JP3350096B2 - Cold-rolled steel sheet or hot-dip galvanized cold-rolled steel sheet having excellent bake hardenability and formability, and methods for producing them - Google Patents
Cold-rolled steel sheet or hot-dip galvanized cold-rolled steel sheet having excellent bake hardenability and formability, and methods for producing themInfo
- Publication number
- JP3350096B2 JP3350096B2 JP16308392A JP16308392A JP3350096B2 JP 3350096 B2 JP3350096 B2 JP 3350096B2 JP 16308392 A JP16308392 A JP 16308392A JP 16308392 A JP16308392 A JP 16308392A JP 3350096 B2 JP3350096 B2 JP 3350096B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- cold
- rolled steel
- hot
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、焼付硬化性と成形性と
に優れた冷延鋼板あるいは溶融亜鉛メッキ冷延鋼板およ
びそれらの製造方法に関する。本発明が係わる冷延鋼板
とは、自動車、家庭電気製品、建物などのプレス成形を
して使用されるものである。そして、表面処理をしない
狭義の冷延鋼板と、防錆のために例えばZnメッキや合
金化Znメッキなどの表面処理を施した冷延鋼板の両方
を含む。本発明による鋼板は、強度と加工性を兼ね備え
た鋼板であるので、使用に当たっては今までの鋼板より
板厚を減少できること、すなわち軽量化が可能となる。
したがって、地球環境保全に寄与できるものと考えられ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold-rolled steel sheet or a hot-dip galvanized cold-rolled steel sheet excellent in bake hardenability and formability, and a method for producing the same. The cold-rolled steel sheet according to the present invention is used by press-forming automobiles, home appliances, buildings, and the like. Further, it includes both cold-rolled steel sheets in a narrow sense without surface treatment and cold-rolled steel sheets subjected to surface treatment such as Zn plating or alloyed Zn plating for rust prevention. Since the steel sheet according to the present invention is a steel sheet having both strength and workability, it is possible to reduce the thickness of the conventional steel sheet in use, that is, to reduce the weight.
Therefore, it is considered that it can contribute to global environmental conservation.
【0002】[0002]
【従来の技術】溶鋼の真空脱ガス処理の最近の進歩によ
り、極低炭素鋼の溶製が容易になった現在、良好な加工
性を有する極低炭素鋼板の需要は益々増加しつつある。
この中でも、例えば特開昭59−31827号公報、お
よび特開昭59−38337号公報などに開示されてい
るTiとNbを複合添加した極低炭素鋼板は、極めて良
好な加工性を有し、塗装焼付硬化(BH)性を兼備し、
溶融亜鉛メッキ特性にも優れているので、重要な位置を
占めつつある。しかしながら、そのBH量は通常のBH
鋼板のレベルを超えるものではなく、さらなるBH量を
付与しようとすると常温非時効性が確保できなくなると
いう欠点を有する。2. Description of the Related Art With the recent progress in vacuum degassing of molten steel, it has become easier to produce ultra-low carbon steel. At present, the demand for ultra-low carbon steel sheets having good workability is increasing.
Among them, for example, the ultra-low carbon steel sheet to which Ti and Nb are added in combination as disclosed in JP-A-59-31827 and JP-A-59-38337 has extremely good workability. Combines paint bake hardening (BH) properties,
As it has excellent hot-dip galvanizing properties, it is occupying an important position. However, the amount of BH is normal BH
It does not exceed the level of a steel sheet, and has the drawback that non-aging at room temperature cannot be ensured if an additional amount of BH is to be added.
【0003】一方、加工性を確保しつつ強度を上昇させ
るために、従来から多くの試みがなされてきた。特に、
本発明が関わる引張強度が35〜50kgf/mm2 の場合に
は、鋼中にP,Siなどを添加し、これらの固溶体強化
機構を利用して強度を増加してきた。たとえば、特開昭
59−31827号公報、および特開昭59−3833
7号公報においては、TiとNbを添加した極低炭素鋼
板に主にSiとPを添加し、引張強度で45kgf/mm2 級
までの高強度冷延鋼板の製造方法を開示している。特公
昭57−57945号公報はTi添加極低炭素鋼にPを
添加して高強度冷延鋼板を製造する方法に関する代表的
な先行技術である。On the other hand, many attempts have been made in the past to increase the strength while ensuring workability. In particular,
When the tensile strength related to the present invention is 35 to 50 kgf / mm 2 , P, Si and the like have been added to steel, and the strength has been increased by utilizing these solid solution strengthening mechanisms. For example, JP-A-59-31827 and JP-A-59-3833.
No. 7 discloses a method of manufacturing a high-strength cold-rolled steel sheet having a tensile strength of up to 45 kgf / mm 2 class by adding Si and P mainly to an ultra-low carbon steel sheet to which Ti and Nb are added. Japanese Patent Publication No. 57-57945 is a typical prior art relating to a method for producing a high-strength cold-rolled steel sheet by adding P to a Ti-added ultra-low carbon steel.
【0004】以上のように従来から強化元素としてP、
次いでSiが多用されている。これは、PやSiは固溶
体強化能が非常に高く少量の添加で強度を上昇でき、か
つ延性や深絞り性がそれほど低下せず、添加コストもそ
れほど上昇しないと考えられてきたからである。しか
し、実際にはこれらの元素だけで強度の上昇を達成しよ
うとすると強度のみならず降伏強度も同時に著しく上昇
するため、面形状不良が発生し、自動車のパネルには使
用が制約される場合がある。また、溶融亜鉛メッキをす
る場合にはメッキ不良をSiが惹起したり、P,Siが
合金化速度を著しく低下させたりするので、生産性が低
下したりする問題がある。[0004] As described above, conventionally, P,
Next, Si is frequently used. This is because it has been considered that P or Si has a very high solid solution strengthening ability and can be increased in strength by addition of a small amount, and does not decrease ductility and deep drawability so much, and does not increase addition cost so much. However, in fact, when trying to achieve an increase in strength with only these elements, not only the strength but also the yield strength increases significantly at the same time, resulting in poor surface shape, which may restrict the use of automotive panels. is there. Further, in the case of hot-dip galvanizing, there is a problem that Si causes plating failure and that P and Si significantly lower the alloying speed, thereby lowering productivity.
【0005】一方、固溶体強化元素としてMnやCrを
利用することも知られている。特開昭63−19014
1号公報および特開昭64−62440号公報にはMn
をTi含有極低炭素鋼板へ添加し、また、特公昭59−
42742号公報や前記した特公昭57−57945号
公報においては、MnとCrをTi添加極低炭素鋼へ添
加する技術が開示されているが、(i)MnやCrの添
加は、主な添加元素であるPやSiの補助的な役割しか
なく、したがって、得られた冷延鋼板も強度のわりには
降伏強度が高く、かつ(ii)上記(i)以外の目的で、
たとえば(a)本発明の特徴である焼鈍後の組織を混合
組織とするために添加されているのではないのはもちろ
んのこと、(b)加工硬化率を向上させる、(c)BH
性を付与する、(d)2次加工性を向上させる、(e)
溶融亜鉛メッキのメッキ性を改善する、などの目的で積
極的に添加されているわけでもない。On the other hand, it is known to use Mn or Cr as a solid solution strengthening element. JP-A-63-19014
No. 1 and JP-A-64-62440 disclose Mn.
Is added to a Ti-containing ultra-low carbon steel sheet.
Japanese Patent No. 42742 and the above-mentioned Japanese Patent Publication No. 57-57945 disclose a technique of adding Mn and Cr to a Ti-added ultra-low carbon steel. The elements P and Si only play an auxiliary role, and thus the obtained cold-rolled steel sheet also has a high yield strength for strength, and (ii) for purposes other than the above (i),
For example, (a) is added not only to make the structure after annealing characteristic of the present invention into a mixed structure, but also (b) improving the work hardening rate, and (c) BH
Imparting properties, (d) improving secondary workability, (e)
Neither is it positively added for the purpose of improving the plating properties of hot-dip galvanizing.
【0006】さらに、特開平2−111841号公報
は、Tiを添加した極低炭素鋼に1.5%以上3.5%
未満のMnを添加した焼付硬化性を有する良加工性冷延
鋼板および溶融亜鉛メッキ鋼板を開示している。多量の
Mnの添加により、Ar3 変態点の低下による熱間圧延
の操業安定性と金属組織の均一性を目的としている。ま
た、一層の延性の向上を目的にCrやVの0.2〜1.
0%までの添加も開示している。しかし、多量のMnや
Crの添加により機械的性質、特に強度と延性のバラン
スを改善するという思想に基づくものではない。さら
に、ここでもBH量は通常のレベルから逸脱するもので
はなく、これまで以上の高いBHと常温非時効性を両立
するには至っていない。Further, Japanese Patent Application Laid-Open No. 2-111841 discloses that a very low carbon steel with Ti added is 1.5% or more and 3.5% or less.
Disclosed are good workability cold rolled steel sheets and hot-dip galvanized steel sheets having bake hardenability with less than Mn added. By adding a large amount of Mn, the aim is to improve the operation stability of hot rolling and the uniformity of the metal structure by lowering the Ar 3 transformation point. Further, for the purpose of further improving ductility, 0.2 to 1.
Additions of up to 0% are also disclosed. However, it is not based on the idea of improving the mechanical properties, particularly the balance between strength and ductility, by adding a large amount of Mn or Cr. Furthermore, the BH amount does not deviate from the usual level here, and it has not been possible to achieve both higher BH and non-aging at room temperature.
【0007】以上のような、フェライト単相組織を有す
る鋼板に対して、複合組織を有する鋼板も知られてい
る。低炭素アルミキルド鋼にSi,Mn,Crなどの合
金元素を添加し、連続焼鈍温度とその後の冷却速度を適
正化することにより、フェライト相とマルテンサイト相
とを混在させた、いわゆるDual Phase鋼(D
P鋼)と呼ばれるものがその代表例である。このような
DP鋼は、高強度でありながら極めて低い降伏比(Y
P)を有し、かつ常温非時効で高いBHを有することが
知られている。しかしながら、平均r値が1.0程度と
低く深絞り性に劣るという欠点を有する。ちなみにこの
ような冷延鋼板の製造方法については、特公昭53−3
9368号公報、特開昭50−75113号公報、特開
昭51−39524号公報に開示されている。[0007] A steel sheet having a composite structure is known in addition to a steel sheet having a ferrite single-phase structure as described above. By adding alloying elements such as Si, Mn, and Cr to low-carbon aluminum-killed steel and optimizing the continuous annealing temperature and the subsequent cooling rate, a so-called Dual Phase steel in which a ferrite phase and a martensite phase are mixed together ( D
What is called P steel) is a typical example. Such DP steel has a very low yield ratio (Y
P) and is known to have a high BH due to non-aging at room temperature. However, there is a disadvantage that the average r value is as low as about 1.0 and the deep drawability is poor. Incidentally, the production method of such a cold-rolled steel sheet is described in JP-B-53-3.
No. 9368, JP-A-50-75113 and JP-A-51-39524.
【0008】これらの低炭素アルミキルド鋼を素材とし
た複合組織鋼板に対して、特公平3−2224号公報お
よび特公平3−21611号公報には極低炭素鋼を素材
とした複合組織鋼板について開示されている。これらは
極低炭素鋼に多量のNbとB、さらにはTiを複合添加
して焼鈍後の組織をフェライト相と低温変態生成相との
複合組織とし高平均r値、高BH、高延性および常温非
時効性を兼ね備えた冷延鋼板を得るものである。[0008] Japanese Patent Publication No. 3-2224 and Japanese Patent Publication No. 3-21611 disclose a composite structure steel sheet made of an ultra-low carbon steel as a composite steel sheet made of a low carbon aluminum killed steel. Have been. These are composed of a very low carbon steel with a large amount of Nb and B, and also with the addition of Ti, to make the structure after annealing a composite structure of a ferrite phase and a low-temperature transformation forming phase, with a high average r value, high BH, high ductility, and normal temperature. It is intended to obtain a cold-rolled steel sheet having non-aging properties.
【0009】しかしながら、本発明者らが鋭意検討した
結果、このようにNb,B、場合によってはTiを添加
することによって複合組織化する場合には、以下のよう
な問題点を有することが明らかとなった。1)このよう
な多量のNb,BさらにはTiを含有する成分の鋼で
は、α→γ変態点が低下するわけではなく、複合組織を
得るためには極めて高い温度の焼鈍が必須となり、連続
焼鈍時に板破断などのトラブルの原因となること、2)
α+γの温度領域が極めて狭いため、板幅方向に組織が
変化し、結果として材質が大きくばらついたり、数℃の
焼鈍温度の変化によって複合組織になる場合とならない
場合があり、製造が極めて不安定となる。さらに多量の
Bは、3)延性の劣化をもたらすばかりでなく、4)メ
ッキ不良などの原因となり、溶融亜鉛メッキ鋼板として
は不適切である。5)また、5kgf/mm2 以上のBHを付
与することが困難であるばかりか、BH量が5kgf/mm2
を超えると人工時効後のYP−Elが0.2%を超えて
しまい、常温非時効性が確保されなくなる。However, as a result of intensive studies made by the present inventors, it is apparent that the following problems arise when a composite structure is formed by adding Nb, B, and in some cases, Ti. It became. 1) In steels containing a large amount of Nb, B, and Ti, the α → γ transformation point does not necessarily decrease, but annealing at an extremely high temperature is indispensable to obtain a composite structure. It may cause troubles such as sheet breakage during annealing 2)
Since the temperature range of α + γ is extremely narrow, the structure changes in the sheet width direction, and as a result, the material may vary greatly, or the composite structure may or may not become a composite structure due to a change in the annealing temperature of several degrees Celsius, and the production is extremely unstable. Becomes Further, a large amount of B causes not only 3) deterioration of ductility but also 4) poor plating and the like, and is unsuitable as a hot-dip galvanized steel sheet. 5) Not only is it difficult to provide BH of 5 kgf / mm 2 or more, but also the amount of BH is 5 kgf / mm 2.
If it exceeds 50%, the YP-El after artificial aging exceeds 0.2%, so that non-aging at room temperature cannot be ensured.
【0010】特開平3−277741号公報には、極低
炭素鋼にNb,B,TiさらにはMn,Crを添加した
鋼をAc1 −50℃以上Ac1 変態点未満の温度で焼鈍
することにより、その組織を5%以下の体積率のアシキ
ュラーフェライトとフェライトとからなる複合組織とす
ることにより、BH性と常温非時効性さらには加工性を
兼ね備えた鋼板を提供する技術が開示されている。しか
しながら、本発明者らが詳細に調べた結果以下のような
問題点があることが明らかとなった。すなわち、第2相
の体積率が5%以下の複合組織鋼板では、従来レベル以
上、つまり5kgf/mm2 以上のBHを付与するのが困難で
あり、また、BH量が5kgf/mm2 を超えると人工時効後
のYP−Elが0.2%を超えてしまうことがあり常温
非時効性の確保が極めて困難であることが分かった。例
として、0.004%C−0.01Si−1.5Mn−
1.0Cr−0.05P−0.025Nb−0.04A
l−0.0025N−0.01Sの成分を有する鋼を焼
鈍温度を変化させることによって第2相の体積率を0〜
20%まで変化させ、BH量と人工時効後のYP−El
との関係を調査した結果を図1に示す。これより明らか
なように第2相の体積率が5%以下の範囲では、常温非
時効性が確保され難い。このことは第2相の体積率が少
ないため、フェライトに導入される可動転位密度が充分
でないことが原因であると考えられる。Japanese Unexamined Patent Publication (Kokai) No. 3-277774 discloses that a steel obtained by adding Nb, B, Ti, Mn, and Cr to a very low carbon steel is annealed at a temperature from Ac 1 -50 ° C. to less than the Ac 1 transformation point. Discloses a technique for providing a steel sheet having both BH property, non-aging property at room temperature, and workability by making the structure a composite structure composed of acicular ferrite and ferrite having a volume ratio of 5% or less. I have. However, as a result of a detailed study by the present inventors, it has been found that there are the following problems. That is, it is difficult to provide BH of the conventional structure or higher, that is, 5 kgf / mm 2 or more, with a composite structure steel sheet having a volume fraction of the second phase of 5% or less, and the BH amount exceeds 5 kgf / mm 2 . YP-El after artificial aging may exceed 0.2%, indicating that it is extremely difficult to ensure non-aging at room temperature. As an example, 0.004% C-0.01Si-1.5Mn-
1.0Cr-0.05P-0.025Nb-0.04A
By changing the annealing temperature of steel having a composition of 1-0.0025N-0.01S, the volume fraction of the second phase is reduced to 0 to 0.
20%, BH content and YP-El after artificial aging
FIG. 1 shows the results of an examination of the relationship between the two. As is clear from this, when the volume fraction of the second phase is 5% or less, non-aging at room temperature is difficult to secure. It is considered that this is because the volume ratio of the second phase is small, and thus the mobile dislocation density introduced into the ferrite is not sufficient.
【0011】以上のように極低炭素鋼における複合組織
鋼板についていくつかの提案がなされているが、そのB
H量は到底従来レベルを逸脱するものではなく、常温非
時効性についても従来のレベルをわずかに上回る程度に
とどまっていた。As described above, several proposals have been made for composite structure steel sheets in ultra-low carbon steel.
The H content did not deviate from the conventional level at all, and the room temperature non-aging property was slightly higher than the conventional level.
【0012】[0012]
【発明が解決しようとする課題】自動車のパネルなどに
使用される鋼板には、プレスの後にスプリングバックや
面歪などが生じない良好な面形状性が厳しく要求され
る。ところで、面形状性は、降伏強度が低いほど好まし
いことはよく知られている。しかし、鋼板の高強度は、
従来技術で述べたように一般に降伏強度の著しい上昇を
伴う。したがって、強度を上昇させる場合には、降伏強
度の上昇を極力抑制する必要がある。さらに、プレス成
形をした後の鋼板には耐デント性が要求される。耐デン
ト性とは、組上がった自動車に石などが当たる場合、鋼
板の永久的な凹み変形に対する抵抗性を意味する。耐デ
ント特性は、板厚が一定の場合、プレス加工して塗装焼
付した後の変形応力が高いほど良好になる。したがって
同じ降伏強度の鋼板を考えた場合、塗装焼付硬化能が高
く、また、加工硬化能が高いほど耐デント特性は向上す
ることになる。A steel sheet used for a panel of an automobile or the like is strictly required to have a good surface shape which does not cause a springback or a surface distortion after pressing. By the way, it is well known that the lower the yield strength, the better the surface shape is. However, the high strength of steel sheets
As described in the prior art, it generally involves a significant increase in yield strength. Therefore, when increasing the strength, it is necessary to suppress the increase in the yield strength as much as possible. Furthermore, the steel sheet after press forming is required to have dent resistance. The dent resistance means resistance to permanent dent deformation of a steel plate when a stone or the like hits the assembled vehicle. In the case where the plate thickness is constant, the higher the deformation stress after the press working and the coating baking, the better the dent resistance property becomes. Therefore, when considering steel sheets having the same yield strength, the paint bake hardening ability is high, and the higher the work hardening ability, the better the dent resistance is.
【0013】以上から、自動車のパネルなどに使用され
る望ましい鋼板は、降伏強度はそれほど高くなく、著し
く加工硬化し、高い塗装焼付硬化能を合わせ持つ鋼板で
ある。もちろん、平均r値(深絞り特性)や伸び(張出
特性)などの加工性にも優れる必要があり、さらに常温
で実質的に非時効である必要がある。本発明は、以上の
ような要望を満足するものであって、特に塗装焼付硬化
能に関しては、10kgf/mm2 程度までの高いBH量を目
的に応じて付与することができ、かつ常温非時効性を兼
ね備えた、従来にはない冷延鋼板を提供することを目的
とするものである。As described above, a desirable steel sheet used for a panel of an automobile is a steel sheet which has not so high a yield strength, is extremely work-hardened, and has a high paint bake hardenability. Of course, it is necessary to have excellent workability such as an average r value (deep drawing property) and elongation (extension property), and it is necessary to be substantially non-aging at room temperature. The present invention satisfies the above-mentioned demands, and in particular, can provide a high BH amount of up to about 10 kgf / mm 2 with respect to the coating baking hardening ability according to the purpose, and can perform non-aging at room temperature. It is an object of the present invention to provide an unprecedented cold-rolled steel sheet having both properties.
【0014】[0014]
【課題を解決するための手段】本発明者らは、上記の目
標を達成するために、鋭意、研究を遂行し、以下に述べ
るような従来にはない知見を得た。すなわち、Nb,T
iを単独または複合で添加した極低炭素鋼をベースにし
て、B,Mn,Crの冷間圧延、焼鈍、調質圧延後の組
織と引張特性、特に焼鈍時のα→γ変態挙動に着目して
詳細に調査した。その結果、Bを添加することによって
フェライトと低温変態生成物からなる複合組織を得るこ
とができたが、1)複合組織とするためには通常よりも
かなり高い温度での焼鈍が必須であること、2)しかも
複合組織とするための温度域は、極めて狭い範囲しか存
在しないため、製造時に材質のばらつきが極めて大きい
こと、3)さらに、このような鋼ではBHを5kgf/mm2
以上付与することは困難であるばかりか、BHが5kgf/
mm2 以上となると人工時効後の降伏点伸び(YP−E
l)が0.2%を超えてしまい、常温非時効性が確保さ
れなくなる。また、4)焼鈍後の冷却条件に極めて敏感
で、このこともBH量、平均r値などの材質特性を著し
く不安定にする。これらのことは、NbとBとの複合添
加、TiとBとの複合添加、NbとTiとBの複合添加
のいずれの場合でも同様の傾向を示す。Means for Solving the Problems In order to achieve the above-mentioned object, the present inventors have intensively studied and obtained the following unprecedented knowledge. That is, Nb, T
Focusing on the structure and tensile properties of B, Mn, and Cr after cold rolling, annealing, and temper rolling, and particularly on the α → γ transformation behavior during annealing, based on the ultra-low carbon steel to which i is added alone or in combination. And examined it in detail. As a result, a composite structure composed of ferrite and a low-temperature transformation product could be obtained by adding B, but 1) annealing at a temperature much higher than usual is essential to form a composite structure. 2) In addition, since the temperature range for forming a composite structure has only a very narrow range, the variation in the material at the time of manufacturing is extremely large. 3) Furthermore, in such steel, BH is 5 kgf / mm 2.
It is not only difficult to give above, but BH is 5kgf /
When it exceeds 2 mm, the yield point elongation after artificial aging (YP-E
l) exceeds 0.2%, and the non-aging property at room temperature cannot be ensured. 4) It is extremely sensitive to cooling conditions after annealing, which also makes material properties such as BH amount and average r value extremely unstable. These facts show the same tendency in any of the cases of the composite addition of Nb and B, the composite addition of Ti and B, and the composite addition of Nb, Ti and B.
【0015】これに対して、Mnまたは/およびCrを
添加した鋼においては、1)これらの元素がγ形成元素
であるため極低炭素鋼でありながらα→γ変態点が低い
ためそれほど高い焼鈍温度を必要とせず、かつ2)極め
て広いα+γ2相領域を有するため製造時の材質ばらつ
きが極めて小さい。さらに3)容易に5kgf/mm2 以上の
BH性を付与することができ、またたとえBH量が10
kgf/mm2 程度となっても、人工時効後のYP−Elが
0.2%を超えることはなく、非常に優れた常温非時効
性とBH性とを両立することが分かった。この原因は必
ずしも明らかではないが、MnやCrを用いて混合組織
とした鋼においては、生成する低温変態生成物中および
このまわりに導入されるフェライト中の可動転位密度が
Nb,Ti,Bの複合添加によって得た複合組織のそれ
よりもかなり高いことが原因であると思われる。また、
4)Mn,Crを添加した混合組織鋼板においては平均
r値、BHなどの機械的性質が焼鈍後の冷却条件によら
ず良好であり、製造が容易であることも大きな特徴の1
つである。また、理由は必ずしも明らかではないもの
の、これらの性質はたとえMnやCrを添加した鋼であ
っても、同時にBが多量に添加されすぎると達成されな
いものである。On the other hand, in steels to which Mn and / or Cr are added, 1) since these elements are γ-forming elements, they are extremely low carbon steels but have a low α → γ transformation point, so that annealing is so high. It does not require a temperature and 2) has an extremely wide α + γ2 phase region, so that material variations during manufacture are extremely small. Further, 3) BH property of 5 kgf / mm 2 or more can be easily provided.
Even at about kgf / mm 2 , YP-El after artificial aging did not exceed 0.2%, indicating that both excellent non-aging property at normal temperature and BH property were achieved. Although the cause is not necessarily clear, in a steel having a mixed structure using Mn or Cr, the mobile dislocation density in the generated low-temperature transformation product and in the ferrite introduced around the product is such that Nb, Ti, and B have a dislocation density of Nb, Ti, and B. This is probably due to the fact that it is much higher than that of the composite tissue obtained by the composite addition. Also,
4) In the mixed-structure steel sheet to which Mn and Cr are added, mechanical properties such as an average r value and BH are good irrespective of cooling conditions after annealing, and it is also a major feature that manufacturing is easy.
One. Further, although the reason is not always clear, these properties cannot be achieved even in a steel to which Mn or Cr is added if B is added too much at the same time.
【0016】次に高強度化する際の強化元素として考え
られるMn,Cr,P,Siがそれぞれ機械的性質に対
していかなる影響を及ぼすかについて検討した結果、以
下のような新知見を得た。すなわち、従来から固溶強化
元素として多用されているSi,Pは、a)まず微量の
添加で著しく降伏強度を上昇させること、b)その結
果、低歪域での加工硬化率が著しく減少することが判明
した。一方、従来固溶体強化元素としてあまり用いられ
ていないMn,Crを添加すると、a)降伏強度は殆ど
増加せず、引張強度が増加する、b)その結果、低歪域
での加工硬化率がむしろこれらの添加により増加すると
いう、極めて重要な新知見を得た。Mn,Crで混合組
織としたことに加えて、このことも本発明鋼が低降伏比
を呈する理由であると思われる。また、このような、
P,Siの低減は、Ac1 点を低下させる点においても
意義のあることである。Next, as a result of examining how each of Mn, Cr, P, and Si, which are considered as strengthening elements in increasing the strength, has an effect on the mechanical properties, the following new findings were obtained. . That is, Si and P, which have been frequently used as solid solution strengthening elements, a) firstly increase the yield strength remarkably by adding a small amount thereof, and b) as a result, the work hardening rate in a low strain region is significantly reduced. It has been found. On the other hand, when Mn or Cr, which has not been widely used as a solid solution strengthening element, is added, a) the yield strength hardly increases and the tensile strength increases. B) As a result, the work hardening rate in the low strain region is rather increased. A very important new finding was obtained, which was increased by these additions. In addition to the mixed structure of Mn and Cr, this also seems to be the reason that the steel of the present invention exhibits a low yield ratio. Also, like this,
The reduction of P and Si is significant in lowering the Ac 1 point.
【0017】さらに、本発明者らは、本発明鋼が溶融亜
鉛メッキ冷延鋼板としても長所を有することが分かっ
た。すなわち、SiやPが多量に添加された鋼において
は溶融亜鉛メッキ時のメッキ性、さらにはその後の合金
化反応の遅滞化を引き起こすことが知られているが、M
nやCrを添加した鋼においては、たとえ同時にSiや
Pが多量に含有されている場合でも溶融亜鉛メッキ特性
を損なうことがないことが判明した。さらにBの影響に
ついても検討し、多量のBは溶融亜鉛メッキにおけるメ
ッキ性、および合金化反応特性に悪影響を及ぼすことが
明らかとなった。本発明は、このような思想と新知見に
基づいて構築されたものであり、その要旨とするところ
は以下のとおりである。 (1)重量%で、 C :0.0005〜0.0070%、Si:0.001〜0.8%、 Mn:1.15〜4.0%、 P :0.005〜0.15%、 S :0.0010〜0.015%、 Al:0.005〜0.1%、 N :0.0003〜0.0060%、B :0.0005%未満、 さらに、 Ti:0.003〜0.1%およびNb:0.003〜
0.1%のうち、一種以上を含有し、残部Feおよび不
可避的不純物からなる組成にして、総体積5%超の低温
変態生成相とフェライトとからなる混合組織を有するこ
とを特徴とする焼付硬化性と成形性とに優れた冷延鋼板
あるいは溶融亜鉛メッキ冷延鋼板。 (2)さらにCr:0.01〜3.0%を含有する前項
1記載の焼付硬化性と成形性とに優れた冷延鋼板あるい
は溶融亜鉛メッキ冷延鋼板。 (3)前項1あるいは2の成分を含有するスラブの熱間
圧延に際し、(Ar3−100)℃以上の温度で熱延仕
上げを行い、室温から750℃の温度で巻取り、60%
以上の圧延率で冷間圧延を行い、連続焼鈍における焼鈍
温度をα→γ変態点以上かつAc3 変態点以下とするこ
とを特徴とする前項1あるいは2記載の冷延鋼板の製造
方法。 (4)前項1あるいは2の成分を含有するスラブの熱間
圧延に際し、(Ar3−100)℃以上の温度で熱延仕
上げを行い、室温から750℃の温度で巻取り、60%
以上の圧延率で冷間圧延を行い、焼鈍温度をα→γ変態
点以上かつAc3 変態点以下としたインライン焼鈍型の
溶融亜鉛メッキを施すことを特徴とする前項1あるいは
2記載の溶融亜鉛メッキ冷延鋼板の製造方法。Further, the present inventors have found that the steel of the present invention has advantages as a hot-dip galvanized cold-rolled steel sheet. That is, it is known that in steels to which Si or P is added in a large amount, the plating property during hot-dip galvanizing and furthermore, the subsequent alloying reaction is delayed.
It has been found that in the steel to which n or Cr is added, even if a large amount of Si or P is contained at the same time, the galvanizing characteristics are not impaired. In addition, the effect of B was also examined, and it became clear that a large amount of B had an adverse effect on the plating properties and alloying reaction characteristics in hot-dip galvanizing. The present invention has been constructed based on such ideas and new findings, and the gist thereof is as follows. (1) In weight%, C: 0.0005 to 0.0070%, Si: 0.001 to 0.8%, Mn: 1.15 to 4.0%, P: 0.005 to 0.15% S: 0.0010 to 0.015%, Al: 0.005 to 0.1%, N: 0.0003 to 0.0060%, B: less than 0.0005%, and Ti: 0.003 to 0.1% and Nb: 0.003 to
0.1% of at least one of the alloys, the composition comprising the balance of Fe and unavoidable impurities, and having a mixed structure composed of a low-temperature transformation generation phase and ferrite having a total volume of more than 5%. Cold rolled steel sheet or hot-dip galvanized cold rolled steel sheet with excellent curability and formability. (2) The cold-rolled steel sheet or hot-dip galvanized cold-rolled steel sheet further containing Cr: 0.01 to 3.0% and having excellent bake hardenability and formability as described in 1 above. (3) In hot rolling a slab containing the component of the above item 1 or 2, hot-rolling is performed at a temperature of (Ar 3 -100) ° C. or more, and wound at a temperature of room temperature to 750 ° C., and 60%
3. The method for producing a cold-rolled steel sheet according to the above item 1 or 2, wherein the cold rolling is performed at the above-mentioned rolling ratio, and the annealing temperature in the continuous annealing is set to the α-γ transformation point or more and the Ac 3 transformation point or less. (4) In hot rolling a slab containing the component of the above item 1 or 2, hot-rolling is performed at a temperature of (Ar 3 -100) ° C. or more, and wound at a temperature from room temperature to 750 ° C., and 60%
3. The hot-dip galvanizing method according to the above 1 or 2, wherein cold rolling is performed at the above rolling ratio, and in-line annealing type hot-dip galvanizing in which the annealing temperature is equal to or higher than the α → γ transformation point and equal to or lower than the Ac 3 transformation point. Manufacturing method of plated cold rolled steel sheet.
【0018】[0018]
【作用】ここに本発明において鋼組成および製造条件を
上述のように限定する理由についてさらに説明する。 C:Cは製品の材質特性を決定する極めて重要な元素で
ある。本発明は真空脱ガス処理をした極低炭素鋼を前提
とするが、Cが0.0005%未満となると粒界強度が
低下し、2次加工性が劣化し、かつ製造コストが著しく
増加するので、その下限を0.0005%とする。一
方、C量が0.0070%を超えると成形性の劣化を招
き、また常温非時効性が確保されなくなるので、上限を
0.0070%とする。The reason why the steel composition and the manufacturing conditions are limited as described above in the present invention will be further described. C: C is a very important element that determines the material properties of the product. The present invention is based on ultra-low carbon steel subjected to vacuum degassing, but if C is less than 0.0005%, the grain boundary strength decreases, the secondary workability deteriorates, and the production cost increases significantly. Therefore, the lower limit is set to 0.0005%. On the other hand, if the C content exceeds 0.0070%, the moldability is deteriorated and the non-aging property at room temperature is not ensured, so the upper limit is made 0.0070%.
【0019】Si:Siは安価に強度を増加させる元素
として知られており、その添加量は狙いとする強度レベ
ルに応じて変化するが、添加量が0.8%超となると降
伏強度が上昇しすぎてプレス成形時に面歪が生じる。ま
た、α→γ変態点が上昇し、混合組織を得るための焼鈍
温度が著しく高くなる。さらに、化成処理性の低下、溶
融亜鉛メッキ密着性の低下、合金化反応の遅延による生
産性の低下などの問題が生ずる。下限は、製鋼技術およ
びコストの観点から0.001%とする。Si: Si is known as an element that increases strength at low cost, and its addition amount changes according to the intended strength level, but when the addition amount exceeds 0.8%, the yield strength increases. Surface distortion occurs during press molding due to excessive strain. Further, the α → γ transformation point rises, and the annealing temperature for obtaining a mixed structure becomes extremely high. Further, problems such as a decrease in chemical conversion treatment, a decrease in adhesion to hot-dip galvanizing, and a decrease in productivity due to a delay in alloying reaction occur. The lower limit is 0.001% from the viewpoint of steelmaking technology and cost.
【0020】Mn,Cr:MnおよびCrは、本発明に
おいて最も重要な元素の1つである。すなわちMn,C
rは、α→γ変態点を低下させるため混合組織を得るた
めにそれほど高い温度を必要とせず、かつα+γ2相領
域を拡大するため、混合組織の体積分率をコントロール
しやすく、製造時の材質ばらつきが少なく生産性の向上
をもたらす。しかも、Mn,Crを活用することによっ
て得た混合組織鋼板においては、通常では得られない5
kgf/mm2 以上のBH量を容易に付与することができ、5
kgf/mm2 以上のBH性を有する場合にも非常に優れた常
温非時効性を示す。この性質は、MnやCrを活用して
得た混合組織鋼板に特有のもので、フェライト単相組織
鋼板やNb,B,Tiの数種類の組合せによって得た複
合組織鋼板では得られない特性である。さらにMn,C
rは降伏強度をあまり増加させずに強度を増加させる有
効な固溶体強化元素であり、かつ化成処理性を改善した
り、溶融亜鉛メッキ性を改善する効果も有する。Mnに
ついては1.15%未満の添加では、上に述べた効果が
顕著に現れないので、その下限を1.15%とする。一
方、4.0%を超えると良好な混合組織が得られなくな
るので上限を4.0%とする。また、Crは、0.01
%未満では上の効果が発揮されないので、下限を0.0
1%とし、3.0%を超えるとやはり良好な混合組織が
得られなくなるので上限を3.0%とする。Mn, Cr: Mn and Cr are one of the most important elements in the present invention. That is, Mn, C
r is lower than the α → γ transformation point, so that a high temperature is not required to obtain a mixed structure, and since the α + γ2 phase region is expanded, the volume fraction of the mixed structure can be easily controlled, There is little variation, which leads to an improvement in productivity. Moreover, in a mixed structure steel sheet obtained by utilizing Mn and Cr, it cannot be obtained usually.
BH amount of kgf / mm 2 or more can be easily given,
Even when it has a BH property of not less than kgf / mm 2 , it shows extremely excellent non-aging property at room temperature. This property is peculiar to a mixed-structure steel sheet obtained by utilizing Mn or Cr and cannot be obtained by a ferrite single-phase structure steel sheet or a composite structure steel sheet obtained by combining several kinds of Nb, B, and Ti. . Further, Mn, C
r is an effective solid solution strengthening element that increases the strength without significantly increasing the yield strength, and also has the effect of improving chemical conversion treatment properties and improving hot-dip galvanizing properties. If the amount of Mn is less than 1.15 %, the above-mentioned effects are not significantly exhibited , so the lower limit is set to 1.15 %. On the other hand, if it exceeds 4.0%, a good mixed structure cannot be obtained, so the upper limit is made 4.0%. Cr is 0.01%.
%, The lower effect is not exhibited.
If the content exceeds 3.0%, a good mixed structure cannot be obtained, so the upper limit is set to 3.0%.
【0021】P:PはSiと同様に安価に強度を上昇す
る元素として知られており、その添加量は狙いとする強
度レベルに応じて変化する。添加量が0.15%を超え
ると混合組織を得るための焼鈍温度が著しく高くなり、
また、降伏強度が増加し過ぎてプレス時に面形状不良を
引き起こす。さらに、連続溶融亜鉛メッキ時に合金化反
応が極めて遅くなり、生産性が低下する。また、2次加
工性も劣化する。したがって、その上限値を0.15%
とする。また、製鋼技術およびコストの観点から下限は
0.005%とする。P: As with Si, P is known as an element which increases the strength at low cost, and the amount of P varies depending on the intended strength level. When the addition amount exceeds 0.15%, the annealing temperature for obtaining a mixed structure becomes extremely high,
Further, the yield strength is excessively increased, which causes a poor surface shape at the time of pressing. Furthermore, the alloying reaction during continuous hot-dip galvanizing becomes extremely slow, and the productivity is reduced. Further, the secondary workability also deteriorates. Therefore, the upper limit is 0.15%
And The lower limit is set to 0.005% from the viewpoint of steelmaking technology and cost.
【0022】S:S量は低い方が好ましいが、0.00
1%未満になると製造コストが高くなるのでこれを下限
値とする。一方、0.015%超となるとMnSが数多
く析出し、加工性が劣化するのでこれを上限値とする。 Al:Alは脱酸調製およびTiを添加しない場合には
Nの固定に使用するが、0.005%未満ではTiやN
bの歩留が低下する。一方、0.1%超になるとコスト
アップを招くので上限を0.1%とする。S: The S content is preferably as low as possible, but 0.00
If it is less than 1%, the production cost increases, so this is set as the lower limit. On the other hand, if the content exceeds 0.015%, a large amount of MnS precipitates and the workability deteriorates. Al: Al is used for deoxidation preparation and for fixing N when no Ti is added, but when less than 0.005%, Ti or N
The yield of b decreases. On the other hand, if it exceeds 0.1%, the cost is increased, so the upper limit is made 0.1%.
【0023】Ti,Nb:Ti,NbはN,C,Sの全
部または一部を固定することにより、極低炭素鋼の加工
性と非時効性を確保する役割を有する。さらには熱延板
の結晶粒を微細化し、製品板の加工性を良好にする。T
i,Nbが0.003%未満ではその添加効果が現れな
いのでこれを下限値とする。一方、0.1%を超えると
著しい合金コストの上昇を招くので上限値を0.1%と
する。Ti, Nb: Ti, Nb has the role of securing the workability and non-aging properties of ultra-low carbon steel by fixing all or part of N, C, and S. Furthermore, the crystal grains of the hot-rolled sheet are refined, and the workability of the product sheet is improved. T
If i and Nb are less than 0.003%, the effect of addition is not exhibited, so this is set as the lower limit. On the other hand, if it exceeds 0.1%, a significant increase in alloy cost is caused, so the upper limit is made 0.1%.
【0024】N:Nは低い方が好ましい。しかし、0.
0003%未満にするには著しいコストアップを招く。
一方、あまり多いと多量のTi,Nb,Alが必要にな
ったり、加工性が劣化したりするので0.0060%を
上限値とする。 B:Bは2次加工脆化の防止に有効であるので添加して
もよい。しかし、0.0005%以上となるとBH量が
5kgf/mm2 を超える場合には常温非時効性が確保できな
くなる。また加工性の劣化の原因となるので上限を0.
0005%未満とする。N: N is preferably low. However, 0.
Reducing it to less than 0003% results in a significant increase in cost.
On the other hand, if the amount is too large, a large amount of Ti, Nb, Al is required, or the workability is deteriorated. Therefore, the upper limit is made 0.0060%. B: B may be added because it is effective in preventing embrittlement in secondary processing. However, when the content of BH is 0.0005% or more, when the BH amount exceeds 5 kgf / mm 2 , non-aging at room temperature cannot be ensured. Also, the upper limit is set to 0.
Less than 0005%.
【0025】次に、製造条件の限定理由について述べ
る。熱延仕上げ温度は製品板の加工性を確保するという
観点からAr3 −100℃以上とする必要がある。ま
た、巻取り温度は室温から750℃とする。本発明はそ
の製品材質が熱延巻取り温度の影響をあまり受けないと
いう特徴を有する。これは、MnやCrなどをかなり添
加しており熱延板の組織が著しく微細で均一化している
ことが一因と考えられる。巻取り温度の上限が750℃
であることは、コイル両端部での材質劣化に起因する歩
留低下を防止する観点から決定される。冷間圧延は、通
常の条件でよく、焼鈍後の深絞り性を確保する目的から
その圧延率は、60%以上とする。連続焼鈍あるいはラ
イン内焼鈍方式の連続溶融亜鉛メッキ設備の焼鈍温度
は、α→γ変態点以上かつAc3 変態点以下とする。焼
鈍温度がα→γ変態点以下では、本発明の特徴である第
2相体積率が5%超の混合組織を得ることはできない。
また、Ac3 変態点を超える温度で焼鈍すると加工性が
著しく劣化するので焼鈍温度の上限をAc3 変態点とす
る。Next, the reasons for limiting the manufacturing conditions will be described. The hot rolling finish temperature needs to be Ar 3 -100 ° C. or higher from the viewpoint of ensuring the workability of the product sheet. The winding temperature is from room temperature to 750 ° C. The present invention is characterized in that the material of the product is not so affected by the hot rolling temperature. One reason for this is considered to be that Mn, Cr and the like are considerably added and the structure of the hot-rolled sheet is extremely fine and uniform. The upper limit of the winding temperature is 750 ° C
Is determined from the viewpoint of preventing a decrease in yield due to deterioration of the material at both ends of the coil. The cold rolling may be performed under ordinary conditions, and the rolling reduction is set to 60% or more for the purpose of ensuring the deep drawability after annealing. The annealing temperature of the continuous galvanizing equipment of the continuous annealing or the in-line annealing method is set to the α → γ transformation point or more and the Ac 3 transformation point or less. When the annealing temperature is lower than the α → γ transformation point, a mixed structure having a second phase volume ratio of more than 5%, which is a feature of the present invention, cannot be obtained.
Further, if annealing is performed at a temperature exceeding the Ac 3 transformation point, the workability is significantly deteriorated. Therefore, the upper limit of the annealing temperature is defined as the Ac 3 transformation point.
【0026】かくして、本発明によれば、降伏強度は低
く、著しく加工硬化し、高い塗装焼付硬化能を合わせ持
ち、平均r値(深絞り特性)や伸び(張出特性)などの
加工性にも優れる鋼板を得ることができる。特に塗装焼
付硬化能に関しては、10kgf/mm2 程度の高いBH量を
必要に応じて付与することができ、かつ常温非時効性を
兼ね備えた冷延鋼板を提供することが可能である。次に
本発明を実施例にて説明する。Thus, according to the present invention, the yield strength is low, the work hardens remarkably, the paint baking hardenability is high, and the workability such as the average r value (deep drawing property) and elongation (extension property) is improved. Excellent steel plate can be obtained. In particular, with respect to the paint bake hardening ability, it is possible to provide a high BH amount of about 10 kgf / mm 2 as required, and to provide a cold-rolled steel sheet having non-aging properties at room temperature. Next, the present invention will be described with reference to examples.
【0027】[0027]
〈実施例1〉表1に示す組成を有する鋼を溶製し、スラ
ブ加熱温度1180℃、仕上げ温度910℃、巻取り温
度600℃で熱間圧延し、4.0mm厚の鋼帯とした。酸
洗後80%の圧下率の冷間圧延を施し0.8mm厚の冷延
板とし、ついで加熱速度10℃/s、均熱810〜92
0℃×50s、平均冷却速度60℃/sの連続焼鈍を行
った。さらに0.5%の圧下率の調質圧延をし、JIS
5号引張試験片を採取し引張試験に供した。引張試験結
果をまとめて表2に示す。Example 1 A steel having a composition shown in Table 1 was melted and hot-rolled at a slab heating temperature of 1180 ° C., a finishing temperature of 910 ° C., and a winding temperature of 600 ° C. to obtain a steel strip having a thickness of 4.0 mm. After pickling, cold rolling was performed at a rolling reduction of 80% to form a 0.8 mm-thick cold rolled sheet. Then, the heating rate was 10 ° C./s, and the soaking was 810 to 92%.
Continuous annealing was performed at 0 ° C. × 50 s and at an average cooling rate of 60 ° C./s. In addition, temper rolling at a reduction rate of 0.5% is performed, and JIS
A No. 5 tensile test piece was sampled and subjected to a tensile test. Table 2 summarizes the results of the tensile test.
【0028】ここで、WH量は、圧延方向に2%の引張
歪を付加したときの加工硬化量であり、2%変形応力か
ら降伏応力(YP)を差し引いた量である。また、BH
量は2%予歪材に170℃×20分の塗装焼付相当の熱
処理を施してから再度引張試験を行った場合の応力の増
加量(再引張試験時の下降伏応力から2%変形応力を差
し引いた値)である。また、2次加工脆化遷移温度は、
調質圧延した鋼板から直径50mmのブランクを打ち抜
き、ついで直径33mmのポンチでカップ成形し、これに
種々の温度で落重試験を施した場合の延性−脆性遷移温
度である。Here, the WH amount is the amount of work hardening when 2% tensile strain is applied in the rolling direction, and is the amount obtained by subtracting the yield stress (YP) from the 2% deformation stress. Also, BH
The amount of increase in stress when a 2% prestrained material is subjected to a heat treatment equivalent to paint baking at 170 ° C. for 20 minutes and then subjected to a tensile test again (2% deformation stress from the drop yield stress at the time of the retensile test) (Subtracted value). The secondary working embrittlement transition temperature is
This is a ductile-brittle transition temperature when a blank having a diameter of 50 mm is punched from a temper-rolled steel sheet, then cup-formed with a punch having a diameter of 33 mm, and subjected to a drop test at various temperatures.
【0029】[0029]
【表1】 [Table 1]
【0030】[0030]
【表2】 [Table 2]
【0031】表2から明らかなように、従来鋼の同レベ
ルの引張強度を有する鋼板と比較して、本発明鋼は、従
来にはない高いBH性を有し、かつ非常に優れた常温非
時効性を兼ね備えていることが分かる。このことはMn
やCrを用いて混合組織化した鋼板においては、BやN
bを使用して複合組織とした鋼板に比べて、好ましい転
位密度を有することが主な原因であると思われる。ま
た、本発明鋼は降伏強度が低く、面形状性に優れ、WH
量や平均r値も高い。したがって、たとえば自動車の外
内板パネルには好適の材料である。As is clear from Table 2, the steel of the present invention has an unprecedented high BH property and is very excellent at room temperature compared with a conventional steel sheet having the same level of tensile strength. It turns out that it has aging effect. This means that Mn
B and N in steel sheets with a mixed structure using Cr and Cr
It seems that the main cause is that it has a preferable dislocation density as compared with a steel sheet having a composite structure using b. Further, the steel of the present invention has low yield strength, excellent surface shape, and WH
The amount and the average r value are also high. Therefore, it is a suitable material for the outer and inner panel of an automobile, for example.
【0032】〈実施例2〉表1の鋼3−2および3−4
を用いて連続焼鈍における均熱温度の影響について検討
した。熱間圧延と冷間圧延の条件は、実施例1と同様で
ある。その後、10℃/sで加熱し、860〜920℃
において50s間保定した後、平均冷却速度60℃/s
の連続焼鈍を行った。さらに0.5%の圧下率の調質圧
延をし、JIS5号引張試験片を採取し引張試験に供し
た。引張試験結果をまとめて表3に示す。Example 2 Steels 3-2 and 3-4 in Table 1
The effect of soaking temperature in continuous annealing was investigated using The conditions of the hot rolling and the cold rolling are the same as in the first embodiment. Then, it heats at 10 degreeC / s, and 860-920 degreeC
At 50 ° C / s for an average cooling rate of 60 ° C / s.
Was continuously annealed. Further, temper rolling was performed at a rolling reduction of 0.5%, and a JIS No. 5 tensile test piece was sampled and subjected to a tensile test. Table 3 summarizes the results of the tensile tests.
【0033】表3から明らかなように、本発明鋼は均熱
温度が変化しても安定して優れた材質特性を得ることが
分かる。これに対して比較鋼3−4は均熱温度がわずか
に変化するだけで強度が著しく変化し、また、BH量、
平均r値も大きくばらついた。As is evident from Table 3, it can be seen that the steel of the present invention can obtain excellent material properties stably even when the soaking temperature changes. On the other hand, in the comparative steel 3-4, the strength changes remarkably with only a slight change in the soaking temperature, and the BH amount,
The average r value also varied greatly.
【0034】[0034]
【表3】 [Table 3]
【0035】〈実施例3〉表1の鋼3−2および3−4
を用いて連続焼鈍における均熱保定後の冷却条件の影響
について検討した。熱間圧延と冷間圧延の条件は、実施
例1と同様である。冷間圧延の後、10℃/sで加熱
し、それぞれ880℃と900℃において50s間保定
した後、750℃までの平均冷却速度を3〜60℃/s
まで変化させ、ついで750〜60℃/sで室温まで冷
却した。さらに0.5%の圧下率の調質圧延をし、JI
S5号引張試験片を採取し引張試験に供した。引張試験
結果をまとめて表4に示す。Example 3 Steels 3-2 and 3-4 in Table 1
The effect of cooling conditions after soaking in continuous annealing was investigated using JIS. The conditions of the hot rolling and the cold rolling are the same as in the first embodiment. After cold rolling, heating at 10 ° C./s, holding at 50 ° C. at 880 ° C. and 900 ° C., respectively, the average cooling rate to 750 ° C. is 3 to 60 ° C./s.
And then cooled to room temperature at 750-60 ° C / s. In addition, temper rolling at a rolling reduction of 0.5%
An S5 tensile test piece was sampled and subjected to a tensile test. Table 4 summarizes the results of the tensile test.
【0036】表4から明らかなように、本発明鋼は均熱
後の冷却速度が変化しても極めて安定的に優れた材質特
性を得ることが分かる。これに対して比較鋼3−4は冷
却速度がわずかに変化するだけで強度が著しく変化し、
また、BH量、平均r値も大きくばらついた。As is evident from Table 4, the steel of the present invention can obtain excellent material properties extremely stably even when the cooling rate after soaking changes. On the other hand, the comparative steel 3-4 has a remarkable change in strength with only a slight change in the cooling rate,
Further, the BH amount and the average r value also varied greatly.
【0037】[0037]
【表4】 [Table 4]
【0038】〈実施例4〉表1の鋼3−1〜3−5およ
び4−1〜4−4をスラブ加熱温度1220℃、仕上げ
温度900℃、巻取り温度500℃の条件で熱間圧延
し、3.8mm厚の鋼板とした。酸洗後、冷間圧延して
7.5mm厚の冷延板とし、ついで加熱温度15℃/sで
最高加熱温度890℃まで加熱してから約70℃/sで
冷却し、460℃で慣用の溶融亜鉛メッキを行い(浴中
Al濃度は0.11%)、さらに加熱して520℃で2
0s間合金化処理後約20℃/sで室温まで冷却した。
得られた合金化亜鉛メッキ鋼板についてメッキ性外観、
パウダリング性およびメッキ皮膜中のFe濃度を測定し
た。これらの結果を表5にまとめて示す。Example 4 Hot rolling was performed on steels 3-1 to 3-5 and 4-1 to 4-4 shown in Table 1 under the conditions of a slab heating temperature of 1220 ° C., a finishing temperature of 900 ° C., and a winding temperature of 500 ° C. And a steel plate having a thickness of 3.8 mm. After pickling, cold-rolled to a 7.5 mm thick cold-rolled sheet, then heated to a maximum heating temperature of 890 ° C at a heating temperature of 15 ° C / s, cooled at about 70 ° C / s, and conventionally used at 460 ° C. (Al concentration in the bath is 0.11%), and further heated at 520 ° C.
After the alloying treatment for 0 seconds, it was cooled to room temperature at about 20 ° C./s.
The plating appearance of the obtained alloyed galvanized steel sheet,
The powdering property and the Fe concentration in the plating film were measured. These results are summarized in Table 5.
【0039】ここでメッキ性の外観は下記の基準で評価
した。 ◎ :面積率で100%メッキが付着した状態 ○ :面積率で90%以上メッキが付着した状態 △ :面積率で60〜90%メッキが付着した状態 × :面積率で30〜60%メッキが付着した状態 ××:面積率で30%以下しかメッキが付着していない
状態Here, the appearance of the plating property was evaluated according to the following criteria. ◎: 100% plated area adhered ○: 90% or more plated area △: 60 to 90% plated area ×: 30 to 60% plated area Attached state XX: A state in which plating is adhered only in an area ratio of 30% or less.
【0040】ここでパウダリング性は180°の密着曲
げを行い、亜鉛皮膜の剥離状況を曲げ加工部にセロテー
プを接着したのち、これをはがしてテープに付着した剥
離メッキ量から判定した。評価は下記の5段階とした。 1:剥離大 2:剥離中 3:剥離小 4:剥離微量
5:剥離全くなし また、メッキ層中のFe濃度は、X線回折によって求め
た。Here, the powdering property was determined by performing a 180 ° close contact bending to determine the peeling state of the zinc film from the amount of peeling plating adhered to the tape after the cellophane tape was adhered to the bent portion. The evaluation was based on the following five levels. 1: Large peeling 2: Peeling off 3: Small peeling 4: Small amount of peeling
5: No peeling at all The Fe concentration in the plating layer was determined by X-ray diffraction.
【0041】[0041]
【表5】 [Table 5]
【0042】表5から明らかなように本発明鋼は、従来
鋼と比較してメッキ性外観、パウダリング性が良好であ
り、合金層中のFe濃度も望ましい相と考えられている
δ1相のそれに相当する量となっている。これは、本発
明においてはメッキ密着性を劣化させ合金化反応速度を
遅くするP,B,Siを低減し、MnやCrを添加して
いるためと考えられる。また、MnやCrが添加されて
いる場合には、ある程度の量のPやSiが含有されても
メッキ特性を損なわないことが分かる。As is clear from Table 5, the steel of the present invention has a better plating appearance and powdering property than the conventional steel, and the δ 1 phase which is considered to be a desirable phase in which the Fe concentration in the alloy layer is also desirable. Is equivalent to that of This is presumably because in the present invention, P, B, and Si, which degrade plating adhesion and reduce the alloying reaction rate, are reduced, and Mn and Cr are added. Further, it is understood that when Mn or Cr is added, even if a certain amount of P or Si is contained, the plating characteristics are not impaired.
【0043】[0043]
【発明の効果】以上の説明から明らかなように本発明に
よれば従来にはないBH性と常温非時効性とを兼ね備え
た冷延鋼板を得ることができる。また、本発明鋼は、プ
レス成形性も極めて良好であり、さらに、溶融亜鉛メッ
キ特性にも優れているため防錆機能も発揮できる。その
結果、本発明鋼を自動車のボディやフレームなどに使用
すると板厚の軽減すなわち車体の軽量化が可能となるの
で最近注目されている地球環境の保全にも本発明は大き
く寄与できる。このように本発明の産業上の意義は極め
て大きい。As is apparent from the above description, according to the present invention, it is possible to obtain a cold-rolled steel sheet having both unprecedented BH property and non-aging property at room temperature. Further, the steel of the present invention has extremely good press-formability, and is also excellent in hot-dip galvanizing properties, so that it can also exhibit a rust prevention function. As a result, when the steel of the present invention is used for a body or a frame of an automobile, the thickness of the body can be reduced, that is, the weight of the vehicle body can be reduced. Thus, the industrial significance of the present invention is extremely large.
【図1】第2相の体積率とBHおよび人工時効後のYP
−Elとの関係を表す図である。FIG. 1: Volume fraction of second phase and BH and YP after artificial aging
It is a figure showing the relationship with -El.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C23C 2/06 C23C 2/06 (72)発明者 西村 邦夫 福岡県北九州市戸畑区飛幡町1番1号 新日本製鐵株式会社 八幡製鐵所内 (56)参考文献 特開 平3−277741(JP,A) 特開 平5−112858(JP,A) 特開 平5−331612(JP,A) 特開 平5−78783(JP,A) 特公 昭61−12008(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 301 C21D 8/02 C21D 9/46 C22C 38/14 C22C 2/06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI C23C 2/06 C23C 2/06 (72) Inventor Kunio Nishimura 1-1-1, Tobata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Nippon Steel Corporation (56) References JP-A-3-277741 (JP, A) JP-A-5-112858 (JP, A) JP-A-5-331612 (JP, A) JP-A-5-78783 ( JP, A) JP-B 61-12008 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00 301 C21D 8/02 C21D 9/46 C22C 38/14 C22C 2 / 06
Claims (4)
にして、総体積5%超の低温変態生成相とフェライトと
からなる混合組織を有することを特徴とする焼付硬化性
と成形性とに優れた冷延鋼板あるいは溶融亜鉛メッキ冷
延鋼板。C: 0.0005 to 0.0070%, Si: 0.001 to 0.8%, Mn: 1.15 to 4.0%, P: 0.005 to 0.4% by weight. 15%; S: 0.0010 to 0.015%; Al: 0.005 to 0.1%; N: 0.0003 to 0.0060%; B: less than 0.0005%; 003-0.1% and Nb: at least one of 0.003-0.1%, and the composition is composed of the balance of Fe and unavoidable impurities. A cold-rolled steel sheet or hot-dip galvanized cold-rolled steel sheet having an excellent bake hardenability and formability, characterized by having a mixed structure comprising:
求項1記載の焼付硬化性と成形性とに優れた冷延鋼板あ
るいは溶融亜鉛メッキ冷延鋼板。2. The cold-rolled steel sheet or hot-dip galvanized cold-rolled steel sheet according to claim 1, which contains 0.01 to 3.0% of Cr.
00)℃以上の温度で熱延仕上げを行い、室温から75
0℃の温度で巻取り、60%以上の圧延率で冷間圧延を
行い、連続焼鈍における焼鈍温度をα→γ変態点以上か
つAc3 変態点以下とすることを特徴とする請求項1あ
るいは2記載の冷延鋼板の製造方法。3. The method according to claim 1, wherein (Ar 3 -1)
00) Finish hot rolling at a temperature of at least
The winding at a temperature of 0 ° C., cold rolling at a rolling rate of 60% or more, and the annealing temperature in continuous annealing is set to the α → γ transformation point or more and the Ac 3 transformation point or less. 2. The method for producing a cold-rolled steel sheet according to 2.
00)℃以上の温度で熱延仕上げを行い、室温から75
0℃の温度で巻取り、60%以上の圧延率で冷間圧延を
行い、焼鈍温度をα→γ変態点以上かつAc3 変態点以
下としたインライン焼鈍型の溶融亜鉛メッキを施すこと
を特徴とする請求項1あるいは2記載の溶融亜鉛メッキ
冷延鋼板の製造方法。4. The method according to claim 1, wherein (Ar 3 -1)
00) Finish hot rolling at a temperature of at least
Winding at a temperature of 0 ° C, cold rolling at a rolling rate of 60% or more, and performing in-line annealing type hot-dip galvanizing with an annealing temperature of α → γ transformation point or more and Ac 3 transformation point or less. The method for producing a hot-dip galvanized cold-rolled steel sheet according to claim 1 or 2.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16308392A JP3350096B2 (en) | 1992-06-22 | 1992-06-22 | Cold-rolled steel sheet or hot-dip galvanized cold-rolled steel sheet having excellent bake hardenability and formability, and methods for producing them |
KR1019940700525A KR940702231A (en) | 1992-06-22 | 1993-06-22 | COLD ROLLED STEEL SHEET AND HOT DIP AINC-COATED COLD ROLLED STEEL SHEET HAVING EXCELLENT BAKE HARDENABILITY, NON-AGING PROPERTIES AND FORMABILITY, AND PROCESS FOR PRODUCING SAME) |
PCT/JP1993/000846 WO1994000615A1 (en) | 1992-06-22 | 1993-06-22 | Cold-rolled steel plate having excellent baking hardenability, non-cold-ageing characteristics and moldability, and molten zinc-plated cold-rolled steel plate and method of manufacturing the same |
US08/196,098 US5470403A (en) | 1992-06-22 | 1993-06-22 | Cold rolled steel sheet and hot dip zinc-coated cold rolled steel sheet having excellent bake hardenability, non-aging properties and formability, and process for producing same |
EP93913564A EP0608430B1 (en) | 1992-06-22 | 1993-06-22 | Cold-rolled steel plate having excellent baking hardenability, non-cold-ageing characteristics and moldability, and molten zinc-plated cold-rolled steel plate and method of manufacturing the same |
DE69329236T DE69329236T2 (en) | 1992-06-22 | 1993-06-22 | COLD ROLLED STEEL SHEET WITH GOOD BURNING TEMPERATURE, WITHOUT COLD AGING AND EXCELLENT PORNABILITY, DIVER-COATED COLD ROLLED STEEL SHEET AND THEIR PRODUCTION PROCESS |
KR1019940700525A KR970001411B1 (en) | 1992-06-22 | 1993-06-22 | Cold rolled steel plate having excellent baking hardenability non-cold ageing characteristices and moldability, and molten zinc-plated cold-rolled steel plate and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16308392A JP3350096B2 (en) | 1992-06-22 | 1992-06-22 | Cold-rolled steel sheet or hot-dip galvanized cold-rolled steel sheet having excellent bake hardenability and formability, and methods for producing them |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0665684A JPH0665684A (en) | 1994-03-08 |
JP3350096B2 true JP3350096B2 (en) | 2002-11-25 |
Family
ID=15766863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16308392A Expired - Fee Related JP3350096B2 (en) | 1992-06-22 | 1992-06-22 | Cold-rolled steel sheet or hot-dip galvanized cold-rolled steel sheet having excellent bake hardenability and formability, and methods for producing them |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3350096B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3925064B2 (en) * | 2000-04-10 | 2007-06-06 | Jfeスチール株式会社 | Hot-dip galvanized steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same |
JP6264861B2 (en) * | 2013-11-27 | 2018-01-24 | 新日鐵住金株式会社 | High Young's modulus cold-rolled steel sheet excellent in workability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof |
CN113817962A (en) * | 2021-08-26 | 2021-12-21 | 包头钢铁(集团)有限责任公司 | Galvanized high-strength IF steel strip for connecting plate of edge beam of automobile wheel cover and preparation method thereof |
-
1992
- 1992-06-22 JP JP16308392A patent/JP3350096B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0665684A (en) | 1994-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0608430B1 (en) | Cold-rolled steel plate having excellent baking hardenability, non-cold-ageing characteristics and moldability, and molten zinc-plated cold-rolled steel plate and method of manufacturing the same | |
US5690755A (en) | Cold-rolled steel sheet and hot-dip galvanized cold-rolled steel sheet having excellent bake hardenability, non-aging properties at room temperature and good formability and process for producing the same | |
KR0121737B1 (en) | Cold rolled sheet and hot-galvanized, cold-rolled sheet, both excellent in bake hardening, cold nonaging and forming | |
JP3365632B2 (en) | High-strength cold-rolled steel sheet and hot-dip galvanized high-strength cold-rolled steel sheet having good formability and methods for producing them | |
JP3263143B2 (en) | Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same | |
JP3238211B2 (en) | Manufacturing method of cold rolled steel sheet or hot-dip galvanized cold rolled steel sheet with excellent bake hardenability and non-aging property | |
JP3016636B2 (en) | High strength cold rolled steel sheet with good formability | |
JP2980785B2 (en) | Cold-rolled steel sheet or hot-dip galvanized cold-rolled steel sheet excellent in bake hardenability and formability, and methods for producing them | |
JP3350096B2 (en) | Cold-rolled steel sheet or hot-dip galvanized cold-rolled steel sheet having excellent bake hardenability and formability, and methods for producing them | |
JPH06122940A (en) | Cold rolled steel sheet and galvanized cold rolled steel sheet having excellent baking hardenability and also cold monaging property and production thereof | |
JP3309732B2 (en) | Cold-rolled steel sheet for direct single enamel with excellent deep drawability and method for producing the same | |
JPH06116648A (en) | Production of cold rolled steel sheet or hot dip galvanized steel sheet excellent in baking hardenability and non-aging characteristic | |
JP3044641B2 (en) | Room temperature non-ageing cold rolled steel sheet with remarkably high paint bake hardening performance | |
JP3435035B2 (en) | Steel sheet for continuous casting enamel with excellent workability and enamel adhesion, and method for producing the same | |
JP3238210B2 (en) | Method for producing cold-rolled steel sheet or hot-dip galvanized cold-rolled steel sheet with excellent formability and bake hardenability | |
JPH0681081A (en) | Cold roller steel sheet and galvanized cold rolled steel sheet combining excellent baking hardenability and cold nonaging property as well and production thereof | |
JPH05255807A (en) | High strength cold rolled steel sheet and calvanized high strength cold rolled steel sheet excellent in formability and their manufacture | |
JP2556633B2 (en) | Method for producing cold-rolled steel sheets with excellent hot-dip galvanizing properties | |
JP3293339B2 (en) | Steel plate with excellent work hardenability | |
JP2827739B2 (en) | Method for producing steel sheet with excellent fatigue characteristics and deep drawability | |
JP2827740B2 (en) | Method for producing steel sheet with excellent fatigue characteristics and deep drawability | |
JP2984884B2 (en) | Non-aging steel sheet for deep drawing and method for producing the same | |
JPH06116651A (en) | Production of cold rolled steel sheet or hot dip galvanized cold rolled steel sheet excellent in formability and baking hardenability | |
JPH05263189A (en) | High strength cold rolled steel sheet and galvanized high strength cold rolled steel sheet good in formability, and their manufacture | |
JPH05263185A (en) | High strength cold rolled steel sheet and galvanized high strength cold rolled steel sheet good in formability, and their manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020806 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070913 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080913 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090913 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100913 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100913 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110913 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |