Nothing Special   »   [go: up one dir, main page]

JP3353527B2 - Manufacturing method of gallium nitride based semiconductor - Google Patents

Manufacturing method of gallium nitride based semiconductor

Info

Publication number
JP3353527B2
JP3353527B2 JP6611095A JP6611095A JP3353527B2 JP 3353527 B2 JP3353527 B2 JP 3353527B2 JP 6611095 A JP6611095 A JP 6611095A JP 6611095 A JP6611095 A JP 6611095A JP 3353527 B2 JP3353527 B2 JP 3353527B2
Authority
JP
Japan
Prior art keywords
gan
temperature
single crystal
layer
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6611095A
Other languages
Japanese (ja)
Other versions
JPH08264899A (en
Inventor
明彦 石橋
正也 萬濃
清司 大仲
英見 武石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP6611095A priority Critical patent/JP3353527B2/en
Publication of JPH08264899A publication Critical patent/JPH08264899A/en
Application granted granted Critical
Publication of JP3353527B2 publication Critical patent/JP3353527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は青色から紫外域の波長に
わたる発光ダイオードまたは同波長域における半導体レ
ーザダイオードに用いられる窒化ガリウム系半導体の製
造方法に係わり、特に電気的、光学的、結晶構造的に優
れた窒化ガリウム系半導体の気相成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a gallium nitride semiconductor used for a light emitting diode over a wavelength range from blue to ultraviolet or a semiconductor laser diode in the same wavelength range. The present invention relates to a method for vapor-phase growth of a gallium nitride based semiconductor having excellent characteristics.

【0002】[0002]

【従来の技術】青色発光素子はフルカラーディスプレー
や高密度記録可能な光ディスク用光源として期待されて
おり、ZnSe等のII-VI族化合物半導体やSiC、GaN等のIII
-V族化合物半導体を用いて盛んに研究がなされている。
特に最近GaNやGaInN等を用いて青色発光ダイオードが実
現され窒化ガリウム系半導体を用いた発光素子は注目さ
れている。窒化ガリウム系半導体結晶の堆積方法として
は有機金属気相成長法(MOVPE法)や分子線エピタキシ
ー法(MBE法)が一般的に用いられている。
2. Description of the Related Art Blue light-emitting elements are expected as light sources for optical disks capable of full-color displays and high-density recording, and III-VI compound semiconductors such as ZnSe and III-crystals such as SiC and GaN.
-Active research has been made using Group V compound semiconductors.
In particular, recently, a blue light emitting diode has been realized using GaN, GaInN, or the like, and a light emitting element using a gallium nitride-based semiconductor has attracted attention. As a method for depositing a gallium nitride based semiconductor crystal, a metal organic chemical vapor deposition (MOVPE) method and a molecular beam epitaxy method (MBE method) are generally used.

【0003】例えば、MOVPE法を用いた堆積方法につい
て説明すると、サファイア基板を設置した反応炉に有機
金属のトリメチルガリウム(TMG)とアンモニア(NH3)
を水素をキャリアガスとして基板上に供給し、600℃
程度の温度で多結晶状態のGaNバッファ層を堆積した
後、Ga原料であるTMGの供給を停止し前記基板を100
0℃程度に昇温する。次に再びTMGを前記基板上に供給
し、GaN単結晶層を堆積する。
For example, a deposition method using the MOVPE method will be described. An organometallic trimethylgallium (TMG) and ammonia (NH3) are placed in a reactor having a sapphire substrate.
Is supplied onto the substrate using hydrogen as a carrier gas,
After depositing a polycrystalline GaN buffer layer at about the temperature, the supply of TMG as a Ga
Raise the temperature to about 0 ° C. Next, TMG is supplied again on the substrate, and a GaN single crystal layer is deposited.

【0004】Ga原料としては他にトリエチルガリウム
(TEG)等もあるが、何れの場合においてもGaNバッファ
層とGaN単結晶層の気相成長においてはGa原料は同一の
物であることが特徴である。
[0004] Other examples of the Ga source include triethyl gallium (TEG). In any case, the Ga source is the same in the vapor phase growth of the GaN buffer layer and the GaN single crystal layer. is there.

【0005】[0005]

【発明が解決しようとする課題】しかしながら従来の手
法のような気相成長ではGaN単結晶の電気的、光学的、
結晶構造的性質すべてを高品質にすることができない。
例えばGa原料としてTMGを用いた青色発光ダイオードに
用いられているGaN単結晶は結晶構造的には優れていて
も、残留不純物や欠陥のために禁制帯中に準位が存在
し、このことが半導体レーザの実現を不可能にしてい
る。
However, in the vapor phase growth as in the conventional method, the electrical, optical,
Not all crystallographic properties can be of high quality.
For example, a GaN single crystal used for a blue light emitting diode using TMG as a Ga source has excellent crystal structure, but has a level in the forbidden band due to residual impurities and defects. This makes it impossible to realize a semiconductor laser.

【0006】またGa原料としてTEGを用いた場合結晶構
造的には、優れたGaN単結晶が作製できるが、表面の凹
凸を抑制するためにはGaNバッファ層をかなり低温で堆
積する必要があり、その結果バッファ層に多量の不純物
及び欠陥が存在することになりその上のGaN単結晶層の
光学的性質を低下させた。結晶中への不純物混入を抑制
するためにGaNバッファ層の堆積温度を上昇させるとGaN
が単結晶となって基板上に堆積してしまい、特にサファ
イア基板上では基板とGaN結晶の格子不整合が大きいた
めに表面の凹凸が大きくなって発光素子の素子構造が堆
積できない。
When TEG is used as a Ga raw material, a GaN single crystal excellent in crystal structure can be produced. However, in order to suppress surface irregularities, it is necessary to deposit a GaN buffer layer at a considerably low temperature. As a result, a large amount of impurities and defects were present in the buffer layer, and the optical properties of the GaN single crystal layer thereon were degraded. Increasing the deposition temperature of the GaN buffer layer to suppress impurities from entering the crystal
Becomes a single crystal and deposits on the substrate. In particular, on a sapphire substrate, since the lattice mismatch between the substrate and the GaN crystal is large, the unevenness of the surface becomes large and the element structure of the light emitting element cannot be deposited.

【0007】この発明の目的は上記問題点を解決し、電
気的、光学的、結晶構造的に優れた窒化ガリウム系半導
体の製造方法を提供することである。
An object of the present invention is to solve the above-mentioned problems and to provide a method for manufacturing a gallium nitride-based semiconductor having excellent electrical, optical and crystal structures.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の手段は以下に示す通りである。
Means for solving the above problems are as follows.

【0009】第一の手段は、窒化ガリウム系半導体のMO
VPE気相成長において基板上にトリメチルガリウムを用
いて500℃以上600℃以下でGaN低温堆積層を堆積
する工程と、前記GaN低温堆積層上にトリエチルガリウ
ムを用いて前記堆積温度以上でGaN単結晶層を堆積する
工程とからなることを特徴とする窒化ガリウム系半導体
の製造方法である。特に、基板としてサファイアC面を
用いた場合に有効な窒化ガリウム系半導体の製造方法で
ある。
The first means is to use MO of gallium nitride based semiconductor.
Depositing a GaN low-temperature deposition layer at 500 ° C. or higher and 600 ° C. or lower using trimethylgallium on a substrate in VPE vapor phase growth, and GaN single crystal at a temperature higher than the deposition temperature using triethylgallium on the GaN low-temperature deposition layer. And a step of depositing a layer. In particular, this is a method for manufacturing a gallium nitride-based semiconductor which is effective when a sapphire C-plane is used as a substrate.

【0010】第二の手段は、窒化ガリウム系半導体の気
相成長において基板上にトリメチルガリウムを用いてGa
N低温堆積層を堆積する工程と、前記GaN低温堆積層を堆
積した基板をアンモニアと水素の混合ガス雰囲気におい
て前記堆積温度以上の温度で一定時間熱処理する工程
と、熱処理の後にトリエチルガリウムを用いて前記堆積
温度以上でGaN単結晶層を堆積する工程とからなること
を特徴とする窒化ガリウム系半導体の製造方法である。
特に前記熱処理は1000℃以上で1時間以内において
行うことが有効である窒化ガリウム系半導体の製造方法
である。
The second means is to use trimethylgallium on a substrate in the vapor phase growth of gallium nitride based semiconductor.
Depositing an N low-temperature deposition layer, heat-treating the substrate on which the GaN low-temperature deposition layer has been deposited at a temperature equal to or higher than the deposition temperature in a mixed gas atmosphere of ammonia and hydrogen for a predetermined time, and using triethylgallium after the heat treatment. Depositing a GaN single crystal layer at a temperature equal to or higher than the deposition temperature.
In particular, the heat treatment is a method for manufacturing a gallium nitride-based semiconductor in which it is effective to perform the heat treatment at 1000 ° C. or higher for one hour or less.

【0011】[0011]

【作用】上記本発明の第一の窒化ガリウム系半導体の製
造方法によれば、TMGを用いてGaNバッファ層を堆積する
に際し、多結晶のGaNバッファ層を高温で堆積できる
ので、不純物の混入の少ないバッファ層を形成できる。
TEGを原料ガスに用いた時には、バッファ層は高温で
は多結晶にならず単結晶になってしまうため、この層は
バッファ層には適当ではない。ここで単結晶になるか、
多結晶になるかは、原料ガスの分解温度に関係がある。
つまり、原料ガスの分解温度よりも高い温度で堆積すれ
ば単結晶になるし、低い温度で堆積すれば多結晶にな
る。本発明では、分解温度の高いTEGガスを用いてい
るので、分解温度よりも低い堆積温度自身も比較的高温
に設定できるので、バッファ層を高温で、かつ多結晶で
堆積できる。高温で堆積することで、不純物の混入を少
なくすることができる。また、バッファ層は多結晶であ
るので、表面の凹凸が小さく平坦にすることができる。
According to the first method for producing a gallium nitride based semiconductor of the present invention, a polycrystalline GaN buffer layer can be deposited at a high temperature when depositing a GaN buffer layer using TMG. A small number of buffer layers can be formed.
When TEG is used as a source gas, the buffer layer is not polycrystalline at high temperature but becomes single crystal, so this layer is not suitable for the buffer layer. Here it becomes a single crystal,
Whether it becomes polycrystalline depends on the decomposition temperature of the source gas.
In other words, a single crystal is deposited when deposited at a temperature higher than the decomposition temperature of the source gas, and a polycrystal is deposited when deposited at a lower temperature. In the present invention, since the TEG gas having a high decomposition temperature is used, the deposition temperature itself lower than the decomposition temperature can be set to a relatively high temperature, so that the buffer layer can be deposited at a high temperature and in polycrystal. By depositing at a high temperature, contamination with impurities can be reduced. In addition, since the buffer layer is polycrystalline, the surface can be made flat with small irregularities.

【0012】以上まとめると、TMGを用いてGaNバッファ
層を堆積するとTMGの分解温度がTEGの分解温度よりも約
100℃高いために、より高温でかつ広い温度域にわた
り表面の凹凸が小さくかつ残留不純物、特に結晶性に影
響が大きい酸素の少ない多結晶のGaNバッファ層が堆積
できる。TMGの分解温度がTEGよりも約100℃高い理由
は、図2(a)(b)に示すように、(a)のTMGではGaと
直接結合している分子はメチル基で、図2(b)に示すT
EG中のエチル基よりも質量が小さいために結合エネルギ
ーが大きいためと考えられる。
In summary, when a GaN buffer layer is deposited using TMG, the decomposition temperature of TMG is about 100 ° C. higher than the decomposition temperature of TEG. A polycrystalline GaN buffer layer containing less oxygen, which has a large influence on impurities, particularly crystallinity, can be deposited. The reason why the decomposition temperature of TMG is about 100 ° C. higher than that of TEG is that, as shown in FIGS. 2A and 2B, in TMG of FIG. 2A, the molecule directly bonded to Ga is a methyl group, and FIG. T shown in b)
This is probably because the binding energy is large because the mass is smaller than the ethyl group in the EG.

【0013】さらにバッファ層上のGaN単結晶の成長の
際は、Ga原料としてTEGに切り替えることにより、C軸
配向性に優れかつ深い準位の一因である残留不純物の炭
素混入が抑制される。
Further, when growing a GaN single crystal on the buffer layer, by switching to TEG as a Ga material, carbon contamination of residual impurities which is excellent in C-axis orientation and contributes to a deep level is suppressed. .

【0014】上記本発明の第二の窒化ガリウム系半導体
の製造方法によれば、500℃以下の低温で結晶性の特
に悪い多結晶状態のGaNバッファ層を堆積してもバッフ
ァ層上のGaN単結晶成長前に1000℃以上でアンモニ
アと水素の混合雰囲気で熱処理を行えば、バッファ層を
ある程度単結晶化することが可能であり、この上にGaN
単結晶を堆積すると結晶性の良いGaN単結晶が得られ
る。熱処理は好ましくは1時間以内が良くそれ以上行う
と表面の凹凸が増大し逆効果となる。
According to the second method of manufacturing a gallium nitride based semiconductor of the present invention, even if a GaN buffer layer in a polycrystalline state having a particularly poor crystallinity at a low temperature of 500 ° C. or less is deposited, a GaN single layer on the buffer layer is deposited. If heat treatment is performed at 1000 ° C. or higher in a mixed atmosphere of ammonia and hydrogen before crystal growth, the buffer layer can be monocrystallized to some extent.
When a single crystal is deposited, a GaN single crystal with good crystallinity can be obtained. The heat treatment is preferably performed within one hour, and if performed more than that, the unevenness of the surface increases, which has an adverse effect.

【0015】[0015]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】(実施例1)図1に示すようにまずサファ
イア基板C面1上にトリメチルガリウム(TMG)を用い
てGaNバッファ層2を堆積する。結晶成長は有機金属気
相成長(MOVPE)法で行う。
(Embodiment 1) As shown in FIG. 1, a GaN buffer layer 2 is first deposited on a sapphire substrate C surface 1 using trimethylgallium (TMG). Crystal growth is performed by metal organic chemical vapor deposition (MOVPE).

【0017】まず気相成長させるに先立ち、サファイア
基板1を反応炉内のサセプター上に設置し、真空排気し
た後70Torrの水素雰囲気において1100℃で15分
間加熱し基板表面クリーニングを行う。
Prior to vapor phase growth, the sapphire substrate 1 is placed on a susceptor in a reaction furnace, evacuated and then heated in a 70 Torr hydrogen atmosphere at 1100 ° C. for 15 minutes to clean the substrate surface.

【0018】次に600℃まで冷却した後、TMGを60
μモル/分、アンモニアを2.5L/分、キャリア水素
を2L/分流してGaNバッファ層2を50nm堆積する。
Next, after cooling to 600 ° C.,
The GaN buffer layer 2 is deposited to a thickness of 50 nm by flowing μmol / min, ammonia at 2.5 L / min, and carrier hydrogen at 2 L / min.

【0019】次にTMGの供給のみを停止し、温度を10
30℃まで昇温した後、TEGを60μモル/分供給してG
aN単結晶層3を1.2μm堆積する。次にTEGの供給の
みを停止し、アンモニアと水素の混合雰囲気で室温まで
冷却する。
Next, only the supply of TMG was stopped, and the temperature was reduced to 10%.
After the temperature was raised to 30 ° C., TEG was supplied at a rate of 60 μmol / min.
An aN single crystal layer 3 is deposited to a thickness of 1.2 μm. Next, only the supply of TEG is stopped, and the mixture is cooled to room temperature in a mixed atmosphere of ammonia and hydrogen.

【0020】以上の温度プロファイル及びガス供給プロ
ファイルは図3に示す通りであるが、原料ガスをTMG
からTEGに切り換えることが特徴である。。
The temperature profile and the gas supply profile described above are as shown in FIG.
The feature is that the mode is switched from TEG to TEG. .

【0021】次に、GaNバッファ層2をTMGを用いて堆積
することの有効性について説明する。図4はMOVPE法に
よりサファイア基板上に、GaN低温堆積層すなわちバッ
ファ層を成長した場合の表面ラフネス(凹凸)の成長温
度依存性である。
Next, the effectiveness of depositing the GaN buffer layer 2 using TMG will be described. FIG. 4 shows the growth temperature dependence of the surface roughness (irregularities) when a GaN low-temperature deposited layer, that is, a buffer layer is grown on a sapphire substrate by the MOVPE method.

【0022】実験によれば、原料ガスにTMGを用いる
と、600℃以下でラフネスの小さい平坦な表面である
が、TEGを用いるとTMGを用いた場合よりも低い500℃
でしか平坦な表面を得ることができなかった。高温にな
るとラフネスが増大するのは、格子不整合の大きいサフ
ァイア基板上にGaNの単結晶が核成長し始めるためと考
えられ、このようにラフネスの大きい表面を持ったGaN
バッファ層上には、平坦なGaN単結晶が堆積できない。
According to an experiment, when TMG is used as a source gas, a flat surface having a small roughness is used at a temperature of 600 ° C. or less, but when TEG is used, 500 ° C. is lower than that when TMG is used.
Only a flat surface could be obtained. It is considered that the roughness increases at high temperatures because the GaN single crystal starts to grow on the sapphire substrate with large lattice mismatch.
A flat GaN single crystal cannot be deposited on the buffer layer.

【0023】また、500℃以下ではいずれの原料にお
いてもほとんどGaNが堆積されなかった。従ってGaNバッ
ファ層の原料としてTEGを用いた場合は、成長温度が5
00℃近傍に限定され、少しの条件の変化でGaN単結晶
層の品質の変動が起こる。
At temperatures below 500 ° C., almost no GaN was deposited on any of the raw materials. Therefore, when TEG is used as a raw material of the GaN buffer layer, the growth temperature is 5
The temperature is limited to around 00 ° C., and the quality of the GaN single crystal layer fluctuates with a slight change in conditions.

【0024】他方、バッファ層の堆積にTMGを用いる
と、図4よりわかるように、約100℃の温度域に亘っ
て平坦な表面が得られ、広い成長条件で堆積できる。さ
らにその堆積温度も、TEGを用いた場合よりも高い温度
で実現できる。成長温度が高いほど有利な点は残留不純
物の取り込みの抑制である。これを図5を用いて説明す
る。
On the other hand, when TMG is used for depositing the buffer layer, as can be seen from FIG. 4, a flat surface is obtained over a temperature range of about 100 ° C., and deposition can be performed under a wide range of growth conditions. Furthermore, the deposition temperature can be realized at a higher temperature than when TEG is used. The advantage that the growth temperature is higher is to suppress the incorporation of residual impurities. This will be described with reference to FIG.

【0025】図5はサファイア基板上にTMGを用いてGaN
バッファ層(低温堆積層、600℃)、GaN単結晶層
(高温堆積層、1030℃)を堆積した試料中の残留不
純物をSIMSで解析したデプスプロファイルを示す。低温
堆積層には、炭素、酸素、水素がかなり含まれており、
成長温度の高い層ではこれらはほとんど検出限界程度で
あった。特に酸素はGaN単結晶層に少し拡散しており深
い準位を作る欠陥の原因となるので、これを抑制する必
要がある。
FIG. 5 shows GaN using TMG on a sapphire substrate.
7 shows a depth profile obtained by analyzing, using SIMS, residual impurities in a sample on which a buffer layer (low-temperature deposited layer, 600 ° C.) and a GaN single-crystal layer (high-temperature deposited layer, 1030 ° C.) are deposited. Cold deposition layers contain significant amounts of carbon, oxygen and hydrogen,
In the layer with high growth temperature, these were almost at the detection limit. In particular, oxygen slightly diffuses into the GaN single crystal layer and causes a defect to form a deep level, so that it is necessary to suppress this.

【0026】しかし、バッファ層の原料としてTEGを用
いると、バッファ層の成長温度をさらに100℃低温に
する必要があり不純物の混入と拡散はより深刻になる。
従って、GaNバッファ層の原料としてTMGを用いた方が不
純物の混入という観点からも有効であることがわかる。
However, when TEG is used as a material for the buffer layer, the growth temperature of the buffer layer must be further lowered by 100 ° C., and the contamination and diffusion of impurities become more serious.
Therefore, it is understood that the use of TMG as the raw material of the GaN buffer layer is more effective from the viewpoint of impurity contamination.

【0027】次に、GaNバッファ層上のGaN単結晶層の原
料としてTEGを用いた場合の有効性について説明する。
Next, the effectiveness of using TEG as a raw material of the GaN single crystal layer on the GaN buffer layer will be described.

【0028】まず、不純物混入の点では、前で説明した
図5のSIMSプロファイルの結果からTEGを用いて堆積し
たGaN単結晶層中には検出限界以上の不純物が検出され
なかった。しかしながらTMGを用いて堆積したGaN単結晶
層中にはTEGを用いて堆積したGaN単結晶層中の炭素レベ
ルの約1.5倍の炭素が検出された。GaN単結晶層の原
料にTMGまたはTEGを用いた試料の電気的特性をホール測
定で調べたところいずれの試料も高抵抗であった。
First, from the viewpoint of impurity contamination, no impurity exceeding the detection limit was detected in the GaN single crystal layer deposited using TEG based on the result of the SIMS profile of FIG. 5 described above. However, carbon was detected in the GaN single crystal layer deposited using TMG at about 1.5 times the carbon level in the GaN single crystal layer deposited using TEG. The electrical characteristics of the samples using TMG or TEG as the raw material of the GaN single crystal layer were examined by Hall measurement, and all samples had high resistance.

【0029】しかしながら低温でフォトルミネッセンス
を測定すると図6に示すようにTMGを用いたGaN単結晶か
らは深い準位からの発光が支配的であるのに対し、TEG
を用いたGaN単結晶からは大きなバンド端発光が観測さ
れた。
However, when photoluminescence is measured at a low temperature, light emission from a deep level is dominant from a GaN single crystal using TMG as shown in FIG.
Large band-edge emission was observed from the GaN single crystal using.

【0030】さらに、X線回折を用いて(0002)面
の回折ピークの半値全幅のGaN単結晶膜厚依存性を調べ
た結果が図7である。GaN単結晶層にTEGを用いた本発明
は、TMGを用いた従来手法よりも回折ピークの半値全幅
が狭くC軸配向性に優れていることがわかった。
Further, FIG. 7 shows the result of examining the dependence of the full width at half maximum of the diffraction peak on the (0002) plane on the GaN single crystal film thickness using X-ray diffraction. It was found that the present invention using the TEG for the GaN single crystal layer has a narrower full width at half maximum of the diffraction peak and is excellent in the C-axis orientation than the conventional method using the TMG.

【0031】以上のように、バッファ層の原料ガスにT
MGを用い、単結晶層の原料にTEGを用いることで、
良好なGaN単結晶層が得られた。まとめると、以下の
表のようになる。
As described above, the source gas of the buffer layer is T
By using MG and using TEG as the raw material of the single crystal layer,
A good GaN single crystal layer was obtained. The following table summarizes this.

【0032】[0032]

【表1】 [Table 1]

【0033】なお、本実施例では基板としてサファイア
C面を用いたが面方位は何れの方向でも良いことは明か
である。さらに基板はサファイアに限るわけではなく、
例えばSiC等の基板でも同様の効果が得られることはい
うまでもない。
In this embodiment, the sapphire C plane is used as the substrate, but it is clear that the plane orientation may be any direction. Furthermore, the substrate is not limited to sapphire,
Needless to say, the same effect can be obtained even with a substrate such as SiC.

【0034】(実施例2)図1に示すGaN結晶の積層構
造の第2の堆積方法について説明する。図8の温度プロ
ファイル及びガス供給プロファイルが示すように、まず
MOVPE気相成長に先立ち、サファイア基板1を反応炉内
のサセプター上に設置し、真空排気した後70Torrの水
素雰囲気において1100℃で15分間加熱し基板表面
クリーニングを行う。次に500℃または600℃まで
冷却した後、TMGを60μモル/分、アンモニアを2.
5L/分、キャリア水素を2L/分流してGaNバッファ層
2を50nm堆積する。次にTMGの供給のみを停止し、温
度を1030℃まで昇温した後、この状態で1時間保持
し熱処理を行う。次にTEGを60μモル/分供給してGaN
単結晶層3を1.2μm堆積する。次にTEGの供給のみ
を停止し、アンモニアと水素の混合雰囲気で室温まで冷
却する。
(Example 2) A second deposition method of the laminated structure of the GaN crystal shown in FIG. 1 will be described. First, as shown by the temperature profile and the gas supply profile in FIG.
Prior to MOVPE vapor phase growth, the sapphire substrate 1 is placed on a susceptor in a reactor, evacuated, and then heated at 1100 ° C. for 15 minutes in a 70 Torr hydrogen atmosphere to clean the substrate surface. Next, after cooling to 500 ° C. or 600 ° C., TMG was 60 μmol / min and ammonia was 2.
At a flow rate of 5 L / min and a flow rate of carrier hydrogen of 2 L / min, a GaN buffer layer 2 is deposited to a thickness of 50 nm. Next, only the supply of TMG is stopped, the temperature is raised to 1030 ° C., and this state is maintained for one hour to perform heat treatment. Next, TEG was supplied at 60 μmol / min to supply GaN.
A single crystal layer 3 is deposited to a thickness of 1.2 μm. Next, only the supply of TEG is stopped, and the mixture is cooled to room temperature in a mixed atmosphere of ammonia and hydrogen.

【0035】熱処理の効果を調べるため、熱処理時間に
対して500℃及び600℃で堆積したGaNバッファ層
の表面ラフネス及び(0002)面のX線回折ピークの
半値全幅をそれぞれ示したものが図9である。500℃
で堆積した多結晶状態の強いバッファ層は30分以上熱
処理するとラフネスが増大し、徐々に単結晶化していく
ことがわかった。このとき、この熱処理を加えたバッフ
ァ層上のGaN単結晶層のX線回折ピーク半値全幅はバッ
ファ層の単結晶化に対応して狭くなり結晶性が向上する
ことがわかった。
In order to examine the effect of the heat treatment, the surface roughness of the GaN buffer layer deposited at 500 ° C. and 600 ° C. with respect to the heat treatment time and the full width at half maximum of the (0002) plane X-ray diffraction peak are shown in FIG. It is. 500 ℃
It has been found that the roughness of the strong polycrystalline buffer layer deposited in step (1) increases when the heat treatment is performed for 30 minutes or more, and the buffer layer gradually becomes single-crystal. At this time, it was found that the full width at half maximum of the X-ray diffraction peak of the GaN single crystal layer on the buffer layer subjected to this heat treatment became narrower in accordance with the single crystallization of the buffer layer, and the crystallinity was improved.

【0036】他方、600℃で堆積したバッファ層のラ
フネスは熱処理を加えてもほとんど変化せず、かなり単
結晶状態に近い熱的に安定なバッファ層である。このと
き、この熱処理を加えたバッファ層上のGaN単結晶層の
X線回折ピーク半値全幅もほとんど変化しない。以上の
熱処理の結果から500℃から600℃の間の温度域に
は様々な単結晶化の度合いの多結晶GaNバッファ層が存
在し、格子不整合の大きい基板との歪を緩和するのに最
適な多結晶状態の存在することがわかった。
On the other hand, the roughness of the buffer layer deposited at 600 ° C. hardly changes even when heat treatment is applied, and the buffer layer is a thermally stable buffer layer substantially close to a single crystal state. At this time, the full width at half maximum of the X-ray diffraction peak of the GaN single crystal layer on the buffer layer subjected to the heat treatment hardly changes. As a result of the above heat treatment, polycrystalline GaN buffer layers with various degrees of single crystallization exist in the temperature range between 500 ° C and 600 ° C, and are optimal for relieving strain with substrates with large lattice mismatch. It was found that a polycrystalline state existed.

【0037】以上の結果から500℃から600℃の間
の温度域でGaNバッファ層を堆積し、熱処理を加えたと
ころ540℃で堆積した後、1030℃で15分熱処理
を加えたところ、バッファ層上のGaN単結晶層のX線回
折ピーク半値全幅が90秒とこれまでに報告されていな
い最高の値が得られ、高抵抗でかつバンド端発光の非常
に強い高品質なGaN単結晶が得られた。
From the above results, a GaN buffer layer was deposited in a temperature range between 500 ° C. and 600 ° C., subjected to a heat treatment, deposited at 540 ° C., and then subjected to a heat treatment at 1030 ° C. for 15 minutes. The full width at half maximum of the X-ray diffraction peak of the upper GaN single crystal layer is 90 seconds, which is the highest value that has not been reported so far, and a high-quality GaN single crystal with high resistance and very strong band edge emission is obtained. Was done.

【0038】今回の実験結果から熱処理は1000℃以
上が好ましく、これ以下の温度では熱処理時間がかかり
すぎて逆に結晶性が低下してしまう。また熱処理時間も
結晶性の劣化を避けるためには1時間以内が好ましい。
From the results of this experiment, the heat treatment is preferably performed at a temperature of 1000 ° C. or higher. At a temperature lower than this temperature, the heat treatment takes too much time, and conversely, the crystallinity decreases. Also, the heat treatment time is preferably within one hour in order to avoid deterioration of crystallinity.

【0039】なお、本実施例では基板としてサファイア
C面を用いたが面方位は何れの方向でも良いことは明か
である。さらに基板はサファイアに限るわけではなく、
例えばSiC等の基板でも同様の効果が得られることはい
うまでもない。
In this embodiment, the sapphire C-plane is used as the substrate, but it is clear that the plane orientation may be any direction. Furthermore, the substrate is not limited to sapphire,
Needless to say, the same effect can be obtained even with a substrate such as SiC.

【0040】また熱処理雰囲気は、アンモニアと水素の
混合雰囲気だけでなくGaN単結晶表面から窒素原子の解
離を抑制できる雰囲気、すなはち窒素ガスなどの窒素原
子を含む雰囲気であれば同等の効果が得られる。
The heat treatment atmosphere is not only a mixed atmosphere of ammonia and hydrogen but also an atmosphere that can suppress dissociation of nitrogen atoms from the GaN single crystal surface, that is, an atmosphere containing nitrogen atoms such as nitrogen gas has the same effect. can get.

【0041】本実施例では、バッファ層の原料ガスをT
MGとしているが、バッファ層の堆積後に熱処理をして
いるので、TEGガスを原料としてもよい。
In this embodiment, the source gas of the buffer layer is T
Although MG is used, since the heat treatment is performed after the buffer layer is deposited, TEG gas may be used as a raw material.

【0042】(実施例3)実施例1または実施例2で作
製したGaN単結晶上に、結晶成長を行い半導体レーザ
を製造する。
(Embodiment 3) A semiconductor laser is manufactured by growing a crystal on the GaN single crystal produced in Embodiment 1 or 2.

【0043】まず、図1に示すGaN単結晶3は、不純
物濃度が小さく、表面も平坦であり、そしてC軸の配向
性もすぐれているために、この結晶3上には、半導体レ
ーザに適した結晶成長ができる。
First, the GaN single crystal 3 shown in FIG. 1 has a low impurity concentration, a flat surface, and excellent C-axis orientation. Crystal growth.

【0044】本実施例では、単結晶3上に、活性層とし
てInGaN層、活性層の両側にバリア層としてGaN
バリア層を設けたダブルヘテロ構造の半導体レーザを構
成している。このレーザは、上述したように、基板側の
バッファー層およびGaN単結晶層3が、その後の結晶
に適した構造になっている。
In this embodiment, an InGaN layer is formed on the single crystal 3 as an active layer, and GaN is formed on both sides of the active layer as a barrier layer.
The semiconductor laser has a double hetero structure provided with a barrier layer. In this laser, as described above, the buffer layer and the GaN single crystal layer 3 on the substrate side have a structure suitable for subsequent crystals.

【0045】[0045]

【発明の効果】以上述べてきたように本発明の第一の製
造方法によれば、広い温度域に亘り表面の平坦なバッフ
ァ層が堆積でき、特にこの高温域で堆積するとGaNバッ
ファ層中の残留不純物を抑制でき、バッファ層上GaN単
結晶中への不純物の拡散混入を抑制できる。さらにGaN
単結晶の成長そのものにおいても不純物の混入を抑制で
きる上にC軸配向性の良好なGaN単結晶層が実現でき
る。
As described above, according to the first manufacturing method of the present invention, a buffer layer having a flat surface can be deposited over a wide temperature range. Residual impurities can be suppressed, and diffusion and incorporation of impurities into the GaN single crystal on the buffer layer can be suppressed. Further GaN
Even in the growth of the single crystal itself, the incorporation of impurities can be suppressed and a GaN single crystal layer having good C-axis orientation can be realized.

【0046】本発明の第二の製造方法によれば、格子不
整合の大きい基板との間に生じる歪を緩和するのに最適
なGaNバッファ層の多結晶状態を実現することが可能で
あり、理想的なC軸配向性を持った高品質GaN単結晶層
が実現される。
According to the second manufacturing method of the present invention, it is possible to realize a polycrystalline state of the GaN buffer layer which is optimal for alleviating the strain generated between the substrate and the substrate having a large lattice mismatch. A high-quality GaN single crystal layer having ideal C-axis orientation is realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実験試料の断面を示す図FIG. 1 shows a cross section of an experimental sample.

【図2】トリメチルガリウム(TMG)及びトリエチルガ
リウム(TEG)の分子構造を示す図
FIG. 2 is a diagram showing the molecular structures of trimethylgallium (TMG) and triethylgallium (TEG)

【図3】本発明の実施例1に係わる温度プロファイル及
びガス供給プロファイルを示す図
FIG. 3 is a diagram showing a temperature profile and a gas supply profile according to the first embodiment of the present invention.

【図4】MOVPE法によりサファイア基板上にGaN低温堆積
層すなわちバッファ層を成長した場合の表面ラフネス
(凹凸)の成長温度依存性を示す図
FIG. 4 is a diagram showing the growth temperature dependence of surface roughness (irregularities) when a GaN low-temperature deposited layer, that is, a buffer layer is grown on a sapphire substrate by MOVPE.

【図5】サファイア基板上にTMGを用いてGaNバッファ層
(低温堆積層、600℃)、GaN単結晶層(高温堆積
層、1030℃)を堆積した試料中の残留不純物のSIMS
解析結果を示す図
FIG. 5 SIMS of residual impurities in a sample in which a GaN buffer layer (low-temperature deposition layer, 600 ° C.) and a GaN single-crystal layer (high-temperature deposition layer, 1030 ° C.) are deposited on a sapphire substrate using TMG.
Diagram showing analysis results

【図6】TMGまたはTEGを用いて堆積したGaN単結晶の低
温(16K)フォトルミネッセンスを示す図
FIG. 6 is a diagram showing low-temperature (16K) photoluminescence of a GaN single crystal deposited using TMG or TEG.

【図7】X線回折を用いて観測した(0002)面の回
折ピークの半値全幅のGaN単結晶膜厚依存性を示す図
FIG. 7 is a graph showing the dependence of the full width at half maximum of the diffraction peak of the (0002) plane observed using X-ray diffraction on the thickness of a GaN single crystal film.

【図8】本発明の実施例2に係わる温度プロファイル及
びガス供給プロファイルを示す図
FIG. 8 is a diagram showing a temperature profile and a gas supply profile according to a second embodiment of the present invention.

【図9】熱処理時間に対して500℃及び600℃で堆
積したGaNバッファ層の表面ラフネス及び(0002)
面のX線回折ピークの半値全幅をそれぞれ示した図
FIG. 9: Surface roughness and (0002) of GaN buffer layer deposited at 500 ° C. and 600 ° C. for heat treatment time
Showing the full width at half maximum of the X-ray diffraction peak of the surface

【符号の説明】[Explanation of symbols]

1 サファイア基板 2 GaNバッファ層 3 GaN単結晶層 Reference Signs List 1 sapphire substrate 2 GaN buffer layer 3 GaN single crystal layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武石 英見 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平9−116130(JP,A) 特開 平6−326416(JP,A) 特開 平6−268259(JP,A) 特開 平6−268257(JP,A) 特開 平4−209577(JP,A) 特開 平2−81484(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01S 5/00 - 5/50 H01L 33/00 H01L 21/205,21/31,21/365 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hidemi Takeishi 1006 Odakadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-9-116130 (JP, A) JP-A-6 JP-A-6-268259 (JP, A) JP-A-6-268257 (JP, A) JP-A-4-209577 (JP, A) JP-A-2-81484 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) H01S 5/00-5/50 H01L 33/00 H01L 21 / 205,21 / 31,21 / 365 JICST file (JOIS)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 反応炉に500℃以上600℃以下の堆
積温度でトリメチルガリウムとアンモニアとを流して多
結晶のGaNからなるバッファー層である第1の半導体
層を基板上に堆積する工程と、 前記第1の半導体層の堆積温度よりも高い堆積温度で前
記反応炉にトリエチルガリウムとアンモニアとを流して
単結晶層からなる第2の半導体層を前記第1の半導体層
の直上に堆積する工程とを有する、窒化ガリウム系半導
体の製造方法。
A step of flowing trimethylgallium and ammonia into a reaction furnace at a deposition temperature of 500 ° C. or more and 600 ° C. or less to deposit a first semiconductor layer, which is a buffer layer made of polycrystalline GaN, on a substrate; A step of flowing triethylgallium and ammonia into the reaction furnace at a deposition temperature higher than the deposition temperature of the first semiconductor layer to deposit a second semiconductor layer composed of a single crystal layer directly on the first semiconductor layer A method for producing a gallium nitride-based semiconductor, comprising:
【請求項2】 前記第1の半導体層を堆積する工程と前
記第2の半導体層を堆積する工程との間に熱処理工程を
有する、請求項1に記載の窒化ガリウム系半導体の製造
方法。
2. The method according to claim 1, further comprising a heat treatment step between the step of depositing the first semiconductor layer and the step of depositing the second semiconductor layer.
【請求項3】 前記熱処理工程における雰囲気ガスに窒
素原子を含む、請求項2に記載の窒化ガリウム系半導体
の製造方法。
3. The method for producing a gallium nitride-based semiconductor according to claim 2, wherein the atmosphere gas in said heat treatment step contains nitrogen atoms.
【請求項4】 基板と、 500℃以上600℃以下の堆積温度でトリメチルガリ
ウムとアンモニアとを流して前記基板上に堆積された多
結晶のGaNからなるバッファー層である第1の半導体
層と、 前記第1の半導体層の堆積温度よりも高い堆積温度でト
リエチルガリウムとアンモニアとを流して前記第1の半
導体層の直上に堆積された単結晶層からなる第2の半導
体層と、 を有する窒化ガリウム系半導体。
4. A substrate, and a first semiconductor layer which is a buffer layer made of polycrystalline GaN deposited on the substrate by flowing trimethylgallium and ammonia at a deposition temperature of 500 ° C. or more and 600 ° C. or less, A second semiconductor layer consisting of a single crystal layer deposited immediately above the first semiconductor layer by flowing triethylgallium and ammonia at a deposition temperature higher than the deposition temperature of the first semiconductor layer. Gallium-based semiconductor.
JP6611095A 1995-03-24 1995-03-24 Manufacturing method of gallium nitride based semiconductor Expired - Lifetime JP3353527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6611095A JP3353527B2 (en) 1995-03-24 1995-03-24 Manufacturing method of gallium nitride based semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6611095A JP3353527B2 (en) 1995-03-24 1995-03-24 Manufacturing method of gallium nitride based semiconductor

Publications (2)

Publication Number Publication Date
JPH08264899A JPH08264899A (en) 1996-10-11
JP3353527B2 true JP3353527B2 (en) 2002-12-03

Family

ID=13306433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6611095A Expired - Lifetime JP3353527B2 (en) 1995-03-24 1995-03-24 Manufacturing method of gallium nitride based semiconductor

Country Status (1)

Country Link
JP (1) JP3353527B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3620105B2 (en) * 1995-07-27 2005-02-16 日立電線株式会社 Method for producing gallium nitride crystal
CN1077607C (en) * 1998-11-03 2002-01-09 南京大学 Method and installation for GaN growth by light radiation-heated metallic organic chemical gas-state deposition
KR100486699B1 (en) * 1999-02-12 2005-05-03 삼성전자주식회사 Method for growing a p-GaN layer
JP2001094212A (en) 1999-09-24 2001-04-06 Sanyo Electric Co Ltd Semiconductor element and its manufacturing method
JP3569807B2 (en) 2002-01-21 2004-09-29 松下電器産業株式会社 Method for manufacturing nitride semiconductor device
JP3859148B2 (en) * 2002-10-31 2006-12-20 信越半導体株式会社 Method for manufacturing Zn-based semiconductor light emitting device
JP4514584B2 (en) * 2004-11-16 2010-07-28 富士通株式会社 Compound semiconductor device and manufacturing method thereof
JP4940928B2 (en) * 2006-12-15 2012-05-30 日立電線株式会社 Manufacturing method of nitride semiconductor
CN101689523B (en) * 2007-07-17 2012-02-22 住友电气工业株式会社 Method for manufacturing electronic device, method for manufacturing epitaxial substrate, iii nitride semiconductor element and gallium nitride epitaxial substrate
JP5928366B2 (en) * 2013-02-13 2016-06-01 豊田合成株式会社 Method for producing group III nitride semiconductor
CN113930745A (en) * 2021-09-30 2022-01-14 北京工业大学 Preparation method of high-crystallization GaN film

Also Published As

Publication number Publication date
JPH08264899A (en) 1996-10-11

Similar Documents

Publication Publication Date Title
JP5792209B2 (en) Method for heteroepitaxial growth of high quality N-plane GaN, InN and AlN and their alloys by metalorganic chemical vapor deposition
JP2795226B2 (en) Semiconductor light emitting device and method of manufacturing the same
US5923950A (en) Method of manufacturing a semiconductor light-emitting device
US20070138505A1 (en) Low defect group III nitride films useful for electronic and optoelectronic devices and methods for making the same
WO1999025030A1 (en) Semiconductor substrate and method for making the same
US6648966B2 (en) Wafer produced thereby, and associated methods and devices using the wafer
KR20060038058A (en) Nitride based semiconductor device and method for manufacturing the same
JP3353527B2 (en) Manufacturing method of gallium nitride based semiconductor
US20030012984A1 (en) Buffer layer and growth method for subsequent epitaxial growth of III-V nitride semiconductors
US6339014B1 (en) Method for growing nitride compound semiconductor
JP5093740B2 (en) Semiconductor crystal film growth method
KR100959290B1 (en) Gallium nitride semiconductor and method for manufacturing the same
US7696533B2 (en) Indium nitride layer production
JPH10290051A (en) Semiconductor device and manufacture thereof
US8529699B2 (en) Method of growing zinc-oxide-based semiconductor and method of manufacturing semiconductor light emitting device
US20050066885A1 (en) Group III-nitride semiconductor substrate and its manufacturing method
JP2000340509A (en) Gan substrate and manufacturing method therefor
JP2812375B2 (en) Gallium nitride based compound semiconductor growth method
JP2000049378A (en) Nitride semiconductor for light emitting element and its manufacture
JP2002053398A (en) Crystal substrate
JP3152152B2 (en) Compound semiconductor epitaxial wafer
JP3214349B2 (en) Semiconductor wafer having InGaN layer, method of manufacturing the same, and light emitting device having the same
JP4002643B2 (en) Epitaxial wafer composed of single crystal substrate and gallium nitride compound semiconductor crystal grown on it
JPH07240374A (en) Iii-v group compound semiconductor crystal
JP2004099405A (en) Nitride semiconductor multilayer material and method of growing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10