Even if only the surface layer region of the plate thickness has such a metal structure, the target mechanical properties can be secured. A desired fine structure can be obtained by such recrystallization, reverse transformation, and suppression of grain growth by forming a two-phase structure.
The final metallographic structure is mainly composed of a mixed structure of ferrite, upper bainite, and pearlite, and some martensite may be added in some cases.
【0045】[0045]
【実施例】つぎに本発明の効果を実施例により説明す
る。EXAMPLES Next, the effects of the present invention will be described with reference to examples.
【0046】表1および表2は供試鋼板の化学組成を示
す一覧表である。Tables 1 and 2 are tables showing the chemical compositions of the test steel sheets.
【0047】[0047]
【表1】 [Table 1]
【0048】[0048]
【表2】 [Table 2]
【0049】供試鋼板は、常法により溶製し、鋳造して
得られたこれらの化学組成を有する鋼片に対して加工熱
処理を施すことにより得られた。最終の板厚は10〜4
0mmとした。The test steel sheets were obtained by subjecting steel pieces having these chemical compositions obtained by melting and casting by a conventional method to thermomechanical treatment. Final thickness is 10-4
It was set to 0 mm.
【0050】表3は供試鋼板に施された加工熱処理条件
を示す表である。Table 3 is a table showing the thermomechanical treatment conditions applied to the test steel sheet.
【0051】[0051]
【表3】 [Table 3]
【0052】金属組織の観察にあたっては、鋼板の全厚
にわたって細粒組織が得られている場合はこれらの鋼板
の板厚中心部より組織観察用試験片を採取し、鋼板の表
層領域にのみ細粒組織が得られている場合は表層領域の
中央部を組織観察に供した。引張試験はJIS4号(JIS
Z 2201)を用い、圧延幅方向(C方向)について、板厚
中心部または表層部より採取して、JIS Z 2241に準拠し
て試験を行い伸び等を測定した。シャルピー衝撃試験片
はJIS4号(JIS Z 2202)のハーフサイズのものを板厚
中心部または表層領域より採取した。When observing the metallographic structure, when fine-grained microstructures are obtained over the entire thickness of the steel sheet, test specimens for microstructure observation are taken from the center portions of the steel sheet thicknesses, and only the surface layer region of the steel sheet is finely divided. When the grain structure was obtained, the central part of the surface layer region was used for structure observation. The tensile test is JIS No. 4 (JIS
Z 2201) was used to sample in the rolling width direction (C direction) from the center portion of the plate thickness or the surface layer portion, and a test was conducted in accordance with JIS Z 2241 to measure elongation and the like. As the Charpy impact test piece, a half size JIS 4 (JIS Z 2202) sample was sampled from the center part of the plate thickness or the surface layer region.
【0053】また、溶接試験は、市販の溶接材料を用い
サブマージアーク溶接(SAW)により35kJ/cm
の入熱条件によって溶接を実施し、溶接ボンド部よりシ
ャルピー試験片を採取し、−20℃の温度において試験
を実施した。The welding test was carried out by submerged arc welding (SAW) using a commercially available welding material at 35 kJ / cm.
Welding was carried out under the heat input condition of No. 2, and a Charpy test piece was sampled from the weld bond portion, and the test was carried out at a temperature of -20 ° C.
【0054】表4はこれらの試験結果を示す一覧表であ
る。Table 4 is a list showing the results of these tests.
【0055】[0055]
【表4】 [Table 4]
【0056】比較例である試験番号9、10、13、1
5、16、17、20は、最初の冷却時のAr3点以下で
の変態率を70%未満としたことが主原因でフェライト
の平均粒径が粗大となり、まず母材の靭性が目標値に到
達しなかった。このうち試験番号13、15、16、1
7は伸びの絶対値も低く、かつ13、15、17につい
ては伸びの異方性も大きかった。これは、加工されたフ
ェライトの再結晶が不十分なためである。試験番号8
は、復熱温度が中間温度を超えたためにフェライト平均
粒径が粗大となり、母材の靭性が低い結果となった。試
験番号11はC含有率が高すぎるために母材および溶接
熱影響部の靭性が劣化した。試験番号12および14
は、それぞれSiおよびCuが高すぎボンドの靭性が著
しく劣化した。同様に、試験番号18および19は、そ
れぞれVおよびNb、Tiが高すぎ、ボンドの靭性が劣
化した。Test numbers 9, 10, 13, and 1 which are comparative examples
In Nos. 5, 16, 17, and 20, the average grain size of ferrite became coarse mainly because the transformation rate at the Ar 3 point or less during the initial cooling was less than 70%, and the toughness of the base material was first set to the target value. Did not reach. Of these, test numbers 13, 15, 16, 1
No. 7 had a low absolute value of elongation, and Nos. 13, 15, and 17 had large anisotropy of elongation. This is because the processed ferrite is insufficiently recrystallized. Exam number 8
In the case of, the reheat temperature exceeded the intermediate temperature, so the average ferrite grain size became coarse and the toughness of the base material was low. In Test No. 11, the toughness of the base metal and the weld heat affected zone deteriorated because the C content was too high. Test numbers 12 and 14
Of Si and Cu were too high, respectively, and the toughness of the bond was significantly deteriorated. Similarly, in Test Nos. 18 and 19, V, Nb, and Ti were too high, and the bond toughness deteriorated.
【0057】これに対して、本発明例である試験番号1
〜7は化学組成および製造条件を本発明の限定範囲内で
行った結果、所期の金属組織が得られ、母材の靭性、伸
びおよび溶接部の靭性すべてについて目標性能を満たす
ことができた。On the other hand, test number 1 which is an example of the present invention
As for Nos. 7 to 7, the chemical composition and the manufacturing conditions were performed within the limits of the present invention, and as a result, the desired metallographic structure was obtained, and the target performances were able to be satisfied for all of the toughness of the base metal, the elongation and the toughness of the welded part. .
【0058】[0058]
【発明の効果】本発明により高延性高靭性高張力鋼板が
高能率で製造でき、極地海洋構造物、タンク、低温圧力
容器、橋梁、建材等に好適な高張力鋼板を高能率で製造
できる。Industrial Applicability According to the present invention, a high-ductility, high-toughness, high-tensile steel plate can be produced with high efficiency, and a high-tensile steel plate suitable for polar marine structures, tanks, low temperature pressure vessels, bridges, building materials, etc. can be produced with high efficiency.
フロントページの続き (56)参考文献 特開 平9−41080(JP,A) 特開 平8−209291(JP,A) 特開 平8−295982(JP,A) 特開 平9−176782(JP,A) 特開 平10−168542(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 8/02 Continuation of the front page (56) Reference JP-A-9-41080 (JP, A) JP-A-8-209291 (JP, A) JP-A-8-295982 (JP, A) JP-A-9-176782 (JP , A) JP-A-10-168542 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00-38/60 C21D 8/02
Claims (2)
i:0.02〜0.5%、Mn:0.4〜2.5%、so
l.Al:0.08%以下、N:0.008%以下、C
u:0〜0.6%、Ni:0〜2%、Cr:0〜0.8
%、Mo:0〜0.8%、Nb:0〜0.05%、V:
0〜0.08%、B:0〜0.005%およびTi:0
〜0.05%を含み残部がFeおよび不可避不純物から
なり、少なくとも表層領域において未再結晶オーステナ
イトから変態したフェライトおよび加工されたフェライ
トから再結晶したフェライトが各々40体積%以上を占
め、かつ両方のフェライトについての平均粒径が3μm
以下であることを特徴とする高延性高靭性鋼板。1. A weight ratio of C: 0.02 to 0.2%, S
i: 0.02-0.5%, Mn: 0.4-2.5%, so
l.Al: 0.08% or less, N: 0.008% or less, C
u: 0-0.6%, Ni: 0-2%, Cr: 0-0.8
%, Mo: 0 to 0.8%, Nb: 0 to 0.05%, V:
0-0.08%, B: 0-0.005% and Ti: 0
.About.0.05% and the balance consisting of Fe and unavoidable impurities, and at least in the surface layer region, ferrite transformed from unrecrystallized austenite and ferrite recrystallized from processed ferrite each account for 40% by volume or more, and Average particle size of ferrite is 3 μm
A high ductility and high toughness steel sheet characterized by being:
をAc3点以上に加熱した後、少なくとも表層領域が下記
の、およびの条件を満足する3つの加工熱処理を
順に施す製造方法であって、、およびでの加工の
圧下率の和が50%以上であることを特徴とする請求項
1に記載する高延性高靭性鋼板の製造方法。 Ar3点以下での変態相の体積率が70%以上となるよ
うに冷却し、途中で冷却を停止する。この冷却中に必要
に応じて加工を加える。 上記の冷却停止後、Ac1点以上でAc1点とAc3点の
中間温度以下に復熱させる。この復熱途中および復熱終
了後放冷中に必要に応じて加工を加える。 鋼板を冷却する。この冷却中にAc1点−100℃まで
の温度域で必要に応じて加工を加える。2. A manufacturing method in which a steel slab having the chemical composition according to claim 1 is heated to an Ac 3 point or more and then three thermo-mechanical treatments in which at least the surface layer region satisfies the following conditions The sum of the rolling reductions in and is 50% or more, and the method for producing a high ductility and high toughness steel sheet according to claim 1, wherein. Cooling is performed so that the volume ratio of the transformation phase at the Ar 3 point or less becomes 70% or more, and the cooling is stopped midway. If necessary, processing is added during this cooling. After the cooling is stopped, the temperature is reheated to a temperature between the Ac 1 point and the Ac 3 point and below the Ac 1 point or higher. If necessary, processing is performed during this recuperation and during cooling after recuperation. Cool the steel plate. During this cooling, processing is added as necessary in the temperature range of Ac 1 point to -100 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20889297A JP3367388B2 (en) | 1997-08-04 | 1997-08-04 | High ductility and high toughness steel sheet and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20889297A JP3367388B2 (en) | 1997-08-04 | 1997-08-04 | High ductility and high toughness steel sheet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1150185A JPH1150185A (en) | 1999-02-23 |
JP3367388B2 true JP3367388B2 (en) | 2003-01-14 |
Family
ID=16563864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20889297A Expired - Fee Related JP3367388B2 (en) | 1997-08-04 | 1997-08-04 | High ductility and high toughness steel sheet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3367388B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007125571A1 (en) * | 2006-04-26 | 2007-11-08 | Kabushiki Kaisha Kobe Seiko Sho | Steel sheet with less weld buckling deformation, and process for producing the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4018318B2 (en) * | 2000-04-18 | 2007-12-05 | 株式会社神戸製鋼所 | Steel plate manufacturing method with excellent brittle cracking characteristics |
MX2021009433A (en) * | 2019-02-15 | 2021-09-10 | Nippon Steel Corp | Steel sheet and method for producing same. |
-
1997
- 1997-08-04 JP JP20889297A patent/JP3367388B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007125571A1 (en) * | 2006-04-26 | 2007-11-08 | Kabushiki Kaisha Kobe Seiko Sho | Steel sheet with less weld buckling deformation, and process for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JPH1150185A (en) | 1999-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3526576B2 (en) | Manufacturing method of high-strength steel with excellent weld strength and weld strength | |
AU736037B2 (en) | Method for producing ultra-high strength, weldable steels with superior toughness | |
AU736035B2 (en) | Ultra-high strength, weldable steels with excellent ultra-low temperature toughness | |
AU736078B2 (en) | Ultra-high strength, weldable, boron-containing steels with superior toughness | |
AU726316B2 (en) | High-tensile-strength steel and method of manufacturing the same | |
JP4022958B2 (en) | High toughness thick steel plate with excellent weld heat affected zone toughness and method for producing the same | |
AU736152B2 (en) | Ultra-high strength, weldable, essentially boron-free steels with superior toughness | |
JP5151090B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JPH0518888B2 (en) | ||
US5634988A (en) | High tensile steel having excellent fatigue strength at its weld and weldability and process for producing the same | |
JPH0453929B2 (en) | ||
JP2913426B2 (en) | Manufacturing method of thick high strength steel sheet with excellent low temperature toughness | |
JP5034392B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP2008095152A (en) | High tensile strength steel sheet for super high heat input welding with low acoustic anisotropy and excellent weldability and tensile strength of 570 MPa class or more and method for producing the same | |
JP4310591B2 (en) | Method for producing high-strength steel sheet with excellent weldability | |
JP3569314B2 (en) | Steel plate for welded structure excellent in fatigue strength of welded joint and method of manufacturing the same | |
JP2004156095A (en) | Steel sheet excellent in toughness of base metal and weld heat affected zone and method of manufacturing the same | |
JP3367388B2 (en) | High ductility and high toughness steel sheet and manufacturing method thereof | |
JPH09194990A (en) | High-strength steel with excellent toughness | |
JPH11131177A (en) | Steel plate for medium and normal temperature pressure vessel which can omit post-weld heat treatment and method for producing the same | |
JP3462943B2 (en) | Steel sheet having high fatigue strength at welded portion and method for producing the same | |
JPH0118967B2 (en) | ||
JP3434378B2 (en) | Thick steel plate with low fatigue crack propagation speed in thickness direction and method of manufacturing the same | |
JPH10158778A (en) | High strength steel sheet excellent in toughness and weldability and method for producing the same | |
JPH10147845A (en) | Steel plate having high fatigue strength and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071108 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081108 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091108 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091108 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101108 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111108 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121108 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131108 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131108 Year of fee payment: 11 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131108 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |