Nothing Special   »   [go: up one dir, main page]

JP3361405B2 - Outdoor unit of air conditioner - Google Patents

Outdoor unit of air conditioner

Info

Publication number
JP3361405B2
JP3361405B2 JP07788895A JP7788895A JP3361405B2 JP 3361405 B2 JP3361405 B2 JP 3361405B2 JP 07788895 A JP07788895 A JP 07788895A JP 7788895 A JP7788895 A JP 7788895A JP 3361405 B2 JP3361405 B2 JP 3361405B2
Authority
JP
Japan
Prior art keywords
heat exchanger
heat exchange
outside air
outdoor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07788895A
Other languages
Japanese (ja)
Other versions
JPH08270985A (en
Inventor
秀明 鈴木
宏二 和田
孝 柿木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP07788895A priority Critical patent/JP3361405B2/en
Priority to TW087200825U priority patent/TW367019U/en
Priority to GB9603896A priority patent/GB2299656B/en
Priority to KR1019960005608A priority patent/KR100189000B1/en
Priority to CN96105916A priority patent/CN1100238C/en
Publication of JPH08270985A publication Critical patent/JPH08270985A/en
Application granted granted Critical
Publication of JP3361405B2 publication Critical patent/JP3361405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/40Vibration or noise prevention at outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • F24F1/48Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow
    • F24F1/54Inlet and outlet arranged on opposite sides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/28Safety or protection arrangements; Arrangements for preventing malfunction for preventing noise

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、空気調和機の室外ユニ
ットに係り、特に、室外熱交換器構成の改良に関する。 【0002】 【従来の技術】普通用いられる空気調和機は、被空調室
に取付けられる室内ユニットと、建屋外部に据付けられ
る室外ユニットとを、冷媒管や電気配線等を介して接続
してなる。室外ユニットは、建屋の壁面に可能な限り近
接して据付けられ、邪魔にならないように配慮される。 【0003】この室外ユニットのユニット本体内部に
は、室外熱交換器、送風機、圧縮機、配管部品および電
気部品箱などが収容配置される。そして、特に室外熱交
換器において、熱交換能力の向上を達成するために熱交
換器の容量を多くすることが検討されている。 【0004】その結果、図8に示すように、平面視で略
L字状に曲成され、互いにほぼ同形の第1の熱交換器a
と第2の熱交換器bを並列に配置してなる室外熱交換器
Sが案出された。 【0005】なお、筐体であるユニット本体cは、その
背面部と側面部に外気吸込み口d,eが設けられ、前面
部には吹出し口fが設けられる。上記室外熱交換器Sは
平面視でL字状に形成されるので、上記各外気吸込み口
d,eに直接対向する。 【0006】吹出し口fには、プロペラファンgを備え
た送風機hが対向して配置されており、図中矢印に示す
ように、各外気吸込み口d,eから外気を吸込んで室外
熱交換器Sと熱交換させ、吹出し口fから吹出すように
なっている。 【0007】 【発明が解決しようとする課題】このような第1の熱交
換器aと第2の熱交換器bを備えることによって、見掛
け上は、熱交換器単体のものよりも、熱交換器容量が2
倍に増大する。 【0008】しかしながら、熱交換器容量の2倍化にと
もなって、熱交換能力が単純に2倍にはならない。すな
わち、容量増加に対応して風量も増加させなければ、熱
交換能力は増加せず、この場合には上記送風機hおよび
ファンgをより大型化あるいは回転数を上げて、熱交換
能力に対応した熱交換空気風量を確保しなければならな
い。 【0009】加えて上記プロペラファンgは、回転軸に
平行な方向である背面側において、その風量と風速は大
である。これに対し、ファンgの回転軸に垂直な方向で
ある側面側において、風量と風速は小である。 【0010】したがって、図8のように熱交換器Sの容
量を増加した場合、風量/風速が比較的少ない側面側に
おける容量増加分に応じた風量を確保するためには、上
記送風機hおよびファンgをさらに大型化したり、ある
いは回転数を上げる必要がある。 【0011】このように送風機hおよびファンgをより
大型化したならば、これにともなってユニット本体cも
大型化してしまい、筐体の小型化が望まれる現状ではデ
メリットになる。また、回転数を上げたならば、送風騒
音も増加してしまう。 【0012】このような条件から、図9に示すような室
外熱交換器Saが考えられた。すなわち、第2の熱交換
器bのみ先のものと同様、平面視でL字状に形成され
る。新たな第1の熱交換器jは直状にして、背面部吸込
み口dに沿うよう配置される。(図8と同一部品は、同
番号を付して新たな説明を省略) なお説明すれば、第1の熱交換器jは第2の熱交換器b
の直状部位に平行に配置される。熱交換空気の気流を基
準にすると、第1の熱交換器jは第2の熱交換器bの下
流側になる。 【0013】この場合は、側面側の熱交換器を増加せ
ず、背面側の熱交換器容量のみ増加することとなり、熱
交換器容量の増大を図れる。そして、側面側の熱交換器
が少なくなった分、プロペラファンgの直径を大きくで
き、風量の増加を得られる。 【0014】したがって、筐体寸法を大きくすることな
く、熱交換器容量および風量の増加が可能となる。 【0015】しかるに、背面部の外気吸込み口dから吸
込まれた熱交換空気のうち、特に第2の熱交換器bの曲
成部を通過した熱交換空気部分は、この下流側に位置す
る第1の熱交換器jのUパイプkに導かれて乱流の発生
するところとなり、騒音が大きくなるなどの不具合があ
る。 【0016】本発明は、上記事情に鑑みなされたもので
あり、その目的とするところは、熱交換器容量を増加し
て熱交換能力の増大化を図り、併せて熱交換器を通過す
る熱交換空気に対する通風抵抗の均一化による騒音低減
を得られる空気調和機の室外ユニットを提供しようとす
るものである。 【0017】 【課題を解決するための手段】上記目的を満足するため
の本発明の空気調和機の室外ユニットは、筐体からな
り、その背面部と少なくとも1つの側面部に外気吸込み
口が開口され、かつ前面部に吹出し口が開口されるユニ
ット本体と、このユニット本体内に配置される室外熱交
換器と、外気吸込み口を介して室外熱交換器へ外気を導
びき、ここで熱交換した後、吹出し口から外部へ吹出す
ため吹出し口に対向して配置されたプロペラファンを備
えた送風機とを具備し、上記室外熱交換器は、狭小の間
隙を存して並設される多数枚のフィンに、冷媒が導かれ
る熱交換パイプを貫通させたフィンドチューブタイプで
あって、背面部と側面部の外気吸込み口に対向するよう
平面視で略L状に折り曲げ形成されるとともに送風機を
囲むように配置された第1の熱交換器と、第1の熱交換
器における熱交換空気の上流側で、背面部の外気吸込み
口との間に背面部外気吸込み口に沿う直状部分と並行に
介設され、平面視で直状に形成される第2の熱交換器と
からなり、 上記第1の熱交換器における側面部の外気吸
込み口に対向する部分のフィンピッチを、背面部の外気
吸込み口に対向する部分のフィンピッチよりも細かく設
定した。 【0018】 【0019】 【0020】 【0021】 【0022】 【0023】さらに、上記第1の熱交換器において、側
面部の外気吸込み口に対向する部分のフィンピッチを、
背面部の外気吸込み口に対向する部分のフィンピッチよ
りも細かく設定した。 【0024】 【作用】上記室外熱交換器は、第1の熱交換器がユニッ
ト本体の背面部と側面部の外気吸込み口に対向するよう
平面視で折り曲げ形成され、かつ送風機を囲むよう配置
され、第2の熱交換器は、第1の熱交換器の上流側で、
背面部の外気吸込み口との間に介設され、平面視で直状
に形成される。 【0025】したがって、プロペラファンの直進方向の
送風量が多い背面側に2列の熱交換器を配置し、側面側
に1列の熱交換器を配置することとなり、背面側と側面
側において通風抵抗が均一化して送風量と熱交換器の熱
交換量のバランスをとることができ、熱交換能力の増大
化が図れる。 また、送風機に面する側には、側面側から
背面側に至る熱交換器がL字状で連続形成され、熱交換
器を通過した風が端板部分で乱流が発生することがな
く、騒音低減が図れる。 【0026】 【実施例】以下、本発明の一実施例を、図面を参照して
説明する。 【0027】図1に、空気調和機を構成する室外ユニッ
トを示す。 【0028】ユニット本体1は、前面部、後板および底
板を一体に組合わせた筐体である。この前面部にはベル
マウス2が設けられ、熱交換空気の吹出し口3が形成さ
れる。背面部と一方の側面部には熱交換空気の吸込み口
4,5が設けられる。 【0029】ユニット本体1内には、吸込み口4,5に
沿うようにして室外熱交換器6が配置される。 【0030】上記室外熱交換器6は、背面部と側面部の
外気吸込み口4,5に対向するよう平面視で略L字状に
折り曲げ形成される第1の熱交換器7と、この第1の熱
交換器における背面部外気吸込み口4に沿う直状部分に
並行で、かつ背面部外気吸込み口側に沿って配置される
直状の第2の熱交換器8とから構成される。 【0031】各熱交換器7,8とも、狭小の間隙を存し
て並設される多数枚のフィン9…に、そして、一側端の
フィン9から突出する熱交換パイプ10部分はU字状1
1に折り曲げ形成され、他側端のフィン9から突出する
熱交換パイプ10部分は図示しないUベンドを介して連
通される、いわゆるフィンドチューブタイプである。 【0032】第1の熱交換器7の他側端フィン9と、第
2の熱交換器8の両側端フィン9,9は、背面部外気吸
込み口4の他側端もしくは両側端に正しく対向してい
る。また、第1の熱交換器7の一側端フィン9は、側面
部外気吸込み口5の一側端に正しく対向している。 【0033】このことから、各熱交換器7,8における
熱交換パイプ10のU字状部11およびUベンド部分は
全て外気吸込み口4,5から外れた部分に対向してお
り、いずれも後述するように、各吸込み口から導入され
る外気に直接さらされることはない。 【0034】上記吹出し口3と室外熱交換器6を構成す
る第1の熱交換器7との間に、室外送風機12が介設さ
れる。この送風機12は、熱交換器7側に設けられる支
持台13に支持されるファンモータ14と、このモータ
の回転軸に嵌着され、かつベルマウス2に形成される吹
出し口3と対向するプロペラファン15とからなる。 【0035】そして、ファンモータ14の駆動によって
プロペラファン15が回転すると、図に矢印で示すよう
に、背面部および側面部の外気吸込み口4,5から外気
がユニット本体1内に導かれ、室外熱交換器6を介して
ユニット本体1内を横断し、かつ吹出し口3からユニッ
ト本体外へ吹出されるようになっている。 【0036】ユニット本体1内における熱交換空気の流
れから、背面部外気吸込み口4を対象としてみると、上
流側に第2の熱交換器8が位置し、この下流側に第1の
熱交換器7の吸込み口4対向部分が位置することにな
る。 【0037】図2に示すように、第1の熱交換器7を構
成する熱交換パイプ10Paの直径φda は、第2の熱
交換器8を構成する熱交換パイプ10Pbの直径φdb
よりも大に設定される。なお、互いの熱交換パイプ10
Pa,10Pbのパイプピッチは同一であり、互いに熱
交換空気の気流方向に沿って並行に配置される。 【0038】再び図1に示すように、上記ユニット本体
1内には、第1の熱交換器7側端部とベルマウス2近傍
とに亘って仕切り板16が設けられ、ユニット本体1内
部を二分している。 【0039】一方の空間室に上記室外熱交換器6および
室外送風機12が配置される熱交換室17が形成され
る。他方の空間室には圧縮機18が配置されていて、圧
縮機室19が形成される。さらに、圧縮機室19側部に
は室内ユニットから延出される冷媒管を接続するための
パックドバルブ20が設けられる。圧縮機12の上方部
位には、インバ−タなどを収納した電気部品箱やリアク
タなどの電気部品(いずれも図示しない)が配置され
る。 【0040】このようにして構成される空気調和機の室
外ユニットであって、圧縮機18の運転駆動が開始され
るとともに室外送風機12の駆動が開始される。両外気
吸込み口4,5から外気がユニット本体1内に導かれ、
室外熱交換器6に導かれる冷媒と熱交換をなす。 【0041】室外熱交換器6に導かれる冷媒は、冷房運
転時には凝縮し、暖房運転時には蒸発して、それぞれ導
出される。背面部外気吸込み口4からユニット本体1内
に導かれる外気は、はじめ第2の熱交換器8と熱交換
し、ついで第1の熱交換器7と熱交換して、吹出し口3
から吹出される。側面部外気吸込み口5からユニット本
体1内に導かれる外気は、ここには第2の熱交換器8が
存在しないところから、第1の熱交換器7と熱交換して
吹出し口3から吹出される。 【0042】しかして、第1の熱交換器7と第2の熱交
換器8とから構成される室外熱交換器6の熱交換容量の
増大とともに、以下に述べるような送風量の増大にとも
ない、図8に示すような単純に熱交換容量を2倍にした
だけの従来のもの以上の熱交換能力の増大が見込まれる
上に、図9に示すような配置のものに比べ送風騒音の低
減も達成される。 【0043】すなわち、室外送風機12を構成するプロ
ペラファン15は、ファンの回転軸に平行な方向である
ユニット本体1背面部方向の風量/風速は大であり、こ
れに対してファンの回転軸に垂直な方向であるユニット
本体側面部方向の風量/風速は小である。 【0044】本発明においては、ユニット本体1背面部
の外気吸込み口4に対向して、第2の熱交換器8および
第1の熱交換器7を配置し、側面部吸込み口5に対して
は第1の熱交換器7のみ配置してある。 【0045】すなわち、ファン15の風量/風速が大な
る位置に対向して二組の熱交換器をに配置し、ファンの
風量/風速が小なる位置に対向して一組の熱交換器を配
置したので、ほぼ二倍の熱交換器容量の増大化と、それ
に見合う熱交換能力の増大化が得られることとなる。 【0046】そして、風速が大である背面側に通風抵抗
となる熱交換器を増やし、風速が小である側面側には熱
交換器を増やさないので、各外気吸込み口4,5から各
熱交換器7,8を介してファン15に流入する熱交換空
気の風速は均一化され、これまでのような風速のアンバ
ランスによって生じていた送風騒音が低減される。 【0047】特に、上流側に位置する第2の熱交換器8
は、そのU字状部11およびリターンベンドが背面部外
気吸込み口4から外れた位置にあり、吸込み口から導入
される外気に直接さらされないところから乱流が発生せ
ず、したがって騒音低減に寄与する構造となる。 【0048】なお、図2に示すように、下流側に位置す
る第1の熱交換器7の熱交換パイプ10Paの直径φd
a を大、上流側に位置する第2の熱交換器8の熱交換パ
イプ10Pbの直径φdb を小に形成した。 【0049】先に説明したように、プロペラファン15
において、風速が側面側<背面側であるが、その差は2
倍には至らない。たとえば、第2の熱交換器8の熱交換
パイプ直径を第1の熱交換器7の熱交換パイプ直径に同
一に合わせ、しかも互いの位置を異ならせたいわゆる千
鳥状に配置すると、通風抵抗は略2倍になってしまう。
そして、今度は風速が側面側>背面側となり、再び風速
がアンバランスになって騒音が発生する。 【0050】本発明においては、風速の速い背面側にの
み熱交換器を増加するのだが、上流側の第2の熱交換器
8の熱交換パイプ直径φdb を小、下流側の第1の熱交
換器7の熱交換パイプ直径φda を大に形成することに
より、通風抵抗を極力抑制することを可能化して、側面
側<背面側の風速を保持し騒音低減を得る。 【0051】そしてまた、各熱交換器7,8の熱交換パ
イプ10Pa,10Pbを気流の方向に平行に配置した
ので、さらに通風抵抗の抑制に寄与することとなる。 【0052】なお、このようにして熱交換パイプ10P
a,10Pbを平行に配置すると、上流側の熱交換パイ
プ10Pbの真後ろに下流側の熱交換パイプ10Paが
配置されることになり、上流側の熱交換パイプ10Pb
による温度境界層が発達して下流側の熱交換パイプ10
Paでの熱交換効率が低下するように思われるが、上流
側の熱交換パイプ直径φdb が下流側熱交換パイプ直径
φda に比較して小さいことと、第1,第2の熱交換器
7,8を構成するフィン9…が互いに完全に分離してい
るから、熱交換効率の低下はない。逆に通風抵抗が増加
しない分だけメリットが大きい。 【0053】本発明において、上記室外熱交換器6が、
冷房運転時に凝縮器として作用する場合、先に冷媒を第
1の熱交換器7に導き、ついで第2の熱交換器8に導く
ように設定してある。 【0054】すなわち、室外熱交換器6を凝縮器とする
と、この流入側において冷媒は圧縮機18から吐出され
た後であるから、過熱ガス状態になっている。この熱交
換器6と熱交換されることによって、冷媒状態が過熱ガ
スから気液二相、過冷却状態へと相変化していく。 【0055】この場合、過熱ガス、あるいは乾き度が大
きい二相状態(ガスが占める割合が大きい)では圧力損
失が大きいが、先に冷媒が導かれる第1の熱交換器7の
熱交換パイプ直径φda を大きく設定したので、圧力損
失が増大することなく、熱交換効率を損なうことがな
い。 【0056】一方、熱交換器6の流出側においては、冷
媒は凝縮して気液二相冷媒もしくは液冷媒となってお
り、乾き度が小さい。このような状態の冷媒では圧力損
失が小さいので、熱交換パイプ直径を細くしても充分に
熱交換効率を上げられる。すなわち、流出側である第2
の熱交換器8の熱交換パイプ直径φdb を小さく設定し
たことに一致する。 【0057】したがって、先に述べたような本発明の第
1,第2の熱交換器7,8構成と、冷媒の導通方向の設
定により、室外熱交換器6におけるさらなる熱交換効率
の向上が得られることとなる。 【0058】図3に示すような室外熱交換器6Aであっ
てもよい。下流側に位置する第1の熱交換器7Aの熱交
換パイプ10Paの直径φda を大、上流側に位置する
第2の熱交換器8Aの熱交換パイプ10Pbの直径φd
b を小に形成することを前提として、互いの熱交換器7
A,8Aの熱交換パイプ10Pa,10Pbを千鳥状に
配置する。 【0059】この場合、少なくとも従来の室外熱交換器
よりも通風抵抗を低減させることができ、風量の増加が
得られる。そして、熱交換器単位面積あたりの風速が上
がって熱交換効率の向上につながる。 【0060】図4に示すような室外熱交換器6Bであっ
てもよい。下流側に位置する第1の熱交換器7Bの熱交
換パイプ10Paの直径φda を大、上流側に位置する
第2の熱交換器8Bの熱交換パイプ10Pbの直径φd
b を小に形成することを前提として、第1の熱交換器7
Bの熱交換パイプピッチPPcを大、第2の熱交換器8
Bの熱交換パイプピッチPPdを小に設定してもよい。 【0061】この場合、室外熱交換器6B全体としての
通風抵抗の増加が避けられず、風量の低下がみられる
が、特に第2の熱交換器8Bにおける熱交換パイプ10
Paの本数が増加するので、熱交換性能の向上を得られ
る。 【0062】図5に示すような、室外熱交換器6におけ
る流路構成であってよい。ここでは、冷房運転時におけ
る凝縮器としての流路構成を示す。 【0063】第1の熱交換器7の一側端部に流入する冷
媒は、そのままこの熱交換器の中間部まで導かれ、ここ
から一旦熱交換器外部へ出て、第2の熱交換器8の一側
端部に流入する。そして、第2の熱交換器8の中間部ま
で導かれ、ここから熱交換器外部へ導出される第1のパ
スP1 がある。 【0064】また、第1の熱交換器7の中間部に流入す
る冷媒は、そのままこの熱交換器の他端部まで導かれ、
ここから一旦熱交換器外部へ出て、第2の熱交換器8の
中間部に流入する。そして、第2の熱交換器8の他端部
まで導かれ、ここから熱交換器外部へ導出される第2の
パスP2 がある。 【0065】すなわち、第1の熱交換器7と第2の熱交
換器8の熱交換パイプに形成される流路は2パスP1 ,
P2 に設定されており、それぞれのパスに独立して冷媒
が導かれることとなる。 【0066】本発明のように熱交換器容量を増やした場
合に、単純に冷媒流路を1パスに設定すると、流路長が
極めて長くなり圧力損失の増大がある。そこで、圧力損
失の低減を得るために、先に説明したような完全に独立
した2パスの設定をなす。 【0067】それぞれのパスP1 ,P2 における冷媒流
出側が第2の熱交換器8であって、この熱交換パイプ直
径φdb は第1の熱交換器7における熱交換パイプ直径
φda よりも小であるのが前提であり、したがって圧力
損失が小さくてすむので、各パスの途中でさらにパスを
増やす(2パスから4パス)必要がない。 【0068】図6に示すように、第1の熱交換器7Cを
構成するフィン9…のフィンピッチPPeを細かく、第
2の熱交換器8Cを構成するフィン9…のフィンピッチ
PPfを粗く設定する。すなわち、第2の熱交換器フィ
ンピッチPPfは第1の熱交換器フィンピッチPPeよ
りも粗い。 【0069】繰り返し説明したように、プロペラファン
15を用いると側面側の風速よりも背面側の風速が速
い。ただし、2倍の差まではないので、同一直径の熱交
換パイプを配置して通風抵抗を2倍にすると、今度は側
面側>背面側の風速関係となってしまい、再び風速がア
ンバランスになって騒音が発生する。 【0070】そこで、図に示すように背面部風上側列の
第2の熱交換器8Cでの通風抵抗が増大しないようにフ
ィンピッチPPfを粗くすると、側面側と背面側との風
速のバランスがとれて騒音の発生には至らずにすむ。 【0071】図7に示すように、第1の熱交換器7D
は、背面部外気吸込み口4に対向する対向部7eのフィ
ンピッチPPgを粗く、側面部外気吸込み口5に対向す
る対向部7fのフィンピッチPPhを細かく設定しても
よい。 【0072】すなわち、第1の熱交換器7Dの背面部外
気吸込み口4に沿う部分7eに第2の熱交換器8を並設
したので、背面側の通風抵抗が増加する。そこで、背面
側と側面側の通風抵抗を一致させるために、側面側のフ
ィンピッチPPhを細かく設定した。したがって、側面
側と背面側との風速が均一になり、風速の不均一による
騒音の防止に役立つ。 【0073】なお上記各実施例において、第1の熱交換
器7〜7Dを平面視でL字状に形成したが、これに限定
されるものではなく、プロペラファンを囲むような平面
視でU字状に形成しても何ら支障がない。 【0074】 【発明の効果】以上説明したように本発明によれば、
面側と側面側の通風抵抗を一致させるようフィンピッチ
の間隔を設定して、背面側と側面側における通風抵抗を
均一化させたので、送風量と熱交換器の熱交換量のバラ
ンスをとることができ、熱交換能力の増大化が図れる。
そして、送風機に面する側には、側面側から背面側に至
る熱交換器がL字状で連続形成され、熱交換器を通過し
た風が端板部分で乱流が発生することがなく、騒音低減
が図れるなどの効果を奏する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an outdoor unit of an air conditioner, and more particularly to an improvement in an outdoor heat exchanger. 2. Description of the Related Art An air conditioner commonly used is configured by connecting an indoor unit installed in a room to be air-conditioned and an outdoor unit installed in an outdoor part of a building via a refrigerant pipe, electric wiring, or the like. The outdoor unit is installed as close as possible to the wall surface of the building, and care is taken so as not to interfere. [0003] An outdoor heat exchanger, a blower, a compressor, piping parts, an electric parts box and the like are accommodated and arranged inside a unit body of the outdoor unit. In particular, in the outdoor heat exchanger, it has been studied to increase the capacity of the heat exchanger in order to improve the heat exchange capacity. As a result, as shown in FIG. 8, the first heat exchangers a which are bent substantially in an L-shape in plan view and have substantially the same shape as each other.
And the second heat exchanger b are arranged in parallel to create an outdoor heat exchanger S. [0005] The unit body c, which is a housing, has outside air inlets d and e on the back and side surfaces thereof, and an outlet f on the front surface. Since the outdoor heat exchanger S is formed in an L-shape in plan view, the outdoor heat exchanger S directly faces each of the outside air suction ports d and e. A blower h provided with a propeller fan g is disposed opposite the outlet f, and as shown by arrows in the drawing, outside air is sucked in from each of the outside air inlets d and e, and an outdoor heat exchanger is provided. The heat is exchanged with S, and the air is blown out from the outlet f. [0007] By providing such a first heat exchanger a and a second heat exchanger b, apparently, the heat exchanger is more heat-exchanged than a single heat exchanger. 2 capacity
Increase by a factor of two. However, with the doubling of the heat exchanger capacity, the heat exchange capacity does not simply double. That is, the heat exchange capacity does not increase unless the air volume is also increased in response to the increase in the capacity. In this case, the blower h and the fan g are made larger or the number of revolutions is increased to cope with the heat exchange capacity. The heat exchange air volume must be secured. [0009] In addition, the propeller fan g has a large air volume and a high air velocity on the back side parallel to the rotation axis. On the other hand, the air volume and the air velocity are small on the side surface that is the direction perpendicular to the rotation axis of the fan g. Therefore, when the capacity of the heat exchanger S is increased as shown in FIG. 8, in order to secure an air volume corresponding to the capacity increase on the side surface where the air volume / air speed is relatively small, the blower h and the fan are required. It is necessary to further increase g or to increase the number of rotations. If the size of the blower h and the fan g is increased, the size of the unit body c is also increased, which is disadvantageous in a situation where a smaller housing is desired. Also, if the number of revolutions is increased, the blowing noise will also increase. Under such conditions, an outdoor heat exchanger Sa as shown in FIG. 9 has been considered. That is, only the second heat exchanger b is formed in an L-shape in plan view, like the previous one. The new first heat exchanger j is straightened and arranged along the rear suction port d. (The same parts as those in FIG. 8 are denoted by the same reference numerals and a new description will be omitted.) If described, the first heat exchanger j is replaced with the second heat exchanger b.
Are arranged in parallel to the straight part of the. On the basis of the airflow of the heat exchange air, the first heat exchanger j is downstream of the second heat exchanger b. In this case, the number of heat exchangers on the side is not increased, and only the capacity of the heat exchanger on the back is increased, so that the capacity of the heat exchanger can be increased. Then, the diameter of the propeller fan g can be increased by an amount corresponding to the decrease in the number of the heat exchangers on the side surfaces, and the air volume can be increased. Therefore, it is possible to increase the capacity of the heat exchanger and the air flow without increasing the size of the housing. However, of the heat exchange air sucked from the outside air suction port d on the back side, the heat exchange air portion that has passed through the curved portion of the second heat exchanger b is particularly located on the downstream side. There is a problem that turbulence is generated by being guided to the U pipe k of the heat exchanger j and noise is increased. The present invention has been made in view of the above circumstances, and an object of the present invention is to increase the capacity of a heat exchanger so as to increase the heat exchange capacity, and also to increase the heat passing through the heat exchanger. It is an object of the present invention to provide an outdoor unit of an air conditioner that can reduce noise by equalizing ventilation resistance to exchange air. An outdoor unit of an air conditioner according to the present invention, which satisfies the above objects, comprises a housing, and has an outside air inlet opening at a back surface and at least one side surface thereof. And a unit body having an outlet opening in the front part, an outdoor heat exchanger disposed in the unit body, and conducting outside air to the outdoor heat exchanger through an outside air suction port, where heat exchange is performed. and then, equipped with a blower having a propeller fan disposed opposite to the air outlet for blowing the air outlet to the outside, the outdoor heat exchanger, a number that is arranged to exist a gap narrowing A fin tube type in which a heat exchange pipe through which a refrigerant is introduced is passed through a single fin, and is formed into a substantially L shape in plan view so as to face an outside air suction port on a back surface and a side surface. I will surround you Between the first heat exchanger and the heat exchange air upstream of the heat exchange air in the first heat exchanger, and in parallel with the straight portion along the back surface outside air suction port. interposed, Ri Do and a second heat exchanger which is formed in a straight shape in plan view, outside air intake of the side surface portion of the first heat exchanger
Adjust the fin pitch at the part facing the
Finer than the fin pitch at the part facing the suction port
Specified. Further, in the first heat exchanger, a fin pitch of a portion of the side surface portion facing the outside air suction port is defined as:
It was set finer than the fin pitch of the part facing the outside air suction port on the back side . The outdoor heat exchanger is formed such that the first heat exchanger is bent in a plan view so as to face the outside air inlets on the rear and side surfaces of the unit body, and is arranged so as to surround the blower. , The second heat exchanger upstream of the first heat exchanger,
It is interposed between the rear side and the outside air suction port, and is formed straight in a plan view. Therefore, the propeller fan in the straight
Two rows of heat exchangers are arranged on the back side with a large amount of air flow,
A row of heat exchangers will be placed on the rear side and side
The ventilation resistance is equalized on the side and the air flow and heat of the heat exchanger
Exchange amount can be balanced, increasing heat exchange capacity
Can be achieved. Also, on the side facing the blower, from the side
The heat exchanger reaching the back side is continuously formed in an L shape, and heat exchange
The wind that has passed through the vessel does not generate turbulence in the end plate portion, and noise can be reduced. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an outdoor unit constituting an air conditioner. The unit body 1 is a housing in which a front portion, a rear plate, and a bottom plate are integrally combined. A bell mouth 2 is provided on the front surface, and a heat exchange air outlet 3 is formed. Suction ports 4 and 5 for heat exchange air are provided on the back surface and one side surface. An outdoor heat exchanger 6 is arranged in the unit body 1 along the suction ports 4 and 5. The outdoor heat exchanger 6 has a first heat exchanger 7 which is formed in a substantially L-shape in plan view so as to face the outside air inlets 4 and 5 on the rear and side surfaces, The second heat exchanger 8 is arranged in parallel with the straight portion along the backside outside air suction port 4 in the heat exchanger 1 and along the backside outside air suction port side. Each of the heat exchangers 7 and 8 has a large number of fins 9 arranged side by side with a small gap, and a heat exchange pipe 10 projecting from the fin 9 at one end has a U-shape. Condition 1
1 is a so-called finned tube type in which a portion of the heat exchange pipe 10 which is bent and formed and protrudes from the fin 9 at the other end is communicated via a U-bend (not shown ) . The other end fins 9 of the first heat exchanger 7 and the both end fins 9 of the second heat exchanger 8 are correctly opposed to the other end or both end of the back side outside air inlet 4. are doing. One end fin 9 of the first heat exchanger 7 is correctly opposed to one end of the side surface outside air suction port 5. From this, the U-shaped portion 11 and the U-bend portion of the heat exchange pipe 10 in each of the heat exchangers 7 and 8 are all opposed to portions deviated from the outside air inlets 4 and 5, and both will be described later. As such, it is not directly exposed to the outside air introduced from each suction port. An outdoor blower 12 is interposed between the outlet 3 and the first heat exchanger 7 constituting the outdoor heat exchanger 6. The blower 12 includes a fan motor 14 supported on a support 13 provided on the heat exchanger 7 side, a blower fitted to a rotating shaft of the motor, and formed on the bell mouth 2.
It comprises an outlet 3 and a propeller fan 15 facing the outlet . When the propeller fan 15 is rotated by driving the fan motor 14, the outside air is guided into the unit body 1 from the outside air inlets 4 and 5 on the rear and side surfaces as shown by arrows in the figure, and The air passes through the unit body 1 via the heat exchanger 6 and is blown out of the unit body from the outlet 3. From the flow of the heat exchange air in the unit body 1, when the rear outside air suction port 4 is targeted, the second heat exchanger 8 is located on the upstream side, and the first heat exchanger 8 is located on the downstream side. The portion of the vessel 7 facing the suction port 4 is located. As shown in FIG. 2, the diameter φda of the heat exchange pipe 10Pa constituting the first heat exchanger 7 is different from the diameter φdb of the heat exchange pipe 10Pb constituting the second heat exchanger 8.
Set to greater than The heat exchange pipes 10
The pipe pitches of Pa and 10Pb are the same and are arranged in parallel along the direction of the heat exchange air flow. As shown in FIG. 1 again, a partition plate 16 is provided in the unit main body 1 so as to extend from the end on the first heat exchanger 7 side to the vicinity of the bell mouth 2. Bisected. A heat exchange chamber 17 in which the outdoor heat exchanger 6 and the outdoor blower 12 are arranged is formed in one space chamber. A compressor 18 is arranged in the other space chamber, and a compressor chamber 19 is formed. Further, a packed valve 20 for connecting a refrigerant pipe extending from the indoor unit is provided on the side of the compressor chamber 19. Above the compressor 12, electric parts (not shown) such as an electric part box and a reactor containing an inverter and the like are arranged. In the outdoor unit of the air conditioner thus configured, the driving of the compressor 18 is started and the driving of the outdoor blower 12 is started. Outside air is guided into the unit body 1 from both outside air inlets 4 and 5,
The refrigerant exchanges heat with the refrigerant guided to the outdoor heat exchanger 6. The refrigerant guided to the outdoor heat exchanger 6 condenses during the cooling operation, evaporates during the heating operation, and is discharged. The outside air guided into the unit main body 1 from the back side outside air suction port 4 first exchanges heat with the second heat exchanger 8, then exchanges heat with the first heat exchanger 7, and outputs the air through the outlet 3.
It is blown out from. The outside air guided into the unit main body 1 from the side outside air suction port 5 exchanges heat with the first heat exchanger 7 from a place where the second heat exchanger 8 does not exist, and blows out from the outlet 3. Is done. However, with the increase in the heat exchange capacity of the outdoor heat exchanger 6 composed of the first heat exchanger 7 and the second heat exchanger 8 and the increase in the amount of air blow as described below. It is expected that the heat exchange capacity will be increased more than that of the conventional one simply doubling the heat exchange capacity as shown in FIG. 8, and the blowing noise will be reduced as compared with the arrangement shown in FIG. Is also achieved. In other words, the propeller fan 15 constituting the outdoor blower 12 has a large air flow / speed in the direction parallel to the rotation axis of the fan in the direction toward the back of the unit body 1. The air volume / air velocity in the direction of the unit main body side surface, which is the vertical direction, is small. In the present invention, the second heat exchanger 8 and the first heat exchanger 7 are arranged opposite to the outside air suction port 4 on the back of the unit main body 1. Are arranged only in the first heat exchanger 7. That is, two sets of heat exchangers are arranged opposite to the position where the air volume / wind speed of the fan 15 is large, and one set of heat exchangers is installed opposite the position where the air volume / wind speed of the fan 15 is small. As a result, the heat exchanger capacity is almost doubled, and the heat exchange capacity is correspondingly increased. The number of heat exchangers serving as ventilation resistance is increased on the back side where the wind speed is high, and the number of heat exchangers is not increased on the side surface where the wind speed is low. The wind speed of the heat exchange air flowing into the fan 15 via the exchangers 7 and 8 is made uniform, and the blowing noise caused by the unbalanced wind speed as before is reduced. In particular, the second heat exchanger 8 located on the upstream side
Means that the U-shaped portion 11 and the return bend are located at positions away from the outside air inlet 4 on the rear side, and turbulence does not occur from a place where the U-shaped portion 11 and the return air are not directly exposed to the outside air introduced from the inlet, thus contributing to noise reduction. Structure. As shown in FIG. 2, the diameter φd of the heat exchange pipe 10Pa of the first heat exchanger 7 located on the downstream side is
a is large, and the diameter φdb of the heat exchange pipe 10Pb of the second heat exchanger 8 located on the upstream side is small. As described above, the propeller fan 15
, The wind speed is the side <the back, but the difference is 2
Does not double. For example, if the diameter of the heat exchange pipe of the second heat exchanger 8 is set to be the same as the diameter of the heat exchange pipe of the first heat exchanger 7 and they are arranged in a so-called staggered shape with different positions, the ventilation resistance is reduced. It almost doubles.
Then, the wind speed becomes the side> the back side, and the wind speed becomes unbalanced again, thus generating noise. In the present invention, the number of heat exchangers is increased only on the rear side where the wind speed is fast. However, the diameter of the heat exchange pipe φdb of the second heat exchanger 8 on the upstream side is small, and the first heat exchanger on the downstream side is small. By making the diameter φda of the heat exchange pipe of the exchanger 7 large, it is possible to suppress the ventilation resistance as much as possible, and to maintain the wind speed on the side surface side <the rear surface side to obtain noise reduction. Further, since the heat exchange pipes 10Pa and 10Pb of the heat exchangers 7 and 8 are arranged in parallel to the direction of the air flow, it further contributes to the suppression of the ventilation resistance. The heat exchange pipe 10P
If a and 10Pb are arranged in parallel, the downstream heat exchange pipe 10Pa is arranged immediately behind the upstream heat exchange pipe 10Pb, and the upstream heat exchange pipe 10Pb is arranged.
The temperature boundary layer develops due to the heat exchange pipe 10 on the downstream side.
Although the heat exchange efficiency at Pa seems to be reduced, the upstream heat exchange pipe diameter φdb is smaller than the downstream heat exchange pipe diameter φda, and the first and second heat exchangers 7, Since the fins 9 constituting the fins 8 are completely separated from each other, there is no decrease in the heat exchange efficiency. On the contrary, the merit is great because the ventilation resistance does not increase. In the present invention, the outdoor heat exchanger 6 is
When acting as a condenser during the cooling operation, the refrigerant is first guided to the first heat exchanger 7 and then to the second heat exchanger 8. That is, assuming that the outdoor heat exchanger 6 is a condenser, since the refrigerant is discharged from the compressor 18 on the inflow side, the refrigerant is in a superheated gas state. The heat exchange with the heat exchanger 6 changes the refrigerant state from superheated gas to a gas-liquid two-phase and supercooled state. In this case, the pressure loss is large in the superheated gas or in the two-phase state where the dryness is large (the ratio of the gas is large), but the diameter of the heat exchange pipe of the first heat exchanger 7 to which the refrigerant is introduced first is large. Since φda is set to be large, the pressure loss does not increase and the heat exchange efficiency is not impaired. On the other hand, on the outlet side of the heat exchanger 6, the refrigerant is condensed into a gas-liquid two-phase refrigerant or a liquid refrigerant, and has a low dryness. Since the pressure loss of the refrigerant in such a state is small, the heat exchange efficiency can be sufficiently increased even if the diameter of the heat exchange pipe is reduced. In other words, the second
This corresponds to setting the diameter φdb of the heat exchange pipe of the heat exchanger 8 to be small. Therefore, the heat exchange efficiency in the outdoor heat exchanger 6 can be further improved by setting the first and second heat exchangers 7 and 8 of the present invention as described above and the setting of the direction in which the refrigerant is conducted. Will be obtained. The outdoor heat exchanger 6A as shown in FIG. 3 may be used. The diameter φda of the heat exchange pipe 10Pa of the first heat exchanger 7A located on the downstream side is large, and the diameter φd of the heat exchange pipe 10Pb of the second heat exchanger 8A located on the upstream side is large.
Assuming that b is small, each heat exchanger 7
A, 8A heat exchange pipes 10Pa, 10Pb are arranged in a staggered manner. In this case, the ventilation resistance can be reduced at least as compared with the conventional outdoor heat exchanger, and the air volume can be increased. Then, the wind speed per unit area of the heat exchanger increases, which leads to an improvement in heat exchange efficiency. The outdoor heat exchanger 6B as shown in FIG. 4 may be used. The diameter φda of the heat exchange pipe 10Pa of the first heat exchanger 7B located on the downstream side is large, and the diameter φd of the heat exchange pipe 10Pb of the second heat exchanger 8B located on the upstream side is large.
Assuming that b is small, the first heat exchanger 7
B, the heat exchange pipe pitch PPc is increased, and the second heat exchanger 8
The heat exchange pipe pitch PPd of B may be set small. In this case, an increase in the ventilation resistance of the entire outdoor heat exchanger 6B is unavoidable, and a decrease in the air volume is observed. In particular, the heat exchange pipe 10 in the second heat exchanger 8B is used.
Since the number of Pas increases, the heat exchange performance can be improved. A flow path configuration in the outdoor heat exchanger 6 as shown in FIG. 5 may be used. Here, a flow path configuration as a condenser during the cooling operation is shown. The refrigerant flowing into one end of the first heat exchanger 7 is guided as it is to an intermediate portion of the heat exchanger, from which it temporarily exits outside the heat exchanger, and then flows out of the second heat exchanger. 8 into one end. Then, there is a first path P1 which is guided to an intermediate portion of the second heat exchanger 8 and from which it is led out of the heat exchanger. The refrigerant flowing into the intermediate portion of the first heat exchanger 7 is guided to the other end of the heat exchanger as it is.
From here, it once goes out of the heat exchanger and flows into the intermediate part of the second heat exchanger 8. Then, there is a second path P2 which is guided to the other end of the second heat exchanger 8 and from there to the outside of the heat exchanger. That is, the flow paths formed in the heat exchange pipes of the first heat exchanger 7 and the second heat exchanger 8 have two paths P 1,
P2 is set, and the refrigerant is independently guided to each path. When the capacity of the heat exchanger is increased as in the present invention, if the refrigerant flow path is simply set to one pass, the flow path length becomes extremely long and the pressure loss increases. In order to reduce the pressure loss, two completely independent paths are set as described above. The refrigerant outlet side of each of the paths P 1 and P 2 is the second heat exchanger 8, and the diameter of the heat exchange pipe φdb is smaller than the diameter of the heat exchange pipe φda of the first heat exchanger 7. Since the pressure loss can be reduced, it is not necessary to further increase the number of passes (2 to 4 passes) in the middle of each pass. As shown in FIG. 6, the fin pitch PPe of the fins 9 constituting the first heat exchanger 7C is set fine, and the fin pitch PPf of the fins 9 constituting the second heat exchanger 8C is set coarse. I do. That is, the second heat exchanger fin pitch PPf is coarser than the first heat exchanger fin pitch PPe. As described above, when the propeller fan 15 is used, the wind speed on the back side is higher than the wind speed on the side surface. However, since there is no difference of up to twice, if the ventilation resistance is doubled by arranging heat exchange pipes of the same diameter, the wind speed relationship will now be from the side> the back, and the wind speed will again be unbalanced Noise is generated. Therefore, as shown in the figure, when the fin pitch PPf is made coarse so as not to increase the ventilation resistance in the second heat exchanger 8C in the rearward windward row, the balance of the wind speed between the side surface and the rear surface is achieved. It does not lead to noise generation. As shown in FIG. 7, the first heat exchanger 7D
Alternatively, the fin pitch PPg of the facing portion 7e facing the backside outside air suction port 4 may be set to be coarse, and the fin pitch PPh of the facing portion 7f facing the side portion outside air suction port 5 may be set to be fine. That is, since the second heat exchanger 8 is arranged in parallel with the portion 7e of the first heat exchanger 7D along the back side outside air suction port 4, the ventilation resistance on the back side increases. Therefore, the fin pitch PPh on the side surface is finely set in order to make the ventilation resistance on the back side and the side surface side coincide. Therefore, the wind speeds on the side and rear sides are uniform, which helps to prevent noise due to uneven wind speeds. In each of the above embodiments, the first heat exchangers 7 to 7D are formed in an L shape in plan view. However, the present invention is not limited to this. There is no problem even if it is formed in the shape of a letter. [0074] According to the present invention, as described above, according to the present invention, the back
Fin pitch so that the ventilation resistance on the side and the side is the same
To set the airflow resistance on the rear and side sides.
Because of the uniformity, the amount of air blown and the amount of heat exchange of the heat exchanger can be balanced, and the heat exchange capacity can be increased.
On the side facing the blower, a heat exchanger extending from the side surface to the rear surface is continuously formed in an L shape, so that the wind passing through the heat exchanger does not generate turbulence at the end plate portion, It has effects such as noise reduction.

【図面の簡単な説明】 【図1】本発明の一実施例を示し、空気調和機の室外ユ
ニットの概略横断平面図。 【図2】同実施例の、室外熱交換器を構成する第1の熱
交換器と第2の熱交換器の一部側面図。 【図3】他の実施例の、第1の熱交換器と第2の熱交換
器の一部側面図。 【図4】さらに他の実施例の、第1の熱交換器と第2の
熱交換器の一部側面図。 【図5】さらに他の実施例の、第1の熱交換器と第2の
熱交換器の側面図。 【図6】さらに他の実施例の、第1の熱交換器と第2の
熱交換器の一部正面図。 【図7】さらに他の実施例の、室外ユニットの一部の横
断平面図。 【図8】従来例の、空気調和機の室外ユニットの概略横
断平面図。 【図9】さらに異なる従来例の、空気調和機の室外ユニ
ットの概略横断平面図。 【符号の説明】 4…(背面部の)外気吸込み口、5…(側面部の)外気
吸込み口、3…吹出し口、1…ユニット本体、6…室外
熱交換器、12…室外送風機、7…第1の熱交換器、8
…第2の熱交換器。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional plan view of an outdoor unit of an air conditioner, showing one embodiment of the present invention. FIG. 2 is a partial side view of a first heat exchanger and a second heat exchanger constituting the outdoor heat exchanger of the embodiment. FIG. 3 is a partial side view of a first heat exchanger and a second heat exchanger of another embodiment. FIG. 4 is a partial side view of a first heat exchanger and a second heat exchanger according to still another embodiment. FIG. 5 is a side view of a first heat exchanger and a second heat exchanger according to still another embodiment. FIG. 6 is a partial front view of a first heat exchanger and a second heat exchanger according to still another embodiment. FIG. 7 is a cross-sectional plan view of a part of an outdoor unit according to still another embodiment. FIG. 8 is a schematic cross-sectional plan view of a conventional outdoor unit of an air conditioner. FIG. 9 is a schematic cross-sectional plan view of an outdoor unit of an air conditioner according to still another conventional example. [Description of Signs] 4 ... Outside air suction port (on the back), 5 ... Outside air suction port (on the side), 3 ... Outlet, 1 ... Unit body, 6 ... Outdoor heat exchanger, 12 ... Outdoor blower, 7 ... First heat exchanger, 8
... Second heat exchanger.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−131965(JP,A) 実開 平3−21660(JP,U) 実開 昭61−181279(JP,U) 実開 昭54−153055(JP,U) 実開 平6−64032(JP,U) 実開 平6−30679(JP,U) (58)調査した分野(Int.Cl.7,DB名) F24F 5/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-131965 (JP, A) JP-A-3-21660 (JP, U) JP-A-61-181279 (JP, U) JP-A-54 153055 (JP, U) JP 6-64032 (JP, U) JP 6-30679 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F24F 5/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】筐体からなり、その背面部と少なくとも1
つの側面部に外気吸込み口が開口され、かつ前面部に吹
出し口が開口されるユニット本体と、このユニット本体
内に配置される室外熱交換器と、上記外気吸込み口を介
して上記室外熱交換器へ外気を導びき、ここで熱交換し
た後、上記吹出し口から外部へ吹出すため吹出し口に対
向して配置されたプロペラファンを備えた送風機とを具
備した空気調和機の室外ユニットにおいて、 上記室外熱交換器は、狭小の間隙を存して並設される多
数枚のフィンに、冷媒が導かれる熱交換パイプを貫通さ
せたフィンドチューブタイプであって、上記背面部と側
面部の外気吸込み口に対向するよう平面視で略L状に折
り曲げ形成されるとともに上記送風機を囲むように配置
された第1の熱交換器と、第1の熱交換器における熱交
換空気の上流側で、背面部の外気吸込み口との間に背面
部外気吸込み口に沿う直状部分と並行に介設され、平面
視で直状に形成される第2の熱交換器とからなり、 上記第1の熱交換器における側面部の外気吸込み口に対
向する部分のフィンピッチを、背面部の外気吸込み口に
対向する部分のフィンピッチよりも細かく設定した こと
を特徴とする空気調和機の室外ユニット。
(57) [Claims] [Claim 1] It is composed of a housing and has at least one
A unit body having an outside air suction opening on one side and an opening on the front side, an outdoor heat exchanger disposed in the unit body, and the outdoor heat exchange through the outside air suction opening In the outdoor unit of the air conditioner, comprising: The outdoor heat exchanger is a finned tube type in which a plurality of fins arranged side by side with a narrow gap and a heat exchange pipe through which a refrigerant is guided penetrates, A first heat exchanger that is formed to be substantially L-shaped in plan view so as to face the suction port and that is arranged so as to surround the blower, and an upstream side of the heat exchange air in the first heat exchanger, On the back Interposed in parallel with the straight portion along the rear portion outside air suction port between the outside air inlet, Ri Do and a second heat exchanger which is formed in a straight shape in plan view, the first heat exchanger To the outside air suction port on the side
The fin pitch of the facing part to the outside air suction port on the back
An outdoor unit for an air conditioner, characterized in that the fin pitch is set finer than the fin pitch of the opposing portion .
JP07788895A 1995-04-03 1995-04-03 Outdoor unit of air conditioner Expired - Fee Related JP3361405B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP07788895A JP3361405B2 (en) 1995-04-03 1995-04-03 Outdoor unit of air conditioner
TW087200825U TW367019U (en) 1995-04-03 1996-01-19 Outdoor unit of an air-conditioner
GB9603896A GB2299656B (en) 1995-04-03 1996-02-23 Air-conditioner unit
KR1019960005608A KR100189000B1 (en) 1995-04-03 1996-02-28 Outdoor unit for an air-conditioner
CN96105916A CN1100238C (en) 1995-04-03 1996-02-28 Outdoor unit of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07788895A JP3361405B2 (en) 1995-04-03 1995-04-03 Outdoor unit of air conditioner

Publications (2)

Publication Number Publication Date
JPH08270985A JPH08270985A (en) 1996-10-18
JP3361405B2 true JP3361405B2 (en) 2003-01-07

Family

ID=13646621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07788895A Expired - Fee Related JP3361405B2 (en) 1995-04-03 1995-04-03 Outdoor unit of air conditioner

Country Status (5)

Country Link
JP (1) JP3361405B2 (en)
KR (1) KR100189000B1 (en)
CN (1) CN1100238C (en)
GB (1) GB2299656B (en)
TW (1) TW367019U (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0845649A3 (en) * 1996-11-28 1999-04-14 Kimura Kohki Co., Ltd. Heat Exchange Coil
SG90702A1 (en) * 1997-02-24 2003-08-20 Kimura Kohki Co Heat exchange coil
JP2006084051A (en) * 2004-09-14 2006-03-30 Daikin Ind Ltd Outdoor machine of refrigeration device
ES2456018T3 (en) * 2004-12-24 2014-04-21 Toshiba Carrier Corporation Outdoor unit for air conditioner
JP4470755B2 (en) * 2005-02-21 2010-06-02 パナソニック株式会社 Outdoor unit of separate air conditioner
JP4577131B2 (en) * 2005-07-22 2010-11-10 ダイキン工業株式会社 Blower and outdoor unit for air conditioner equipped with this blower
ITBS20060045A1 (en) * 2006-02-28 2007-09-01 Olimpia Splendid S P A EXTERNAL UNIT FOR CONDITIONERS
JP4187034B2 (en) * 2006-10-05 2008-11-26 ダイキン工業株式会社 Indoor unit of air conditioner
JP2008128553A (en) * 2006-11-21 2008-06-05 Matsushita Electric Ind Co Ltd Outdoor unit of air conditioner
KR101070621B1 (en) 2007-01-31 2011-10-07 삼성전자주식회사 Developing cartridge and image forming apparatus including the same
JP2008261552A (en) * 2007-04-12 2008-10-30 Daikin Ind Ltd Heat source unit
JP4794498B2 (en) * 2007-04-17 2011-10-19 三菱電機株式会社 Refrigeration air conditioner
KR101042641B1 (en) 2007-07-18 2011-06-20 삼성전자주식회사 Developing apparatus, Image forming apparatus having the same, and Assembling method for a developing apparatus
KR20090022840A (en) * 2007-08-31 2009-03-04 엘지전자 주식회사 Heat exchanger
KR101520484B1 (en) * 2008-07-04 2015-05-14 엘지전자 주식회사 Heat exchanger
JP5477315B2 (en) * 2011-03-07 2014-04-23 三菱電機株式会社 Refrigeration air conditioner
JP5873994B2 (en) * 2011-04-28 2016-03-01 パナソニックIpマネジメント株式会社 Air conditioner outdoor unit
JP6124044B2 (en) * 2011-07-20 2017-05-10 京進工業株式会社 Manufacturing method of gripping body of heat exchanger insertion tube
DE112012005908T5 (en) * 2012-02-20 2014-11-27 Mitsubishi Electric Corporation Outdoor unit for air conditioning
CN105783139A (en) * 2012-08-08 2016-07-20 三菱电机株式会社 Method for manufacturing heat exchanger and method for manufacturing air conditioner
JPWO2014024221A1 (en) * 2012-08-08 2016-07-21 三菱電機株式会社 Air conditioner
WO2015059832A1 (en) 2013-10-25 2015-04-30 三菱電機株式会社 Heat exchanger and refrigeration cycle device using said heat exchanger
CN103759344A (en) * 2014-01-10 2014-04-30 广东美的制冷设备有限公司 Air conditioner and outdoor unit thereof
CN107003082A (en) * 2015-01-30 2017-08-01 三菱电机株式会社 Heat exchanger and refrigerating circulatory device
JP2017067310A (en) * 2015-09-28 2017-04-06 東芝キヤリア株式会社 Heat exchange unit and heat exchange apparatus
KR102491602B1 (en) * 2015-10-23 2023-01-25 삼성전자주식회사 Air conditioner
JP2016048162A (en) * 2015-12-14 2016-04-07 三菱電機株式会社 Manufacturing method for heat exchanger and manufacturing method for air conditioner
US10712023B2 (en) * 2016-06-07 2020-07-14 Mitsubishi Electric Corporation Outdoor unit for an air-conditioning apparatus
JP6972158B2 (en) * 2017-10-20 2021-11-24 三菱電機株式会社 Dehumidifier
CN109798644B (en) * 2019-01-15 2020-11-13 广东美的暖通设备有限公司 Control method and air conditioning system

Also Published As

Publication number Publication date
KR100189000B1 (en) 1999-06-01
KR960038339A (en) 1996-11-21
GB2299656B (en) 1997-03-26
GB9603896D0 (en) 1996-04-24
CN1149117A (en) 1997-05-07
TW367019U (en) 1999-08-11
JPH08270985A (en) 1996-10-18
CN1100238C (en) 2003-01-29
GB2299656A (en) 1996-10-09

Similar Documents

Publication Publication Date Title
JP3361405B2 (en) Outdoor unit of air conditioner
JP4017003B2 (en) Centrifugal fan and air conditioner using the same
US6948552B2 (en) Ceiling embedded type indoor unit
JP2008196811A (en) Air conditioner
JP5837235B2 (en) Air conditioner outdoor unit
JP2006336935A (en) Outdoor unit for refrigeration air conditioner
JP5338883B2 (en) Heat source unit
JP2000329364A (en) Wall-hanging type indoor unit for air conditioner
JP2611595B2 (en) Air conditioner
WO2016071945A1 (en) Indoor unit for air conditioning device
WO2020170327A1 (en) Heat source machine and refrigeration cycle device
JP2022029568A (en) Indoor unit of air conditioner, and heat exchanger for air conditioner
JP4005016B2 (en) Air conditioner
JP3675895B2 (en) Air conditioner wind direction change device
JP3331873B2 (en) Air conditioner indoor unit
JP4734915B2 (en) Indoor unit of heat exchanger and air conditioner equipped with the same
JP2006275376A (en) Heat exchanger and outdoor unit of air conditioner
US9689577B2 (en) Outdoor unit for air-conditioning apparatus
JPH06341660A (en) Heat exchanger for air conditioner
JP5997115B2 (en) Air conditioner
CN114659168B (en) Heat exchange assembly and air conditioner
JP2731002B2 (en) Heat exchange unit
JP7262578B2 (en) Outdoor unit and refrigeration cycle equipment
JP2002276974A (en) Air conditioner
KR100480088B1 (en) Air conditioner indoor unit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees