Nothing Special   »   [go: up one dir, main page]

JP3349710B2 - Electrolyzer and electrolyzed water generator - Google Patents

Electrolyzer and electrolyzed water generator

Info

Publication number
JP3349710B2
JP3349710B2 JP51415099A JP51415099A JP3349710B2 JP 3349710 B2 JP3349710 B2 JP 3349710B2 JP 51415099 A JP51415099 A JP 51415099A JP 51415099 A JP51415099 A JP 51415099A JP 3349710 B2 JP3349710 B2 JP 3349710B2
Authority
JP
Japan
Prior art keywords
electrolytic
chamber
water
electrode plate
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP51415099A
Other languages
Japanese (ja)
Inventor
文武 佐藤
一好 荒井
紀之 柳原
達也 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miz Co Ltd
Original Assignee
Miz Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17142880&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3349710(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Miz Co Ltd filed Critical Miz Co Ltd
Application granted granted Critical
Publication of JP3349710B2 publication Critical patent/JP3349710B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4602Treatment of water, waste water, or sewage by electrochemical methods for prevention or elimination of deposits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46119Cleaning the electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/4619Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only cathodic or alkaline water, e.g. for reducing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4611Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4613Inversing polarity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、飲料水や点滴液、注射液等に用いて好まし
い還元性電解水やその他の電解水を生成するための電解
槽および電解水生成装置に関する。
Description: TECHNICAL FIELD The present invention relates to an electrolytic cell and an electrolyzed water generating apparatus for generating reducing electrolyzed water and other electrolyzed water which are preferable for use in drinking water, infusion solutions, injection solutions and the like.

背景技術 水を電気分解して得られるアルカリ性電解水は、胃腸
内の異常醗酵や消化不良、下痢、胃酸過多などを抑制す
るといった医療的効果があることが報告されていたが、
その原因については、アルカリ性電解水に含まれるカル
シウム、ナトリウム、マグネシウム、カリウム等のミネ
ラル成分が陽イオンとして存在することであると考えら
れていた。そのため、かかる医療的効果を得るためのア
ルカリ性電解水は、専ら含有金属イオンとpH値とが制御
対象とされ、カルシウム等が添加された水をpHが9程度
又はそれ以上に達するまで電気分解を行うことにより生
成されていた。
BACKGROUND ART It has been reported that alkaline electrolyzed water obtained by electrolyzing water has a medical effect of suppressing abnormal fermentation and indigestion in the gastrointestinal tract, diarrhea, excessive gastric acid, etc.
It was thought that the cause was that mineral components such as calcium, sodium, magnesium, and potassium contained in the alkaline electrolyzed water were present as cations. Therefore, alkaline electrolyzed water for obtaining such a medical effect is controlled only by the contained metal ions and the pH value, and electrolyzes water added with calcium or the like until the pH reaches about 9 or more. It was generated by doing.

しかしながら、病気は、生体内に生じた活性酸素が生
体分子を酸化することにより当該生体分子が損傷を受け
ることが主な原因であり、こうした活性酸素は、水素イ
オンとの還元反応によって無毒の水に戻すことができ
る。そして、この反応をより促進すれば医療的効果が発
揮され、そのためには、酸化還元電位(ORP)がマイナ
スで、絶対値が大きい電解水(たとえばORPが−300mV以
下)を用いることが望ましいことが本願出願人の研究に
より判明した。
However, the disease is mainly caused by the fact that active oxygen generated in a living body oxidizes the biomolecule and damages the biomolecule. Such active oxygen is converted into non-toxic water by a reduction reaction with hydrogen ions. Can be returned to. If this reaction is further promoted, a medical effect will be exhibited. For this purpose, it is desirable to use electrolyzed water having a large oxidation-reduction potential (ORP) and a large absolute value (for example, an ORP of -300 mV or less). Has been found by the applicant's research.

ところで、この種の還元性を有する電解水を飲料水、
点滴液、注射液、透析液等に使用する場合、pHは極力中
性に維持することが望ましいとされる。しかしながら従
来の電解水生成装置では、pHが中性で酸化還元電位がマ
イナス側に小さい電解水を生成することができなかっ
た。すなわち、従来の電解水生成装置で水を電気分解す
ると、pHとORPとが相関的に変化し、pHを10程度まで大
きくするとORPも−500mV程度まで小さくなるが、pHが6
〜8といった中性付近の電解水では、ORPが最小でも−1
50mV程度にしか低下しなかった。つまり、従来の電解水
生成装置ではpHとORPとを互いに独立して制御すること
ができなかった。
By the way, this type of electrolytic water having a reducing property is used for drinking water,
When used for infusions, injections, dialysates, etc., it is desirable to maintain the pH as neutral as possible. However, in the conventional electrolyzed water generator, it was not possible to generate electrolyzed water having a neutral pH and a small redox potential on the negative side. That is, when water is electrolyzed by a conventional electrolyzed water generator, the pH and the ORP change in a correlated manner, and when the pH is increased to about 10, the ORP decreases to about -500 mV.
In electrolyzed water near neutrality such as ~ 8, the ORP is at least -1
It decreased only to about 50 mV. In other words, the conventional electrolyzed water generator could not control pH and ORP independently of each other.

発明の開示 本発明は、このような従来技術の問題点に鑑みてなさ
れたものであり、pHとORPとを互いに独立して制御でき
る電解槽および電解水生成装置を提供することを目的と
する。
DISCLOSURE OF THE INVENTION The present invention has been made in view of such problems of the related art, and has as its object to provide an electrolytic cell and an electrolyzed water generation device capable of controlling pH and ORP independently of each other. .

[1] 上記目的を達成するために、本発明の電解槽
は、被電解原水が導入される電解室と、前記電解室内と
前記電解室外とのそれぞれに隔膜を挟んで設けられた少
なくとも一対の電極板とを有し、前記電解室外の電極板
が前記隔膜に接触または僅かな隙間を介して設けられて
いることを特徴とする。
[1] In order to achieve the above object, the electrolytic cell of the present invention includes an electrolysis chamber into which raw water to be electrolyzed is introduced, and at least one pair of electrolysis chambers provided between the electrolysis chamber and the outside of the electrolysis chamber with a diaphragm interposed therebetween. An electrode plate, wherein the electrode plate outside the electrolytic chamber is provided in contact with the diaphragm or with a slight gap therebetween.

本発明の電解槽では、電解室内と電解室外とのそれぞ
れに隔膜を挟んで電極板対が設けられ、当該隔膜の外部
に一方の電極板が接触または僅かな隙間を介して設けら
れている。そして、電解室に原水を流しながら電極板対
に電流を流すことで電気分解が行われる。
In the electrolytic cell of the present invention, a pair of electrode plates is provided in each of the electrolytic chamber and the outside of the electrolytic chamber with a diaphragm interposed therebetween, and one electrode plate is provided outside the diaphragm with a contact or a slight gap. Then, electrolysis is performed by passing a current through the electrode plate pair while flowing raw water into the electrolysis chamber.

ここで、隔膜を挟んで設けられた電極板対の間、特に
電解室外の電極板と隔膜との間には、隔膜の含水性や電
極板と隔膜との間における毛細管現象によって被電解原
水が介在するので、両電極板間に電流が流れることにな
る。
Here, between the electrode plate pair provided across the diaphragm, especially between the electrode plate and the diaphragm outside the electrolytic chamber, the raw water to be electrolyzed is due to the water content of the diaphragm and the capillary phenomenon between the electrode plate and the diaphragm. Because of the interposition, a current flows between the two electrode plates.

このとき生じる化学反応を、電解室内の電極板をマイ
ナス、電解室外の電極板をプラスとした場合で説明す
る。
The chemical reaction occurring at this time will be described in the case where the electrode plate inside the electrolytic chamber is minus and the electrode plate outside the electrolytic chamber is plus.

まず電極板対に直流電圧を印加すると、電解室内の陰
極板の表面では、 2H2O+2e-→2OH-+H2↑ …(1) なる反応が生じ、隔膜を挟んだ電解室外の電極板の表
面、すなわち当該電極板と隔膜との間においては、 H2O−2e-→2H++1/2・O2↑ …(2) なる反応が生じる。
First, when a DC voltage is applied to the electrode plate pair, a reaction of 2H 2 O + 2e → 2OH + H 2 ↑ (1) occurs on the surface of the cathode plate in the electrolysis chamber, and the surface of the electrode plate outside the electrolysis chamber across the diaphragm. That is, a reaction of H 2 O−2e → 2H + + 1/2 · O 2 … (2) occurs between the electrode plate and the diaphragm.

本発明の電解槽では、隔膜と電解室外の電極板(陽
極)とがほぼ接触しているので、その間で生じた上記
(2)式のH+イオン(実際にはオキソニウムイオンH3O+
の形で存在する。)は陽極板で強く反発することにな
り、隔膜方向へ比較的大きな電気的力が加わる。これに
より、H+イオンは隔膜に含蓄されながらここを通過し、
その一部が陰極板から電子e-を受容して、下記(3)式
のとおり水素ガスとなって陰極側の生成電解水中に溶け
込む。
In the electrolytic cell of the present invention, since the diaphragm and the electrode plate (anode) outside the electrolytic chamber are almost in contact with each other, the H + ions of the above formula (2) (actually, oxonium ions H 3 O +
Exists in the form of ) Is strongly repelled by the anode plate, and a relatively large electric force is applied in the direction of the diaphragm. This allows H + ions to pass through while being impregnated in the diaphragm,
A part thereof receives the electron e from the cathode plate and becomes a hydrogen gas as shown in the following formula (3) and dissolves in the generated electrolysis water on the cathode side.

2H++2e-→H2↑ …(3) これにより、陰極側(すなわち電解室内)で生成され
る電解水は、通常よりも酸化還元電位(ORP)が低い(O
RPがマイナスで、絶対値が大きい電解水、以下、電解還
元水ともいう。)となる。
2H + + 2e → H 2 … (3) As a result, the electrolyzed water generated on the cathode side (that is, the electrolytic chamber) has a lower oxidation-reduction potential (ORP) than usual (O
Electrolyzed water with a negative RP and a large absolute value is also referred to as electrolytic reduced water. ).

ちなみに、上記隔膜を通過したH+イオンの残余は、電
解室中のOH-イオンと反応して水に戻るため(2H++OH-
→H2O)、電解室で生成される電解還元水のpHは若干中
性に近づくことになる。
Incidentally, the remaining H + ions passing through the diaphragm react with OH ions in the electrolytic chamber and return to water (2H + + OH −).
→ H 2 O), the pH of the electrolytically reduced water generated in the electrolytic chamber will approach slightly neutral.

[2] また、本発明の電解槽において、隔膜および電
極板対を少なくとも二対設ければ、電解室内に少なくと
も2つの電極板が設けられることになるので、これら同
極性の電極板間においても上記(1)式の反応が進行す
る。したがって、隔膜を挟んで一対の電極板を設けた場
合に比べて、単位容積当たりの電解反応面積が増加し、
電解効率が向上するとともに電解槽をコンパクトに構成
することができる。
[2] In the electrolytic cell of the present invention, if at least two pairs of the diaphragm and the electrode plate are provided, at least two electrode plates are provided in the electrolytic chamber. The reaction of the above formula (1) proceeds. Therefore, compared with the case where a pair of electrode plates are provided with the diaphragm interposed therebetween, the electrolytic reaction area per unit volume increases,
Electrolysis efficiency is improved, and the electrolytic cell can be made compact.

また、本発明の電解槽では、隔膜と電解室外の電極板
(陽極)とがほぼ接触して設けられ、隔膜と電解室外の
電極板との間に介在する水のみが通電媒体となることか
ら、上記(2)式で生じた酸素ガスはそのまま大気中に
放出されることになる。したがって、いわゆる無隔膜電
解に比べると、生成される電解水中の溶存酸素量が著し
く少なくなり、さらに酸化還元電位が低くなる。
Further, in the electrolytic cell of the present invention, the diaphragm and the electrode plate (anode) outside the electrolytic chamber are provided almost in contact with each other, and only water interposed between the diaphragm and the electrode plate outside the electrolytic chamber serves as a current-carrying medium. The oxygen gas generated by the above equation (2) is released to the atmosphere as it is. Therefore, as compared with so-called diaphragmless electrolysis, the amount of dissolved oxygen in the generated electrolytic water is significantly reduced, and the oxidation-reduction potential is further reduced.

これと同時に、上記(2)式右辺のH+イオンおよび酸
素ガスが、隔膜と電解室外の電極板との間から排出され
ると、化学平衡の点から(2)式の右方向への反応が活
発になる傾向がある。これにより、陰極板から水分子H2
Oへの電子供与能と、陽極板の水分子H2Oから受ける電子
受容能とが活性化されるので、長時間の電気分解を行っ
ても通電量が低下することなく、安定した電解水を得る
ことができる。
At the same time, when the H + ions and oxygen gas on the right side of the above equation (2) are discharged from between the diaphragm and the electrode plate outside the electrolytic chamber, the reaction in the right direction of the equation (2) from the point of chemical equilibrium. Tend to be active. As a result, water molecules H 2
The ability to donate electrons to O and the ability to accept electrons from the water molecules H 2 O on the anode plate are activated, so that even if electrolysis is performed for a long time, the amount of electricity does not decrease and stable electrolytic water Can be obtained.

本発明の電解槽において、隔膜および電極板対を少な
くとも二対設ける場合、電解室外に設けられた少なくと
も2つの電極板の何れか一つが、第2の電解室に設けら
れていることがより好ましい。そして、この第2の電解
室に被電解原水(必要に応じて電解質を添加しても良
い。)を供給し、上述した本来の電解室(以下、便宜的
に第1の電解室ともいう。)に被電解原水を流しなが
ら、二対の電極板のそれぞれに電流を流すことで電気分
解を行う。
In the electrolytic cell of the present invention, when at least two pairs of the diaphragm and the electrode plate are provided, it is more preferable that any one of at least two electrode plates provided outside the electrolytic chamber is provided in the second electrolytic chamber. . Then, raw water to be electrolyzed (an electrolyte may be added as necessary) is supplied to the second electrolysis chamber, and the above-described original electrolysis chamber (hereinafter also referred to as a first electrolysis chamber for convenience). The electrolysis is carried out by supplying a current to each of the two pairs of electrode plates while flowing the raw water to be electrolyzed in the above (1).

ここで、第1の電解室内の電極板をマイナス、第1の
電極室外の電極板をプラスとした場合を例に挙げて説明
すると、第2の電解室に設けられた陽極板とこれと対を
なす陰極板との間で行われる電気分解については、両電
解室に充分な被電解原水が供給されているので、陰極板
近傍で生成される電解還元水のpHが上昇するとともにOP
Rも低下し、さらにミネラル成分が凝縮される。
Here, the case where the electrode plate inside the first electrolytic chamber is minus and the electrode plate outside the first electrode chamber is plus will be described as an example. The anode plate provided in the second electrolytic chamber is paired with the anode plate. For the electrolysis performed between the cathode plate and the cathode plate, sufficient raw water to be electrolyzed is supplied to both electrolysis chambers.
R also decreases, and mineral components are further condensed.

これに対して、他方の陽極板とこれと対をなす陰極板
との間で行われる電気分解については、陽極板が設けら
れた室が大気解放されているので、陰極板近傍で生成さ
れる電解還元水のpHはさほど上昇せず、ミネラル成分も
変化しないが、上述した理由によりORPは低下する。
On the other hand, the electrolysis performed between the other anode plate and the cathode plate paired with the other anode plate is generated near the cathode plate because the chamber provided with the anode plate is open to the atmosphere. Although the pH of the electrolytically reduced water does not increase so much and the mineral components do not change, the ORP decreases for the above-mentioned reason.

一般に、電解水のORPは、pHが高いほど容易に低くす
ることができるので、大きな還元電位を有する電解水を
生成したい場合にはpHを高くすることが有利である。
Generally, the ORP of the electrolyzed water can be easily lowered as the pH is higher. Therefore, it is advantageous to increase the pH when it is desired to generate electrolyzed water having a large reduction potential.

このように、一つの電解槽内に異なる物性値を有する
電解水を生成する電極板対が存在するので、これらの電
極板対を必要に応じて適宜制御することで、pHおよびOR
Pを被電解原水の水質(pHおよびORP)の違いに影響され
ることなくコントロールすることができる。
As described above, since there is an electrode plate pair that generates electrolyzed water having different physical property values in one electrolytic cell, the pH and the OR are controlled by appropriately controlling these electrode plate pairs as needed.
P can be controlled without being affected by differences in the quality (pH and ORP) of the raw water to be electrolyzed.

この場合、被電解原水が導入され隔膜により仕切られ
た第1の電解室および第2の電解室と、前記第1の電解
室と前記第2の電解室とのそれぞれに隔膜を挟んで設け
られた少なくとも一対の電極板とを有する第1の電解槽
と、前記第1の電解槽の前記第1の電解室で生成された
電解水が導入される第3の電解室と、前記第3の電解室
内と前記第3の電解室外とのそれぞれに隔膜を挟んで設
けられた少なくとも一対の電極板とを有し、前記第3の
電解室外の電極板が前記隔膜に接触または僅かな隙間を
介して設けられている第2の電解槽とを備えたことを特
徴とする電解槽とすることで、pHとORPとの組み合わせ
の自由度をより高めることができる。
In this case, the first electrolysis chamber and the second electrolysis chamber into which the raw water to be electrolyzed is introduced and partitioned by the diaphragm, and the first electrolysis chamber and the second electrolysis chamber are provided with the diaphragm interposed therebetween. A first electrolytic cell having at least a pair of electrode plates, a third electrolytic chamber into which electrolytic water generated in the first electrolytic chamber of the first electrolytic cell is introduced, and a third electrolytic cell. At least one pair of electrode plates provided with an intervening membrane between the electrolysis chamber and the outside of the third electrolysis chamber, respectively, and the electrode plate outside the third electrolysis chamber is in contact with the intervening membrane or through a slight gap. By providing an electrolytic cell having a second electrolytic cell provided, the degree of freedom of the combination of pH and ORP can be further increased.

[3] 本発明の電解槽には限定されないが、電解槽の
逆洗浄方法として、たとえば、電解室内に設けられた電
極板の一方に陽極または陰極の何れか一方の電圧を印加
するとともに電極板の他方に陽極または陰極の何れか他
方の電圧を印加して第1の逆洗浄を行ったのち、電極板
の印加電圧極性を反転させて第2の逆洗浄を行うことが
好ましい。このとき、特に限定されないが、第1および
第2の逆洗浄中に電解室外に設けられた電極板には電圧
を印加しないことが好ましい。
[3] Although not limited to the electrolytic cell of the present invention, as a method for back washing the electrolytic cell, for example, a voltage of either an anode or a cathode is applied to one of the electrode plates provided in the electrolytic chamber, After applying the voltage of either the anode or the cathode to the other, and performing the first reverse cleaning, it is preferable to perform the second reverse cleaning by reversing the polarity of the voltage applied to the electrode plate. At this time, although not particularly limited, it is preferable that no voltage is applied to the electrode plate provided outside the electrolytic chamber during the first and second backwashing.

逆洗浄の一般的手法は、印加極性を単に反転させ、そ
れまで陰極が印加されてスケールが付着した電極板に陽
極を印加することで、その付着したスケールを電気的に
溶出させるものである。したがって、上述した本発明の
電解槽でもこうした逆洗浄の手法を採用することは可能
である。
The general method of backwashing is to simply reverse the polarity of the applied voltage and apply the anode to the electrode plate on which the cathode has been applied to which the scale has been attached, thereby electrically eluting the attached scale. Therefore, it is possible to adopt such a back washing method also in the above-described electrolytic cell of the present invention.

しかしながら、逆洗浄中においても陰極が印加された
電極板にはスケールが付着することになる。上述した本
発明の電解槽では、正電解に移行してこの電極板に陽極
が印加されたときに、当該電極板には被電解原水が供給
されないので、一旦付着したスケールは除去し難い。こ
のため、第1の電解室内に設けられた少なくとも2つの
電極板を用いて、この電極板のみに逆洗浄電流を流すこ
とでこれらの電極板に付着したスケールを除去する。
However, even during the back washing, the scale adheres to the electrode plate to which the cathode is applied. In the above-described electrolytic cell of the present invention, when the anode is applied to this electrode plate after the transition to the positive electrolysis, the raw water to be electrolyzed is not supplied to the electrode plate, so that the scale once adhered is difficult to remove. For this reason, by using at least two electrode plates provided in the first electrolysis chamber, a scale that adheres to these electrode plates is removed by applying a reverse cleaning current only to the electrode plates.

こうすると、第1の電解室外に設けられた電極板には
スケールが付着せず、また、逆洗浄も第1の電解室内に
設けられた電極板のみに電流を流すことで行えるので電
力が半分で足り、または同じ電流であれば逆洗浄時間を
半分に短縮することができる。
In this case, the scale does not adhere to the electrode plate provided outside the first electrolysis chamber, and the backwash can be performed by applying a current only to the electrode plate provided inside the first electrolysis chamber. And if the current is the same, the backwashing time can be reduced by half.

[4] 上述した本発明の電解槽は単独でも使用できる
が、複数の電解槽と、前記電解槽の各電解室に並列的に
原水を導入する給水系と、前記各電解室で生成された電
解水を並列的に取り出す取水系とを備えたことを特徴と
する電解水生成装置として構成することもできる。
[4] Although the above-described electrolytic cell of the present invention can be used alone, a plurality of electrolytic cells, a water supply system for introducing raw water in parallel to each electrolytic chamber of the electrolytic cell, and a water supply system generated in each of the electrolytic chambers. It can also be configured as an electrolyzed water generating apparatus, which is provided with a water intake system for taking out electrolyzed water in parallel.

本発明の電解槽および電解水生成装置において、電解
室外の電極板は隔膜に接触または僅かな隙間を介して設
けられているが、これは隔膜の表面に電極膜を形成する
ことも含む概念である。
In the electrolytic cell and the electrolyzed water generating apparatus of the present invention, the electrode plate outside the electrolytic chamber is provided in contact with the diaphragm or with a small gap therebetween, but this concept includes forming an electrode film on the surface of the diaphragm. is there.

本発明の電解槽および電解水生成装置に用いられる隔
膜としては、特に限定されないが、多孔性膜、陽イオン
交換膜、陰イオン交換膜などを挙げることができる。要
するに、本発明に係る隔膜は、少なくとも水分子が通過
できる多孔性と含水性を有するものであればよい。
The membrane used in the electrolytic cell and the electrolyzed water generator of the present invention is not particularly limited, and examples thereof include a porous membrane, a cation exchange membrane, and an anion exchange membrane. In short, the membrane according to the present invention only needs to have at least porosity and water content through which water molecules can pass.

また、本発明の電解槽および電解水生成装置におい
て、電極板の隔膜に対面する主面に他の導体や半導体を
積層することもできる。本発明ではこれらを含めて電極
板と称するものとする。
Further, in the electrolytic cell and the electrolyzed water generator of the present invention, another conductor or semiconductor can be laminated on the main surface of the electrode plate facing the diaphragm. In the present invention, these are referred to as an electrode plate.

本発明の電解槽および電解水生成装置にて生成された
電解水の用途は特に限定されず、飲料用や医療用の他に
も医療分野、食品分野、農業分野、工業分野など、幅広
い分野に適用することができる。
The use of the electrolyzed water generated by the electrolyzer and the electrolyzed water generation device of the present invention is not particularly limited, and can be applied to a wide range of fields such as a medical field, a food field, an agricultural field, and an industrial field in addition to a drink and a medical field. Can be applied.

なお、本発明の電極槽および電解水生成装置により得
られる電解水は、酸化還元電位の値がpHに依存しない点
に特長があることから、本明細書では、陰極側で生成さ
れる電解水をアルカリ性電解水ではなく電解還元水と、
陽極側で生成される電解水を電解酸化水ではなく電解酸
化水と称することとする。
In addition, the electrolyzed water obtained by the electrode tank and the electrolyzed water generation device of the present invention is characterized in that the value of the oxidation-reduction potential does not depend on pH. With electrolytic reduced water instead of alkaline electrolytic water,
The electrolytic water generated on the anode side is referred to as electrolytic oxidized water instead of electrolytic oxidized water.

図面の簡単な説明 図1は本発明の第1実施形態を示す断面図、 図2および図3は第1実施形態の逆洗浄方法を説明す
るための断面図、 図4は本発明の第2実施形態を示す断面図、 図5は本発明の第3実施形態を示すシステム図、 図6は本発明の第4実施形態を示す断面図、 図7は連続運転時間に対するpHの変化を示すグラフ、 図8は連続運転時間に対するORPの変化を示すグラ
フ、 図9は比較例として用いた従来の電解槽を示す縦断面
図、 図10は本発明の第4実施形態の具体例を示す縦断面
図、 図11は本発明の第4実施形態の他の具体例を示す縦断
面図、 図12は本発明の第5実施形態を示す縦断面図、 図13は本発明の第6実施形態を示すシステム図、 図14は本発明に係る隔膜および電極の他の例を示す断
面図、 図15は第2実施形態の変形例を示す断面図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a first embodiment of the present invention, FIGS. 2 and 3 are cross-sectional views for explaining a reverse cleaning method of the first embodiment, and FIG. FIG. 5 is a system diagram showing a third embodiment of the present invention, FIG. 6 is a cross-sectional diagram showing a fourth embodiment of the present invention, and FIG. 7 is a graph showing a change in pH with respect to a continuous operation time. FIG. 8 is a graph showing changes in ORP with respect to continuous operation time, FIG. 9 is a longitudinal sectional view showing a conventional electrolytic cell used as a comparative example, and FIG. 10 is a longitudinal sectional view showing a specific example of the fourth embodiment of the present invention. FIG. 11, FIG. 11 is a longitudinal sectional view showing another specific example of the fourth embodiment of the present invention, FIG. 12 is a longitudinal sectional view showing a fifth embodiment of the present invention, and FIG. 13 is a sixth embodiment of the present invention. FIG. 14 is a sectional view showing another example of the diaphragm and the electrode according to the present invention, and FIG. 15 is a modification of the second embodiment. FIG.

発明を実施するための最良の形態 以下、本発明の実施形態を図面に基づいて説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第1実施形態] 図1は本発明の第1実施形態を示す縦断面図であり、
本発明の電極槽の基本的構造を示すものである。
[First Embodiment] Fig. 1 is a longitudinal sectional view showing a first embodiment of the present invention,
1 shows a basic structure of an electrode tank of the present invention.

本実施形態の電解槽11には、原水を導入する導入口11
1と生成された電解水を取り出すための導出口112とが形
成されており、これら導入口111と導出口112との間に電
解室113が形成されている。特に限定はされないが、本
例の電解槽11では、ケーシング114の底面に、図示する
紙面に対して垂直方向に原水が導入されるように導入口
111が形成され、ケーシング114の頂面に、図示する紙面
に対して垂直方向に電解水が取水されるように導出口11
2が形成されている。
The electrolytic cell 11 of the present embodiment has an inlet 11 for introducing raw water.
1 and an outlet 112 for taking out the generated electrolyzed water are formed, and an electrolytic chamber 113 is formed between the inlet 111 and the outlet 112. Although not particularly limited, in the electrolytic cell 11 of the present example, an inlet is provided on the bottom surface of the casing 114 so that raw water is introduced in a direction perpendicular to the plane of the drawing.
An outlet 11 is formed on the top surface of the casing 114 so that electrolyzed water is taken in a direction perpendicular to the plane of the drawing.
2 are formed.

また、電解槽11の左右の側壁には多孔性隔膜115が設
けられており、この隔膜115の室外のそれぞれに電極板1
16が接触した状態で設けられている。他方の電極板117
は、その主面が一方の電極板116にそれぞれ対面するよ
うに電解室113内に設けられている。
Further, a porous diaphragm 115 is provided on the left and right side walls of the electrolytic cell 11, and the electrode plate 1
16 are provided in contact with each other. The other electrode plate 117
Are provided in the electrolytic chamber 113 such that their main surfaces face one of the electrode plates 116, respectively.

これら二対の電極板116,117には、直流電源12が接続
されており、隔膜115を挟んで対向する一対の電極板11
6.117の一方に陽極が、他方の電極板に陰極が印加され
るようになっている。例えば、電解室113にて電解還元
水を生成する場合には、図1に示されるように、電解室
113内に設けられた電極板117に直流電源の陰極が接続さ
れ、電解室113外に設けられた電極板116に陽極が接続さ
れる。
A DC power supply 12 is connected to the two pairs of electrode plates 116 and 117, and a pair of electrode plates 11 opposed to each other with a diaphragm 115 interposed therebetween.
An anode is applied to one of 6.117 and a cathode is applied to the other electrode plate. For example, when producing electrolytic reduced water in the electrolytic chamber 113, as shown in FIG.
A cathode of a DC power supply is connected to an electrode plate 117 provided inside 113, and an anode is connected to an electrode plate 116 provided outside electrolysis chamber 113.

なお、電解室113にて電解酸化水を生成する場合に
は、電解室113内に設けられた電極板117に直流電源の陽
極を接続し、電解室113外に設けられた電極板116に陰極
を接続すれば良い。
When electrolytic oxidized water is generated in the electrolytic chamber 113, an anode of a DC power supply is connected to an electrode plate 117 provided in the electrolytic chamber 113, and a cathode is connected to an electrode plate 116 provided outside the electrolytic chamber 113. Should be connected.

本実施形態で用いられる隔膜115は、電解室113に流さ
れる水がしみ込みやすく、かつしみ込んだ水が垂れ難い
性質のものが好ましい。すなわち、本実施形態の電解槽
11では、電解中において隔膜115自体および隔膜115と電
極板116の僅かな隙間Sに水膜が形成され、この水膜を
介して両電極板116,117に電流が流れる。したがって、
この水膜を構成する水が順次入れ替わることが電解効率
を高める上で重要となる。また、隔膜115にしみ込んだ
水が、隔膜115と電極板116との間から漏れるとその処理
が必要となるため、しみ込んだ水が垂れ落ちない程度の
含水性を有することが好ましい。
It is preferable that the diaphragm 115 used in the present embodiment has a property that the water flowing into the electrolytic chamber 113 easily permeates and the permeated water does not easily drip. That is, the electrolytic cell of the present embodiment
In 11, a water film is formed in the diaphragm 115 itself and in a slight gap S between the diaphragm 115 and the electrode plate 116 during electrolysis, and a current flows through the electrode plates 116 and 117 via the water film. Therefore,
It is important that the water constituting the water film is sequentially replaced in order to increase the electrolysis efficiency. Further, if water that has permeated into the diaphragm 115 leaks from between the diaphragm 115 and the electrode plate 116, the water must be treated. Therefore, it is preferable that the water has such a water content that the permeated water does not drip.

隔膜115の一例として、骨材がポリエステル不織布ま
たはポリエチレンスクリーン、膜材質が塩素化エチレン
またはポリフッ化ビニリデンと酸化チタンあるいはポリ
塩化ビニルであって、厚さが0.1〜0.3mm、平均孔径が0.
05〜1.0μm、透水量が1.0cc/cm2・min以下の多孔性膜
を例示することができる。
As an example of the diaphragm 115, the aggregate is a polyester nonwoven fabric or a polyethylene screen, the membrane material is chlorinated ethylene or polyvinylidene fluoride and titanium oxide or polyvinyl chloride, the thickness is 0.1 to 0.3 mm, and the average pore diameter is 0.
For example, a porous membrane having a water permeability of 1.0 cc / cm 2 · min or less and a water permeability of 1.0 to 1.0 μm can be exemplified.

一方、こうした隔膜115を挟んで対向して配置される
一対の電極板116,117の板間距離は、0mm〜5.0mm、より
好ましくは1.5mmである。ここで電極板116,117の板間距
離が0mmとは、たとえば図14に示されるように隔膜115の
両主面のそれぞれに電極膜を直接形成したゼロギャップ
電極を用いた場合であり、実質的には隔膜115の厚さ分
の距離を有することをいう。ゼロギャップ電極は隔膜11
5の一方の主面のみに電極を形成しても良い。また、こ
のようなゼロギャップ電極を採用する場合には、電極表
面から発生するガスを隔膜115とは反対の背面側へ逃が
すための孔または隙間を電極板116,117に設けておくこ
とが望ましい。
On the other hand, the distance between the pair of electrode plates 116 and 117 that are disposed to face each other with the diaphragm 115 interposed therebetween is 0 mm to 5.0 mm, and more preferably 1.5 mm. Here, the distance between the electrode plates 116 and 117 is 0 mm, for example, as shown in FIG. 14, when a zero gap electrode in which an electrode film is directly formed on each of both main surfaces of the diaphragm 115 is used, and substantially. Means that a distance equal to the thickness of the diaphragm 115 is provided. Zero gap electrode is diaphragm 11
The electrode may be formed only on one of the main surfaces of No. 5. When such a zero-gap electrode is employed, it is desirable to provide holes or gaps in the electrode plates 116 and 117 for allowing gas generated from the electrode surface to escape to the back side opposite to the diaphragm 115.

また、電解室113内に設けられる電極板117,117の板間
距離は、特に限定されないが、0.5mm〜5mm、より好まし
くは1mmである。
The distance between the electrode plates 117 provided in the electrolytic chamber 113 is not particularly limited, but is 0.5 mm to 5 mm, and more preferably 1 mm.

このような電解槽11を用いて電解還元水を生成する場
合には、まず、電解室113内に設けられた2枚の電極板1
17,117に直流電源12の陰極(−)を接続するとともに、
電解室113外に設けられた電極板116,116に直流電源12の
陽極(+)を接続し、隔膜115を挟んでそれぞれ対向す
る二対の電極板116,117に電圧を印加する。そして、導
入口111から水道水などの水を導入すると、電解室113で
は水道水の電気分解が行われ、電極板117の表面及びそ
の近傍で、上述した(1)式の反応が生じる。また、隔
膜115を挟んだ電解室113外の電極板116の表面、すなわ
ち当該電極板116と隔膜115との間においては、上述した
(2)式の反応が生じる。
When producing electrolytic reduced water using such an electrolytic cell 11, first, two electrode plates 1 provided in the electrolytic chamber 113 are provided.
Connect the cathode (-) of DC power supply 12 to 17,117,
The anode (+) of the DC power supply 12 is connected to the electrode plates 116, 116 provided outside the electrolytic chamber 113, and a voltage is applied to the two pairs of electrode plates 116, 117 opposed to each other across the diaphragm 115. Then, when water such as tap water is introduced from the inlet 111, tap water is electrolyzed in the electrolysis chamber 113, and the above-described equation (1) reaction occurs on and near the surface of the electrode plate 117. In addition, the above-described reaction (2) occurs on the surface of the electrode plate 116 outside the electrolytic chamber 113 across the diaphragm 115, that is, between the electrode plate 116 and the diaphragm 115.

このH+イオンは、隔膜115に含蓄されながらここを通
過し、その一部が陰極板117から電子e-を受容して、水
素ガスとなって陰極側の生成電解水中に溶け込む。これ
により、陰極側(すなわち電解室113内)で生成される
電解水は、通常よりも酸化還元電位(ORP)が低い電解
還元水となる。
The H + ions pass therethrough while being contained in the diaphragm 115, and a part of the H + ions receive electrons e from the cathode plate 117 and become hydrogen gas to be dissolved in the electrolyzed water on the cathode side. As a result, the electrolyzed water generated on the cathode side (that is, in the electrolysis chamber 113) becomes electrolyzed water having a lower oxidation-reduction potential (ORP) than usual.

また、隔膜115を通過したH+イオンの残余は、電解室1
13中のOH-イオンと反応して水に戻るため、電解室113で
生成される電解還元水のpHは、若干中性に近づくことに
なる。つまり、pHはさほど高くないがORPが低い電解還
元水が得られることになる。このようにして生成された
水酸化物イオンを含む電解還元水は、導出口112から供
給される。
In addition, the remaining H + ions that have passed through the diaphragm 115
Since the water reacts with the OH - ions in 13 and returns to water, the pH of the electrolytically reduced water generated in the electrolytic chamber 113 becomes slightly neutral. That is, electrolytically reduced water having a low ORP but a low pH is obtained. The electrolytic reduced water containing hydroxide ions generated in this way is supplied from the outlet 112.

ところで、水道水を被電解原水として電気分解を続け
ると、水道水に含まれたカルシウムイオンやマグネシウ
ムイオンが陰極板117の表面に析出し、これがスケール
となって電解効率が低下する原因となる。このため、あ
る時間電気分解を行ったら陰極板117に析出したスケー
ルを除去する、いわゆる逆洗浄を行うことが行われる。
本実施形態の電解槽11についても、こうした逆洗浄をあ
る間隔で実施する。
When electrolysis is continued using tap water as raw water to be electrolyzed, calcium ions and magnesium ions contained in the tap water precipitate on the surface of the cathode plate 117, and this becomes a scale, which causes a reduction in electrolysis efficiency. For this reason, after performing electrolysis for a certain period of time, so-called reverse cleaning is performed, in which the scale deposited on the cathode plate 117 is removed.
Also for the electrolytic cell 11 of the present embodiment, such back washing is performed at certain intervals.

最も単純な逆洗浄の方法として、それまで印加されて
いた極性を単に反転させる方法が考えられる。すなわ
ち、上述したアルカリ性電解水を生成する場合について
いえば、電解室113内に設けられた2枚の電極板117,117
に直流電源12の陽極(+)を接続するとともに、電解室
113外に設けられた電極板116,116に直流電源12の陰極
(−)を接続し、隔膜115を挟んでそれぞれ対向する二
対の電極板116,117に電圧を印加する。これにより、そ
れまで陰極が印加されてスケールが付着した電極板117
においては、付着したプラスの金属イオンは、陽極が印
加されることで水道水中に溶出し、導出口112から排出
されることになる。
As the simplest method of back washing, a method of simply reversing the polarity applied so far can be considered. That is, regarding the case where the alkaline electrolyzed water is generated as described above, two electrode plates 117 and 117 provided in the electrolysis chamber 113 are provided.
Connect the anode (+) of the DC power supply 12 to the
The cathode (-) of the DC power supply 12 is connected to the electrode plates 116 and 116 provided outside the 113, and a voltage is applied to two pairs of electrode plates 116 and 117 opposed to each other across the diaphragm 115. As a result, the electrode plate 117 to which the cathode was
In, the attached positive metal ions are eluted into tap water by application of the anode, and are discharged from the outlet 112.

本発明の電解槽では、こうした逆洗浄方式も勿論採用
することができるが、電解室113外に設けられた電極板1
16に陰極を印加すると、今度は逆洗浄中に当該電極板11
6にスケールが析出することになり、図1に示す構造の
ものでは、次に行われる正電解において、電極板116に
析出したスケールを除去するのが困難となる。これを続
けると、電極板116に析出するスケールが除去に増加
し、電解効率の低下を招くおそれもある。
In the electrolytic cell of the present invention, such a back washing method can of course be adopted, but the electrode plate 1 provided outside the electrolytic chamber 113 can be used.
When a cathode is applied to the electrode plate 16, the electrode plate 11 is
As a result, the scale deposited on the electrode plate 116 is difficult to remove in the subsequent positive electrolysis with the structure shown in FIG. If this is continued, the scale that deposits on the electrode plate 116 will increase due to removal, and there is a possibility that the electrolytic efficiency will decrease.

そこで、本実施形態の逆洗浄は、図2及び図3に示す
ように、電解室113内に設けられた2枚の電極板117,117
にのみ電圧を印加してスケール除去を行うこととしてい
る。すなわち、まず図2に示すように、電解室113内に
設けられた2枚の電極板117,117のうちの一方(ここで
は左側の電極板117)の極性はそのままマイナスとし、
他方(ここでは右側の電極板117)の極性を反転させて
プラスの電圧を印加する。これにより、電解室113内で
は、2枚の電極板117,117間に電流が流れ、プラスの電
圧が印加された右側の電極板117に析出したスケールが
水道水中に溶出する。
Therefore, the back washing according to the present embodiment is performed, as shown in FIGS. 2 and 3, by using two electrode plates 117 and 117 provided in the electrolytic chamber 113.
The voltage is applied only to the scale to remove the scale. That is, first, as shown in FIG. 2, the polarity of one of the two electrode plates 117 and 117 provided in the electrolysis chamber 113 (here, the left electrode plate 117) is directly set to minus,
The polarity of the other (here, the right electrode plate 117) is inverted, and a positive voltage is applied. As a result, in the electrolysis chamber 113, a current flows between the two electrode plates 117, 117, and the scale deposited on the right electrode plate 117 to which the positive voltage is applied elutes into tap water.

これを一定時間続けたのち、図3に示すように、今度
は2枚の電極板117,117の印加極性を反転させる。つま
り、左側の電極板117にプラス電圧、右側の電極板117に
マイナス電圧を印加し、2枚の電極板117,117間に電流
を流すことで、今度は左側の電極板117に析出したスケ
ールを除去する。
After this is continued for a certain period of time, the applied polarities of the two electrode plates 117 are reversed as shown in FIG. In other words, by applying a positive voltage to the left electrode plate 117 and a negative voltage to the right electrode plate 117 and passing a current between the two electrode plates 117, 117, the scale deposited on the left electrode plate 117 is removed. I do.

こうした逆洗浄方式を採ることで、逆洗浄時に消費さ
れる電力が半分となり、または同じ消費電力を使用する
とすれば逆洗浄時間が半分となる。また、逆洗浄時に電
解室113外に設けられた電極板116には通電しないので、
当該電極板116は専ら陽極電圧のみが印加されることに
なる。したがって、耐久性能の点から、両極での使用が
可能な高価な板材を用いる必要がなく、あるいは貴金属
コーティングを施す場合にあっては膜厚を薄くすること
ができる。
By adopting such a back washing method, the power consumed at the time of back washing is halved, or if the same power consumption is used, the back washing time is halved. Also, since no current is supplied to the electrode plate 116 provided outside the electrolytic chamber 113 at the time of back washing,
Only the anode voltage is applied to the electrode plate 116. Therefore, from the viewpoint of durability performance, it is not necessary to use an expensive plate material that can be used in both electrodes, or the thickness can be reduced when a noble metal coating is applied.

ちなみに、上述した実施形態では電解還元水を生成す
る場合を例に挙げて本発明の電解槽11を説明したが、本
発明の電解槽11は電解酸化水を生成する場合にも適用で
きる。この場合には、電解室113内に設けられた2枚の
電極板117,117に直流電源12の陽極(+)を接続すると
ともに、電解室113外に設けられた電極板116,116に直流
電源12の陰極(−)を接続し、隔膜115を挟んでそれぞ
れ対向する二対の電極板116,117に電圧を印加すればよ
い。
By the way, in the above-described embodiment, the electrolytic cell 11 of the present invention has been described by taking as an example the case where electrolytic reduced water is generated, but the electrolytic cell 11 of the present invention can also be applied to the case of generating electrolytic oxidized water. In this case, the anodes (+) of the DC power supply 12 are connected to the two electrode plates 117, 117 provided in the electrolytic chamber 113, and the cathodes of the DC power supply 12 are connected to the electrode plates 116, 116 provided outside the electrolytic chamber 113. (−) May be connected, and a voltage may be applied to two pairs of electrode plates 116 and 117 opposed to each other with the diaphragm 115 interposed therebetween.

そして、導入口111から水道水などの水を導入する
と、電解室113では水道水の電気分解が行われ、電極板1
17の表面及びその近傍で、上記(2)式の反応が生じる
一方、隔膜115を挟んだ電解室113外の電極板116の表
面、すなわち当該電極板116と隔膜115との間の水膜にお
いては、上述した(1)式の反応が生じる。
Then, when water such as tap water is introduced from the inlet 111, tap water is electrolyzed in the electrolytic chamber 113, and the electrode plate 1
While the reaction of the above formula (2) occurs on the surface of the electrode 17 and in the vicinity thereof, on the surface of the electrode plate 116 outside the electrolytic chamber 113 across the diaphragm 115, that is, on the water film between the electrode plate 116 and the diaphragm 115 Causes the reaction of the above-described formula (1).

このOH-イオンは、隔膜115に含蓄されながらここを通
過し、その一部が陰極板117に電子e-を受渡して、酸素
ガスとなって陽極側の生成電解水中に溶け込む。これに
より、陽極側(すなわち電解室113内)で生成される電
解水は、通常よりも酸化還元電位(ORP)が高い電解酸
化水となる。
The OH - ions pass therethrough while being contained in the diaphragm 115, and a part of the OH - ions transfer the electrons e - to the cathode plate 117, become oxygen gas, and dissolve in the electrolyzed water on the anode side. Thus, the electrolyzed water generated on the anode side (that is, in the electrolysis chamber 113) becomes electrolyzed oxidized water having a higher oxidation-reduction potential (ORP) than usual.

また、隔膜115を通過したOH-イオンの残余は、電解室
113中のH+イオンと反応して水に戻るため、電解室113で
生成される電解酸化水のpHは、若干中性に近づくことに
なる。つまり、pHはさほど低くないがORPが高い電解酸
化水が得られることになる。こうして生成された水素イ
オンを含んだ電解酸化水は、導出口112から供給され
る。
In addition, the remaining OH 2 - ions that have passed through the diaphragm 115
Since it reacts with H + ions in 113 and returns to water, the pH of the electrolytic oxidized water generated in the electrolytic chamber 113 becomes slightly neutral. That is, electrolytic oxidized water having a low ORP but a high ORP is obtained. The electrolytic oxidized water containing hydrogen ions thus generated is supplied from the outlet 112.

本実施形態の電解槽11をさらに具体的に説明する。 The electrolytic cell 11 of the present embodiment will be described more specifically.

図1に示す基本的構造を有する電解槽11を用い、pHが
7.9、ORPが+473mVの水道水を4リットル/min流し、1
枚の面積が24cm2の電極板116,117に電圧を印加して14A
の一定電流にて電気分解を行った。
Using an electrolytic cell 11 having the basic structure shown in FIG.
7.9, ORP flow of + 473mV tap water at 4L / min.
14A by applying a voltage to the electrode plates 116 and 117 with an area of 24 cm 2
The electrolysis was performed at a constant current of.

また、隔膜115として、骨材がポリエステル不織布、
膜材質がポリフッ化ビニリデンと酸化チタン、厚さが0.
12mm、平均孔径が0.4μm、透水量が0.3cc/cm2・min以
下の多孔性膜を用い、電極板116,117の距離は、1mm、電
極板117,117の距離は1mmとした。
Further, as the diaphragm 115, the aggregate is a polyester non-woven fabric,
The film material is polyvinylidene fluoride and titanium oxide, and the thickness is 0.
A porous membrane having a diameter of 12 mm, an average pore diameter of 0.4 μm, and a water permeability of 0.3 cc / cm 2 · min or less was used. The distance between the electrode plates 116 and 117 was 1 mm, and the distance between the electrode plates 117 and 117 was 1 mm.

この結果、生成直後において、pH=9.03、ORP=−550
mVの電解還元水が得られた。また、この電解還元水を静
置し、5分後、10分後および30分後のpHおよびORPを測
定したところ、表1のようになった。
As a result, immediately after generation, pH = 9.03, ORP = −550.
mV electrolytic reduced water was obtained. The electrolytically reduced water was allowed to stand, and the pH and ORP after 5, 10 and 30 minutes were measured. The results are as shown in Table 1.

これによれば、電解初期においてpHは9を越えていた
が、すぐにpHが下がりpH=8で安定した。これは、隔膜
115と陽極板116との間の水膜で生じたH+イオンが隔膜11
5を通過して電解室113に移動し、当該電解室113内のOH-
イオンと中和反応することが原因であると考えられる。
According to this, the pH exceeded 9 at the beginning of electrolysis, but the pH immediately dropped and was stabilized at pH = 8. This is the diaphragm
H + ions generated in the water film between the
5 and moved to the electrolysis chamber 113, where OH
It is considered that the cause is a neutralization reaction with ions.

[第2実施形態] 本発明の電解槽は、図1に示す基本的構造を有する
が、実施化に際しては種々の形態が考えられる。図4は
本発明の第2実施形態を示す縦断面図であり、図1に示
す本発明の電解槽11の基本構成と共通する部材には同一
の符号を付してある。
[Second Embodiment] The electrolytic cell of the present invention has the basic structure shown in Fig. 1, but various forms can be considered for implementation. FIG. 4 is a longitudinal sectional view showing a second embodiment of the present invention, and members common to the basic structure of the electrolytic cell 11 of the present invention shown in FIG.

本実施形態の電解槽11では、電解室113外に設けられ
た電極板116,116の一方の電極板116(ここでは左側)
が、第2の電解室118に設けられている点が上記第1実
施形態と相違している。この第2の電解室118は、ケー
シング114の一方の側壁に形成され、ここに被電解原水
が導入される。この第2の電解室118への被電解原水の
導入は、通水であっても、単に被電解原水を満たすだけ
であっても良い。
In the electrolytic cell 11 of the present embodiment, one of the electrode plates 116, 116 provided outside the electrolytic chamber 113 (here, the left side)
However, the second embodiment is different from the first embodiment in that the second electrolysis chamber 118 is provided. The second electrolysis chamber 118 is formed on one side wall of the casing 114, and the raw water to be electrolyzed is introduced into the second electrolysis chamber 118. The introduction of the raw water to be electrolyzed into the second electrolysis chamber 118 may be performed by passing water or simply by filling the raw water to be electrolyzed.

こうした電解槽11によれば、右側の電極板対116およ
び117により生成される電解還元水は、既述したようにp
Hをさほど上昇させることなくORPを特異的にマイナス側
に大きくできる。これに対して、左側の電極板対116お
よび117により生成される電解還元水は、pHが大きくORP
もマイナス側に大きくなる。
According to such an electrolytic cell 11, the electrolytically reduced water generated by the right electrode plate pair 116 and 117 is p as described above.
ORP can be specifically increased to the minus side without increasing H significantly. On the other hand, the electrolytic reduced water generated by the left electrode plate pair 116 and 117 has a large pH and ORP
Also increases to the negative side.

したがって、本電解槽11の導出口112からは、これら
2種類の電解還元水が混合されたものが取水されるの
で、右側の電極板対116および117と左側の電極板対116
および117とのそれぞれに流す電流を制御することで、p
HおよびORPの組み合わせを任意に調節することができ
る。
Therefore, a mixture of these two types of electrolytic reduced water is taken from the outlet 112 of the electrolytic cell 11, so that the right electrode plate pair 116 and 117 and the left electrode plate pair 116
By controlling the current flowing to each of
The combination of H and ORP can be adjusted arbitrarily.

このことは、特に被電解原水の水質が異なる場合に有
効である。たとえば、被電解原水のpHやORPは地域や季
節によってそのバランスが大きく変動することが少なく
なく、こうした場合に本実施形態の電解槽11を用いれ
ば、pHとORPとのバランスを所望の値に制御することが
できる。
This is particularly effective when the quality of the raw water to be electrolyzed is different. For example, the balance of the pH and ORP of the raw water to be electrolyzed often varies greatly depending on the region and the season.In such a case, if the electrolytic cell 11 of the present embodiment is used, the balance between pH and ORP is set to a desired value. Can be controlled.

本実施形態の電解槽11をさらに具体的に説明する。 The electrolytic cell 11 of the present embodiment will be described more specifically.

図4に示す基本的構造を有する電解槽11を用い、pHが
7.9、ORPが+473mVの水道水を電解室113に4リットル/m
in流すとともに、第2の電解室118には1リットル/min
流し、1枚の面積が24cm2の電極板116,117に電圧を印加
して7Aの一定電流にて電気分解を行った。
Using an electrolytic cell 11 having the basic structure shown in FIG.
7.9, 4 liters / m of tap water with ORP of +473 mV in electrolysis chamber 113
1 l / min into the second electrolysis chamber 118
Then, voltage was applied to one electrode plate 116, 117 having an area of 24 cm 2 , and electrolysis was performed at a constant current of 7A.

また、隔膜115として、骨材がポリエステル不織布、
膜材質がポリフッ化ビニリデンと酸化チタン、厚さが0.
12mm、平均孔径が0.4μm、透水量が0.3cc/cm2・min以
下の多孔性膜を用い、電極板116,117の距離は、1mm、電
極板117,117の距離は1mmとした。
Further, as the diaphragm 115, the aggregate is a polyester non-woven fabric,
The film material is polyvinylidene fluoride and titanium oxide, and the thickness is 0.
A porous membrane having a diameter of 12 mm, an average pore diameter of 0.4 μm, and a water permeability of 0.3 cc / cm 2 · min or less was used. The distance between the electrode plates 116 and 117 was 1 mm, and the distance between the electrode plates 117 and 117 was 1 mm.

この結果、生成直後において、pH=9.57、ORP=−657
mVの電解還元水が得られた。また、この電解還元水を静
置し、5分後および10分後のpHおよびORPを測定したと
ころ、表2のようになった。
As a result, immediately after production, pH = 9.57, ORP = −657.
mV electrolytic reduced water was obtained. The electrolytically reduced water was allowed to stand, and the pH and ORP after 5 minutes and 10 minutes were measured. The results are as shown in Table 2.

次に、図4において第2の電解室118に設けられた対
の電極板116,117に流れる電流値を3Aおよび5Aとして、
上記と同様の条件で電解水を生成した。この結果を表2
に示す。
Next, in FIG. 4, current values flowing through a pair of electrode plates 116 and 117 provided in the second electrolytic chamber 118 are set to 3 A and 5 A, respectively.
Electrolyzed water was produced under the same conditions as above. Table 2 shows the results.
Shown in

これによれば、電極板対に流す電流値をそれぞれ適宜
調節することにより、所望のpHおよびORPの電解水を生
成することができる。
According to this, it is possible to generate electrolyzed water having a desired pH and ORP by appropriately adjusting the current value flowing through the electrode plate pair.

上述した第2実施形態の変形例として、2以上の電解
槽を直列的に接続することも考えられる。たとえば図15
に示す電解槽11は、一般的な通水式電解槽11A(第1の
電解槽)と第1実施形態の電解槽11B(第2の電解槽)
とを直列に接続したものである。
As a modification of the above-described second embodiment, it is conceivable to connect two or more electrolytic cells in series. For example, Figure 15
The electrolytic cell 11 shown in FIG. 1 is a general water-flow type electrolytic cell 11A (first electrolytic cell) and the electrolytic cell 11B of the first embodiment (second electrolytic cell).
Are connected in series.

第1の電解槽11Aのケーシング114Aの一端には、水道
水などの被電解原水が導入される導入口111Aが形成さ
れ、また、ケーシング114A内には、隔膜115Aを挟んで対
をなす電極板116A,117Aが設けられている。本例では、
ケーシング114Aの両側に2対の隔膜115Aおよび電極板対
116A,117Aが設けられている。これにより、2つの隔膜1
15A,115Aの間に電解室113Aが形成されるとともに、隔膜
115A,115Aの外側に第2の電解室118A,118Aが形成され
る。
An inlet 111A into which raw water to be electrolyzed such as tap water is introduced is formed at one end of a casing 114A of the first electrolytic cell 11A, and a pair of electrode plates sandwiching a diaphragm 115A is formed in the casing 114A. 116A and 117A are provided. In this example,
Two pairs of diaphragms 115A and electrode plates on both sides of casing 114A
116A and 117A are provided. Thereby, two diaphragms 1
An electrolytic chamber 113A is formed between 15A and 115A, and a diaphragm is formed.
Second electrolytic chambers 118A, 118A are formed outside 115A, 115A.

なお、第2の電解室の下流に位置するケーシング114A
には、当該第2の電解室118Aで生成された電解水を系外
へ排出するための排出口118Aaが設けられている。
The casing 114A located downstream of the second electrolysis chamber
Is provided with an outlet 118Aa for discharging the electrolyzed water generated in the second electrolysis chamber 118A to the outside of the system.

第1の電解槽11Aの下流側には上述した第1実施形態
(図1参照)の電解槽11Bが接続されており、同一部材
には同一の符号を付してある。
The electrolytic cell 11B of the above-described first embodiment (see FIG. 1) is connected to the downstream side of the first electrolytic cell 11A, and the same members are denoted by the same reference numerals.

図15に示すように、第1の電解槽11Aと第2の電解槽1
1Bとを直列に接続し、この電解槽11でORPが小さい電解
還元水を生成すると、まず第1の電解槽11AではpHが大
きい(アルカリ性)電解水が生成され、これを被電解原
原水として第2の電解槽11Bに導入すると、当該第2の
電解槽11Bでは主としてORPをマイナス側に大きくするこ
とができる。すなわち、第1の電解槽11AにてpH調整を
実施し、第2の電解槽11BにてORPの調整を実施すること
ができ、さらにpHとORPとの組み合わせ自由度の高い電
解水が得られる。
As shown in FIG. 15, the first electrolytic cell 11A and the second electrolytic cell 1
1B is connected in series, and electrolytic reduction water having a small ORP is generated in the electrolytic cell 11. First, electrolytic water having a large pH (alkaline) is generated in the first electrolytic cell 11A, and this is used as raw water to be electrolyzed. When the ORP is introduced into the second electrolytic cell 11B, the ORP can be increased mainly in the negative direction in the second electrolytic cell 11B. That is, the pH can be adjusted in the first electrolytic cell 11A, and the ORP can be adjusted in the second electrolytic cell 11B. Further, electrolyzed water having a high degree of freedom in combination of pH and ORP can be obtained. .

[第3実施形態] 図5は上述した本発明の電解槽11を用いて構成した電
解水生成装置1の実施形態を示すシステム図であり、上
述した第1又は第2実施形態の電解槽11が並列的に接続
されており、これら電解槽11のそれぞれの導入口111に
被電解原水を供給する給水系13が設けられている。
Third Embodiment FIG. 5 is a system diagram showing an embodiment of an electrolyzed water generation device 1 configured using the above-described electrolyzer 11 of the present invention. The electrolyzer 11 of the above-described first or second embodiment is shown. Are connected in parallel, and a water supply system 13 for supplying raw water to be electrolyzed is provided at each of the inlets 111 of the electrolytic cell 11.

この給水系13は、メイン給水配管131とここから分岐
された複数の分岐給水配管132とからなり、メイン給水
配管131には、被電解水中の異物を濾過するためのスト
レーナ133が設けられ、先端には手動バルブ134が設けら
れてドレインを構成している。
The water supply system 13 includes a main water supply pipe 131 and a plurality of branch water supply pipes 132 branched from the main water supply pipe 131.The main water supply pipe 131 is provided with a strainer 133 for filtering foreign substances in the water to be electrolyzed. Is provided with a manual valve 134 to constitute a drain.

各分岐給水配管132には、減圧弁135および電磁弁136
が設けられ、この先でさらに分岐されて、定流量弁137
および手動バルブ138が設けられている。
Each branch water supply pipe 132 has a pressure reducing valve 135 and a solenoid valve 136.
Is provided, and is further branched at this point.
And a manual valve 138 is provided.

一方、並列的に設けられた電解槽11の導出口112には
取水系14が設けられている。この取水系14は、電解槽11
のそれぞれの導出口112を集約するメイン取水配管141
と、その先端に設けられた電動バルブ142と、このメイ
ン取水配管141から分岐されたドレイン配管143と、この
ドレイン配管143に設けられた電動バルブ144とから構成
されている。
On the other hand, a water intake system 14 is provided at the outlet 112 of the electrolytic cell 11 provided in parallel. This water intake system 14 is
Main intake pipe 141 that aggregates each outlet 112
, An electric valve 142 provided at the tip thereof, a drain pipe 143 branched from the main water intake pipe 141, and an electric valve 144 provided in the drain pipe 143.

なお、図示は省略するが、各電解槽11には図1又は図
4に示す直流電源12が接続されている。
Although not shown, a DC power supply 12 shown in FIG. 1 or 4 is connected to each electrolytic cell 11.

こうした電解水生成装置1を用いて所望の電解水を生
成するには、まずメイン給水配管131の先端の手動バル
ブ134を閉じ、各分岐給水配管132の手動バルブ138を開
いておく。そして、メイン給水配管131に原水を供給
し、各分岐給水配管132の電磁弁136および取水系14の電
動バルブ142を制御する。
In order to generate the desired electrolyzed water using the electrolyzed water generating apparatus 1, first, the manual valves 134 at the tips of the main water supply pipes 131 are closed, and the manual valves 138 of the branch water supply pipes 132 are opened. Then, raw water is supplied to the main water supply pipe 131, and the solenoid valve 136 of each branch water supply pipe 132 and the electric valve 142 of the water intake system 14 are controlled.

特に限定はされないが、運転方法の一例として、何れ
か一つの電解槽11を順に逆洗浄することが好ましい。つ
まり、何れか一つの電解槽11は常に逆洗浄中であり、残
りの電解槽11が電解水を生成中であるように制御する
と、取水系14で取り出される電解水の水質が常に一定と
なる。
Although not particularly limited, as one example of the operation method, it is preferable to sequentially backwash any one of the electrolytic cells 11. In other words, when any one of the electrolytic cells 11 is constantly being backwashed and the remaining electrolytic cells 11 are controlled to generate electrolytic water, the quality of the electrolytic water taken out by the water intake system 14 is always constant. .

[第4の実施形態] 図6は本発明の電解槽の第4実施形態を示す断面図で
あり、図1に示す電解槽11の基本構成と共通する部材に
は同一の符号を付してある。本例は、隔膜115および電
極板116,117が一対のみ設けられている点が第1実施形
態と相違する。
Fourth Embodiment FIG. 6 is a cross-sectional view showing a fourth embodiment of the electrolytic cell of the present invention, and members common to the basic structure of the electrolytic cell 11 shown in FIG. is there. This example is different from the first embodiment in that only a pair of the diaphragm 115 and the electrode plates 116 and 117 are provided.

こうした電解槽11を用いても基本的には上述した第1
実施形態と同様の作用効果を奏するが、本実施形態をさ
らに具体化して説明する。
Even if such an electrolytic cell 11 is used, basically the first
Although the same operational effects as those of the embodiment can be obtained, the present embodiment will be described more specifically.

実施例1として、図6に示す基本的構造を有する電解
槽を用い、pHが7.2、ORPが+450mVの水道水を4リット
ル/min流し、30Vの電圧を印加して電気分解を行った。
両電極板116,117に流れた電流は4A(120W)であった。
また、隔膜115として、骨材がポリエステル不織布、膜
材質がポリフッ化ビニリデンと酸化チタン、厚さが0.12
mm、平均孔径が0.4μm、透水量が0.3cc/cm2・min以下
の多孔性膜を用い、電極板116,117の距離は、1mmとし
た。
As Example 1, electrolysis was performed by using an electrolytic cell having a basic structure shown in FIG. 6 and flowing tap water having a pH of 7.2 and an ORP of +450 mV at 4 L / min, and applying a voltage of 30 V.
The current flowing through both electrode plates 116 and 117 was 4 A (120 W).
Further, as the diaphragm 115, the aggregate is a polyester nonwoven fabric, the membrane material is polyvinylidene fluoride and titanium oxide, and the thickness is 0.12.
mm, a porous membrane having an average pore diameter of 0.4 μm and a water permeability of 0.3 cc / cm 2 · min or less was used, and the distance between the electrode plates 116 and 117 was 1 mm.

この結果、pH8〜9、ORP=−220mVの電解還元水が得
られた、また、この電気分解を1時間継続したが、図7
および8に示すように、pHおよびORPの値は殆ど変化し
なかった(実施例1参照)。なお、図7に示すように電
解初期においてpHが9を越える電解水が得られたが、す
ぐにpHが下がりpH=9で安定した。これは、隔膜115と
陽極板116との間の水膜で生じたH+イオンが隔膜115を通
過して電解室113に移動し、当該電解室113内のOH-イオ
ンと中和反応することが原因であると考えられる。
As a result, electrolytically reduced water having a pH of 8 to 9 and an ORP of -220 mV was obtained. This electrolysis was continued for 1 hour.
As shown in and 8, the pH and ORP values hardly changed (see Example 1). As shown in FIG. 7, electrolyzed water having a pH of more than 9 was obtained in the initial stage of electrolysis, but the pH immediately dropped and was stabilized at pH = 9. This, H + ions generated by the water film between the membrane 115 and the anode plate 116 passes through the membrane 115 moves to the electrolysis chamber 113, OH of the electrolysis chamber 113 - to neutralize the reaction with ion Is thought to be the cause.

これに対する比較例1として、図9に示すように電極
板116側にも電解室113'を有し、電極板116と隔膜115と
の距離が大きい(0.5mm)電解槽を作製し、実施例1と
同様に、pHが7.2、ORPが+450mVの水道水を4リットル/
min流し、12Vの電圧を印加して電気分解を行った。両電
極板116,117に流れた電流は10A(120W)であった。隔膜
115は実施例1と同じものを用い、電極板116,117の距離
は1mmとし、隔膜115が中央に位置するようにセットし
た。
As Comparative Example 1, as shown in FIG. 9, an electrolytic cell having an electrolytic chamber 113 'also on the electrode plate 116 side and having a large distance (0.5 mm) between the electrode plate 116 and the diaphragm 115 was manufactured. As in 1, 4 liters of tap water with a pH of 7.2 and an ORP of +450 mV
Then, a voltage of 12 V was applied to perform electrolysis. The current flowing through both electrode plates 116 and 117 was 10 A (120 W). diaphragm
115 was the same as in Example 1, the distance between the electrode plates 116 and 117 was 1 mm, and the diaphragm 115 was set so as to be located at the center.

この結果、電解初期には、pH=8〜9、ORP=−200mV
のアルカリ性の電解水が得られた。しかしながら、この
電気分解を1時間継続すると、図7および8に示すよう
に20分経過したところでpHおよびORPが変動し始め、そ
れ以上電気分解できなかった。これは、電解室113'内が
電解酸化水で飽和状態となったためと考えられる。
As a result, at the beginning of electrolysis, pH = 8-9, ORP = −200 mV
Was obtained. However, when this electrolysis was continued for 1 hour, pH and ORP started to fluctuate after 20 minutes as shown in FIGS. 7 and 8, and no further electrolysis was possible. This is considered to be because the inside of the electrolytic chamber 113 'was saturated with the electrolytically oxidized water.

ちなみに実施例2として、実施例1と同じ電解槽を用
い、電極板116,117への印加電圧極性を反転させ、また
被電解原水としてpHが7.4、ORPが+350mV、DO(溶存酸
素量)が6.4ppmの水道水を用いた以外は、実施例1と同
じ条件で電気分解を行った。これを1時間継続したが、
pHが6.9、ORPが+560mV、DOが10.0ppmの安定した電解酸
化水を得ることができた。
Incidentally, in Example 2, the same electrolytic cell as in Example 1 was used, the polarity of the voltage applied to the electrode plates 116 and 117 was inverted, and the pH of the raw water to be electrolyzed was 7.4, the ORP was +350 mV, and the DO (dissolved oxygen amount) was 6.4 ppm. The electrolysis was performed under the same conditions as in Example 1 except that tap water was used. This was continued for one hour,
It was possible to obtain stable electrolytic oxidized water having a pH of 6.9, an ORP of +560 mV, and a DO of 10.0 ppm.

第4実施形態の電解槽を実施するに際しては、種々の
形態が考えられ、図10はその一例を示す縦断面図、図11
は他の例を示す縦断面図であり、図1に示す本発明の電
解槽の基本構成と共通する部材には同一の符号を付して
ある。
When the electrolytic cell of the fourth embodiment is implemented, various modes are conceivable. FIG. 10 is a longitudinal sectional view showing one example thereof, and FIG.
Is a longitudinal sectional view showing another example, and members common to the basic structure of the electrolytic cell of the present invention shown in FIG. 1 are denoted by the same reference numerals.

図10に示す電解槽11は、縦断面が直方体形状に形成さ
れたケーシング114を有し、その下端には、紙面に垂直
に延在する被電解原水の導入口111(具体的には原水の
導入用パイプ)が設けられ、上端には、同じく紙面に垂
直に延在する電解水の導出口112(具体的には電解水の
導出用パイプ)が設けられている。
The electrolytic cell 11 shown in FIG. 10 has a casing 114 whose longitudinal section is formed in a rectangular parallelepiped shape. The lower end of the casing 114 has an inlet 111 for raw water to be electrolyzed (specifically, raw water An introduction pipe) is provided, and an outlet 112 for electrolytic water (specifically, a pipe for introducing electrolytic water) is provided at the upper end and also extends perpendicular to the plane of the drawing.

また、この電解槽11内には、一対の電極板116,117が
固定されており、さらに一方の電極板116には隔膜115が
たとえば一体的に取り付けられている。これら電極板11
7と隔膜115との間が電解室113となるが、一体的に構成
された隔膜115と電極板116との間に隙間Sが形成され、
ここにも水が存在することになる。
Further, a pair of electrode plates 116 and 117 are fixed in the electrolytic cell 11, and a diaphragm 115 is integrally attached to one of the electrode plates 116, for example. These electrode plates 11
7 and the diaphragm 115 become an electrolysis chamber 113, but a gap S is formed between the integrally formed diaphragm 115 and the electrode plate 116,
There will be water here too.

電極板116および隔膜115を一体的に組み立てるととも
に、後述するガス室119との水密性を確保するために、
これら電極板116および隔膜115の周囲にはパッキン151
が嵌合されている。また、他方の電極板117を電解槽11
のケーシング114に固定するために、当該電極板117の周
囲にもパッキン152が嵌合されている。
While assembling the electrode plate 116 and the diaphragm 115 integrally, in order to ensure watertightness with a gas chamber 119 described later,
A packing 151 is provided around the electrode plate 116 and the diaphragm 115.
Are fitted. Further, the other electrode plate 117 is
A packing 152 is also fitted around the electrode plate 117 in order to fix it to the casing 114.

特に本実施形態の電解槽11では、電解室113の外部に
ガス室119が形成されており、電極板116側の表面、すな
わち隙間Sで生じたガスを当該ガス室119へ効率よく集
約できるようになっている。「119a」はガス室119に放
出されたガスを所望の部位へ排出するための排出口であ
る。
In particular, in the electrolytic cell 11 of the present embodiment, the gas chamber 119 is formed outside the electrolytic chamber 113 so that the gas generated in the surface on the electrode plate 116 side, that is, the gas generated in the gap S can be efficiently collected in the gas chamber 119. It has become. “119a” is an outlet for discharging the gas released into the gas chamber 119 to a desired portion.

ちなみに、隔膜115と接触していない電極板117の背面
にも室119'が形成されているが、これは必須のものでは
なく省略することもできるが、電解槽11を対称形にする
ことで陽極と陰極との互換性を高めるために好ましく用
いることができる。たとえば、電解還元水と電解酸化水
との両電解水が生成できる装置とする場合、電極板116,
117への印加回路に極性反転回路を設ければ足りるが、
これを設けることができない場合には、図7に示す電極
板116および隔膜115のユニットと電極板117とを差し替
えることで対応することができる。なおこの場合、室11
9'の上部に開設された排出口119a'は不要であるため、
プラグ153などで閉塞しても良い。
Incidentally, a chamber 119 ′ is also formed on the back surface of the electrode plate 117 that is not in contact with the diaphragm 115, but this is not essential and can be omitted, but by making the electrolytic cell 11 symmetrical. It can be preferably used to enhance compatibility between the anode and the cathode. For example, in the case of a device that can generate both electrolytic reduced water and electrolytic oxidized water, the electrode plate 116,
It is sufficient to provide a polarity inversion circuit in the application circuit to 117,
When this cannot be provided, it can be dealt with by replacing the electrode plate 117 with the unit of the electrode plate 116 and the diaphragm 115 shown in FIG. In this case, room 11
Since the outlet 119a 'opened at the top of 9' is unnecessary,
The plug may be closed by a plug 153 or the like.

これに対して、図11に示す電解槽11では円筒状のケー
シング114が採用されている。また、この円筒形のケー
シング114に応じて、上下端が開口した円筒形の電極板1
16と、同じくこれに接触するとともに上下端が開口した
円筒形隔膜115を有し、さらに電解室113の中央にはたと
えば中実状の電極棒117が設けられている。
On the other hand, in the electrolytic cell 11 shown in FIG. 11, a cylindrical casing 114 is employed. Further, in accordance with the cylindrical casing 114, the cylindrical electrode plate 1 having upper and lower ends opened.
16 and a cylindrical diaphragm 115 which is in contact with it and whose upper and lower ends are open. Further, in the center of the electrolytic chamber 113, for example, a solid electrode rod 117 is provided.

電解槽11の下端には被電解原水の導入口111が設けら
れ、上端には電解水の導出口112が設けられており、導
入口111から導入された被電解原水は、電極棒117と円筒
状隔膜115との間に形成された円筒状の電解室113を通過
して電解されたのち、導出口112から取り出される。
An inlet 111 for raw water to be electrolyzed is provided at a lower end of the electrolytic cell 11, and an outlet 112 for electrolyzed water is provided at an upper end. The raw water to be electrolyzed introduced from the inlet 111 is connected to an electrode rod 117 and a cylindrical After passing through a cylindrical electrolytic chamber 113 formed between the membrane 115 and the electrolyte, the electrolyte is taken out from the outlet 112.

電解槽11の外部には、上述した図10に示す例と同じガ
ス室119が全周にわたって形成されており、円筒状隔膜1
15と円筒状電極板116とで形成された円筒状の隙間S
(ここに水膜が形成される)で生じたガスが集約され、
排出口119aから排出される。
Outside the electrolytic cell 11, the same gas chamber 119 as in the example shown in FIG.
15 and a cylindrical gap S formed by the cylindrical electrode plate 116
(Where a water film is formed)
It is discharged from the discharge port 119a.

このような円筒状電解槽11によっても同じ作用効果が
得られる。
The same operation and effect can be obtained by such a cylindrical electrolytic cell 11.

[第5実施形態] 上述した第1〜第4実施形態は、本発明を通水型電解
槽に適用した例であったが、本発明はバッチ型電解槽に
も適用することができる。図12は本発明の電解槽をバッ
チ型電解槽に応用する際の基本構成を示す概念図であ
り、図1に示す基本構成と共通する部材には同一の符号
を付している。この種のバッチ型電解槽によっても目的
とする特性、なかでもpH値に依存することなく酸化還元
電位の絶対値が大きい電解還元水または電解酸化水を長
時間にわたって生成することができる。
Fifth Embodiment The first to fourth embodiments described above are examples in which the present invention is applied to a water-permeable electrolytic cell, but the present invention can also be applied to a batch-type electrolytic cell. FIG. 12 is a conceptual diagram showing a basic configuration when the electrolytic cell of the present invention is applied to a batch type electrolytic cell, and members common to the basic configuration shown in FIG. 1 are denoted by the same reference numerals. Even with this type of batch type electrolytic cell, it is possible to produce electrolytic reduced water or electrolytic oxidized water having a large absolute value of the oxidation-reduction potential for a long time without depending on the intended characteristics, in particular, the pH value.

[第6実施形態] 本発明の電解槽を備えた電解水生成装置は、リアルタ
イムで電解水を供給する他、貯留タンクに投入した被電
解原水を循環することで多量の電解水を生成する場合に
も適用することができる。
Sixth Embodiment An electrolyzed water generating apparatus provided with an electrolyzer according to the present invention supplies an electrolyzed water in real time and generates a large amount of electrolyzed water by circulating raw water to be electrolyzed into a storage tank. Can also be applied.

図13は本発明の電解水生成装置の第6実施形態を示す
図であり、本発明を飲料用として応用したものである。
家庭用あるいは業務用として用いられる飲料水の代わり
に電解還元水を用いることができるが、この場合、同図
に示すように貯水タンク50に水道水を溜め、これをポン
プPにより本発明の電解水生成装置1に導き、上述した
ような電気分解を行って電解還元水を生成し、これを貯
水タンク50に戻す。この循環をある時間継続すると、pH
が中性に近く、ORPが低い電解還元水が得られる。
FIG. 13 is a view showing a sixth embodiment of the electrolyzed water generating apparatus of the present invention, in which the present invention is applied to a beverage.
Electrolytically reduced water can be used in place of drinking water used for home or business use. In this case, tap water is stored in a water storage tank 50 as shown in FIG. The water is led to the water generator 1 and subjected to the electrolysis as described above to generate electrolytic reduced water, which is returned to the water storage tank 50. If this circulation is continued for a certain time, pH
Is near neutral, and ORP is low.

より具体的に説明すると、pHが7.2、ORPが+450mV、D
Oが7.0の水道水20リットルを貯水タンク50に投入し、第
4実施形態で説明した電解槽を有する電解水生成装置を
用いて25分間ポンプを作動させ、貯水タンク50内の水を
電解水生成装置1に循環させながら電気分解を行った。
電解水生成装置1の生成量は4リットル/分、電極板間
に流れた電流は10A(一定)であった。貯水タンク50内
に貯留された電解水のpH、ORP(mV)、DO(ppm)を測定
したところ、表3に示す結果が得られ、洗浄力に影響が
あるORPの低い電解水が生成された。
More specifically, pH is 7.2, ORP is +450 mV, D
20 liters of tap water of which O is 7.0 is put into the water storage tank 50, and the pump is operated for 25 minutes using the electrolyzed water generation apparatus having the electrolysis tank described in the fourth embodiment, and the water in the water storage tank 50 is electrolyzed water. Electrolysis was performed while circulating through the generator 1.
The production rate of the electrolyzed water generator 1 was 4 liter / min, and the current flowing between the electrode plates was 10 A (constant). When the pH, ORP (mV), and DO (ppm) of the electrolyzed water stored in the water storage tank 50 were measured, the results shown in Table 3 were obtained, and electrolyzed water having a low ORP having an influence on the cleaning power was generated. Was.

なお、以上説明した実施形態は、本発明の理解を容易
にするために記載されたものであって、本発明を限定す
るために記載されたものではない。したがって、上記の
実施形態に開示された各要素は、本発明の技術的範囲に
属する全ての設計変更や均等物をも含む趣旨である。
The embodiments described above are described for facilitating the understanding of the present invention, and are not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内藤 達也 神奈川県藤沢市善行1丁目16番5号 ミ ズ株式会社内 (56)参考文献 特開 平7−966(JP,A) 特公 平2−5477(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C02F 1/46 C25B 9/00 WPI(DIALOG)────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuya Naito 1-16-5 Yoshiyuki Fujisawa-shi, Kanagawa Miz Co., Ltd. (56) References JP-A 7-966 (JP, A) −5477 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/46 C25B 9/00 WPI (DIALOG)

Claims (16)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被電解原水が導入される電解室と、前記電
解室内と前記電解室外を区画する一つ以上の隔膜と、前
記電解室内外のそれぞれに、前記隔膜を挟んで設けられ
た少なくとも一つ以上の電極板対と、を有し、前記電解
室外の電極板が前記隔膜に接触または僅かな隙間を介し
て設けられていることを特徴とする電解槽。
1. An electrolysis chamber into which raw water to be electrolyzed is introduced, one or more diaphragms partitioning the electrolysis chamber and the outside of the electrolysis chamber, and at least a diaphragm provided inside and outside the electrolysis chamber with the diaphragm interposed therebetween. An electrolytic cell having at least one electrode plate pair, wherein an electrode plate outside the electrolytic chamber is provided in contact with the diaphragm or with a small gap therebetween.
【請求項2】被電解原水が導入される電解室と、その主
面が相互に対面するように設けられ、前記電解室内と前
記電解室外を区画する二つの隔膜と、前記電解室内外の
それぞれに、前記二つの隔膜をそれぞれ挟んで設けられ
た二つの電極板対と、を有し、前記電解室外の電極板が
前記隔膜に接触または僅かな隙間を介して設けられてい
ることを特徴とする電解槽。
2. An electrolysis chamber into which raw water to be electrolyzed is introduced, two diaphragms provided so that main surfaces thereof face each other, and partitioning the electrolysis chamber and the outside of the electrolysis chamber; A pair of electrode plates provided so as to sandwich the two diaphragms, respectively, wherein the electrode plate outside the electrolytic chamber is provided in contact with the diaphragm or via a slight gap. Electrolyzer.
【請求項3】請求の範囲第1項に記載の電解槽と、当該
電解槽に対して電解電圧を供給する電源回路と、を備え
る電解水生成装置であって、 前記電源回路は、電解水生成工程において、前記電解室
内に設けられた電極板に陽極又は陰極の何れか一方の極
性の電圧を印加するとともに、前記電解室外に設けられ
た電極板に、前記電解室内に設けられた電極板とは異な
る極性の電圧を印加することを特徴とする電解水生成装
置。
3. An electrolyzed water generating apparatus comprising: the electrolytic cell according to claim 1; and a power supply circuit for supplying an electrolytic voltage to the electrolytic cell. In the generation step, while applying a voltage of either the anode or the cathode to the electrode plate provided in the electrolytic chamber, the electrode plate provided outside the electrolytic chamber, the electrode plate provided in the electrolytic chamber An electrolyzed water generator characterized by applying a voltage having a polarity different from that of the electrolyzed water.
【請求項4】請求の範囲第2項に記載の電解槽と、当該
電解槽に対して電解電圧を供給する電源回路と、を備え
る電解水生成装置であって、 前記電源回路は、電解水生成工程において、前記電解室
内に設けられた電極板に陽極又は陰極の何れか一方の極
性の電圧を印加するとともに、前記電解室外に設けられ
た電極板に、前記電解室内に設けられた電極板とは異な
る極性の電圧を印加することを特徴とする電解水生成装
置。
4. An electrolyzed water generating apparatus comprising: the electrolytic cell according to claim 2; and a power supply circuit that supplies an electrolytic voltage to the electrolytic cell. In the generating step, while applying a voltage of either the polarity of the anode or the cathode to the electrode plate provided in the electrolytic chamber, the electrode plate provided outside the electrolytic chamber, the electrode plate provided in the electrolytic chamber An electrolyzed water generator characterized by applying a voltage having a polarity different from that of the electrolyzed water.
【請求項5】前記電源回路は、逆洗浄工程において、前
記電解室内に設けられた電極板に、前記電解工程とは異
なる極性の電圧を印加するとともに、前記電解室外に設
けられた電極板に、前記電解室内に設けられた電極板と
は異なる極性の電圧を印加する逆洗浄回路を有すること
を特徴とする請求の範囲第3項に記載の電解水生成装
置。
5. The power supply circuit, in a backwashing step, applies a voltage having a different polarity to the electrode plate provided in the electrolysis chamber and applies a voltage to the electrode plate provided outside the electrolysis chamber. 4. The electrolyzed water generation apparatus according to claim 3, further comprising a backwashing circuit for applying a voltage having a polarity different from that of the electrode plate provided in the electrolysis chamber.
【請求項6】前記電源回路は、逆洗浄工程において、前
記電解室内に設けられた電極板に、前記電解工程とは異
なる極性の電圧を印加するとともに、前記電解室外に設
けられた電極板に、前記電解室内に設けられた電極板と
は異なる極性の電圧を印加する逆洗浄回路を有すること
を特徴とする請求の範囲第4項に記載の電解水生成装
置。
6. The power supply circuit applies a voltage having a polarity different from that of the electrolysis step to the electrode plate provided in the electrolysis chamber in the back washing step, and applies a voltage to the electrode plate provided outside the electrolysis chamber. The electrolyzed water generating apparatus according to claim 4, further comprising a backwashing circuit for applying a voltage having a polarity different from that of the electrode plate provided in the electrolysis chamber.
【請求項7】前記電源回路は、逆洗浄工程において、前
記電解室内に設けられた電極板の一方に、前記電解水生
成工程とは異なる極性の電圧を印加するとともに、前記
電解室内に設けられた電極板の他方に、前記電解水生成
工程と同一極性の電圧を印加して第1の逆洗浄を行った
のち、前記電解室内に設けられた両電極板への印加電圧
極性を反転させて第2の逆洗浄を行う逆洗浄回路を有す
ることを特徴とする請求の範囲第4項に記載の電解水生
成装置。
7. The power supply circuit is provided in the backwashing step with applying a voltage having a polarity different from that in the electrolyzed water generating step to one of the electrode plates provided in the electrolysis chamber, and provided in the electrolysis chamber. After applying a voltage having the same polarity as that of the electrolytic water generation step to the other of the electrode plates and performing the first reverse cleaning, the polarity of the voltage applied to both electrode plates provided in the electrolytic chamber is inverted. The electrolyzed water generating apparatus according to claim 4, further comprising a backwashing circuit for performing a second backwashing.
【請求項8】前記逆洗浄回路は、前記第1および第2の
逆洗浄中に、前記電解室外に設けられた電極板に電圧を
印加しないことを特徴とする請求の範囲第7項に記載の
電解水生成装置。
8. The apparatus according to claim 7, wherein said backwashing circuit does not apply a voltage to an electrode plate provided outside said electrolytic chamber during said first and second backwashing. Electrolyzed water generator.
【請求項9】前記電解室外の電極板のうちいずれか一方
が、第2の電解室に設けられていることを特徴とする請
求の範囲第2項に記載の電解槽。
9. The electrolytic cell according to claim 2, wherein one of the electrode plates outside the electrolytic chamber is provided in a second electrolytic chamber.
【請求項10】被電解原水が導入され、二つの隔膜によ
り仕切られた第1の電解室および第2の電解室と、 前記第1の電解室と前記第2の電解室とのそれぞれに、
前記二つの隔膜をそれぞれ挟んで設けられた二つの電極
板対と、を有する第1の電解槽と、 前記第1の電解槽のうち前記第1の電解室で生成された
電解水が導入される第3の電解室と、 その主面が相互に対面するように設けられ、前記第3の
電解室内と前記第3の電解室外を区画する二つの隔膜
と、 前記第3の電解室内外のそれぞれに、前記二つの隔膜を
それぞれ挟んで設けられた二つの電極板対と、を有し、 前記第3の電解室外の電極板が前記隔膜に接触または僅
かな隙間を介して設けられている第2の電解槽と、 を備えたことを特徴とする電解槽。
10. A first electrolysis chamber and a second electrolysis chamber into which raw water to be electrolyzed is introduced and partitioned by two diaphragms; and a first electrolysis chamber and a second electrolysis chamber, respectively.
A first electrolytic cell having two electrode plate pairs provided with the two diaphragms interposed therebetween; and electrolytic water generated in the first electrolytic chamber in the first electrolytic cell is introduced. A third electrolytic chamber, two diaphragms provided so that their main surfaces face each other, and partitioning the third electrolytic chamber and the outside of the third electrolytic chamber; Each having two electrode plate pairs provided with the two diaphragms interposed therebetween, wherein an electrode plate outside the third electrolytic chamber is provided in contact with the diaphragm or with a slight gap therebetween. An electrolytic cell, comprising: a second electrolytic cell;
【請求項11】前記隔膜を挟んで設けられた電極板対
は、ゼロギャップ電極で構成されることを特徴とする請
求の範囲第1項〜第2項、または、請求の範囲第9項〜
第10項の何れかに記載の電解槽。
11. The method according to claim 1, wherein the pair of electrode plates provided with the diaphragm interposed therebetween is constituted by a zero gap electrode.
Item 11. The electrolytic cell according to any one of Items 10.
【請求項12】前記隔膜を挟んで設けられた電極板対の
うち少なくともいずれか一方には、電極表面で発生する
ガスを前記隔膜に対して背面側へ逃がす孔または隙間が
設けられていることを特徴とする請求の範囲第1項〜第
2項、または、請求の範囲第9項〜第11項の何れかに記
載の電解槽。
12. A hole or a gap for allowing gas generated on the electrode surface to escape to the back side of the diaphragm is provided in at least one of the electrode plate pairs provided with the diaphragm interposed therebetween. The electrolytic cell according to any one of claims 1 to 2, or claims 9 to 11, characterized in that:
【請求項13】前記電解室外の電極板は、前記隔膜の表
面に電極膜を形成する態様で前記隔膜に設けられている
ことを特徴とする請求の範囲第1項〜第2項、または、
請求の範囲第9項〜第12項の何れかに記載の電解槽。
13. The method according to claim 1, wherein the electrode plate outside the electrolytic chamber is provided on the diaphragm so as to form an electrode film on a surface of the diaphragm.
The electrolytic cell according to any one of claims 9 to 12.
【請求項14】前記電極板には、その表面に貴金属コー
ティングが施されていることを特徴とする請求の範囲第
1項〜第2項、または、請求の範囲第9項〜第13項の何
れかに記載の電解槽。
14. The electrode plate according to claim 1, wherein a noble metal coating is applied to a surface of said electrode plate. The electrolytic cell according to any one of the above.
【請求項15】請求の範囲第1項〜第2項、または、請
求の範囲第9項〜第14項の何れかに記載の電解槽のうち
複数の組み合わせに係る電解槽と、前記電解槽の各電解
室に並列的に原水を導入する給水系と、前記各電解室で
生成された電解水を並列的に取り出す取水系と、を備え
たことを特徴とする電解水生成装置。
15. An electrolytic cell according to any one of claims 1 to 2, or a combination of a plurality of electrolytic cells according to any one of claims 9 to 14, and the electrolytic cell. A water supply system for introducing raw water into each of the electrolysis chambers in parallel, and a water intake system for taking out the electrolyzed water generated in each of the electrolysis chambers in parallel.
【請求項16】請求の範囲第1項〜第2項、または、請
求の範囲第9項〜第14項の何れかに記載の電解槽と、当
該電解槽に対して電解電圧を供給する電源回路と、を備
える電解水生成装置であって、 被電解原水を貯留する貯水タンクと、前記貯水タンクの
被電解原水を同電解水生成装置に導いたのちに前記貯水
タンクに戻す循環系と、をさらに備え、前記被電解原水
を循環させながら電気分解を行うことを特徴とする電解
水生成装置。
16. An electrolytic cell according to any one of claims 1 to 2, or 9 to 14, and a power supply for supplying an electrolytic voltage to the electrolytic cell. A water storage tank that stores raw water to be electrolyzed, and a circulation system that returns the raw water to be electrolyzed in the water storage tank to the water storage tank and then returns to the water storage tank. And electrolysis is performed while circulating the raw water to be electrolyzed.
JP51415099A 1997-08-27 1998-05-27 Electrolyzer and electrolyzed water generator Expired - Lifetime JP3349710B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-246060 1997-08-27
JP24606097 1997-08-27
PCT/JP1998/002324 WO1999010286A1 (en) 1997-08-27 1998-05-27 Electrolytic cell and electrolyzed water generating device

Publications (1)

Publication Number Publication Date
JP3349710B2 true JP3349710B2 (en) 2002-11-25

Family

ID=17142880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51415099A Expired - Lifetime JP3349710B2 (en) 1997-08-27 1998-05-27 Electrolyzer and electrolyzed water generator

Country Status (4)

Country Link
US (1) US6251259B1 (en)
JP (1) JP3349710B2 (en)
CA (1) CA2270199C (en)
WO (1) WO1999010286A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016564A1 (en) 2004-08-11 2006-02-16 Miz Co., Ltd. Performance maintaining method in electrolysis functional water producing device
WO2013183448A1 (en) 2012-06-04 2013-12-12 ミズ株式会社 High-concentration hydrogen gas supply device for living bodies
WO2014084348A1 (en) 2012-11-30 2014-06-05 ミズ株式会社 Device for supplying highly concentrated hydrogen gas for biological applications
JP2015112570A (en) * 2013-12-13 2015-06-22 千鶴子 澤田 Electrolytic water generator and method of operating the same

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562628B1 (en) * 2000-07-07 2003-05-13 Dionex Corporation Electrolytic suppressor and separate eluent generator combination
CN1444729A (en) * 2000-08-11 2003-09-24 艾尼克斯公司 Process and device for continuous ionic monitoring of aqueous solutions
JP5140218B2 (en) 2001-09-14 2013-02-06 有限会社コヒーレントテクノロジー Electrolyzer for producing charged anode water suitable for surface cleaning and surface treatment, method for producing the same, and method of use
KR100419536B1 (en) * 2001-11-02 2004-02-19 강송식 A water parifier using electrolysis
JP3988827B2 (en) 2001-12-05 2007-10-10 オキュラス イノヴェイティヴ サイエンシズ、インコーポレイテッド Method and apparatus for producing negative and positive redox potential (ORP) water
EP1607005B1 (en) * 2001-12-11 2008-10-08 Xiao Bing Wang The effect of a buffering agent on acidogenesis of plaque
CN1803147B (en) * 2001-12-11 2010-08-04 王小兵 The effect of a buffering agent on acidogenesis of plaque
AU2002307087A1 (en) * 2002-04-02 2003-10-20 Ryszard Gajek Separation systems with charge mosaic membrane
US20070261962A1 (en) * 2002-04-02 2007-11-15 Ryszard Gajek Separation Systems with Charge Mosaic Membrane
JP4511361B2 (en) * 2002-04-26 2010-07-28 ミズ株式会社 Method and apparatus for quantitative analysis of dissolved hydrogen concentration in test water
JP2004230370A (en) * 2002-12-05 2004-08-19 Wataru Murota Reduced water and manufacturing method therefor
US20030180186A1 (en) * 2003-05-19 2003-09-25 Carson William W. Process and device for continuous tonic monitoring of aqueous solutions
US6856916B2 (en) * 2003-06-13 2005-02-15 Wen-Shing Shyu Locating system of oxidation/reduction potential of electrolysis water and the constant output method of calibration and compensation thereof
JP4653945B2 (en) * 2003-10-24 2011-03-16 ミズ株式会社 Pharmacologically functional water and its use
US9168318B2 (en) 2003-12-30 2015-10-27 Oculus Innovative Sciences, Inc. Oxidative reductive potential water solution and methods of using the same
US20050196462A1 (en) * 2003-12-30 2005-09-08 Oculus Innovative Sciences, Inc. Topical formulation containing oxidative reductive potential water solution and method for using same
JP2008511092A (en) * 2004-08-23 2008-04-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for simulating a multilayer optical storage medium
EP1863502B1 (en) 2005-03-23 2018-09-12 Sonoma Pharmaceuticals, Inc. Method of treating skin ulcers using oxidative reductive potential water solution
JP5907645B2 (en) 2005-05-02 2016-04-26 オキュラス イノヴェイティヴ サイエンシズ、インコーポレイテッド Usage of redox potential aqueous solution in dental applications
US20060263240A1 (en) * 2005-05-06 2006-11-23 Electric Aquagenics Unlimited Electrolyzed water treatment for face and hands
US20060275502A1 (en) * 2005-05-10 2006-12-07 Electric Aquagenics Unlimited Electrolyzed water treatment for feminine hygiene
KR20080093135A (en) 2006-01-20 2008-10-20 오클루스 이노바티브 사이언시즈 인코포레이티드 Methods of treating or preventing peritonitis with oxidative reductive potential water solution
US9101537B2 (en) 2008-07-25 2015-08-11 Reven Pharmaceuticals, Inc. Compositions and methods for the prevention and treatment of cardiovascular diseases
JP4967001B2 (en) * 2009-03-13 2012-07-04 ミズ株式会社 Method for producing hydrogen-containing biological fluid and apparatus therefor
JP6033082B2 (en) 2009-06-15 2016-11-30 オキュラス イノヴェイティヴ サイエンシズ、インコーポレイテッド Solution containing hypochlorous acid and method of using the same
JP5266267B2 (en) * 2010-02-26 2013-08-21 ミズ株式会社 Method and apparatus for producing hydrogen-containing biological fluid
KR101020982B1 (en) * 2010-05-17 2011-03-09 주식회사 이온팜스 Water ionizer
KR101020925B1 (en) * 2010-05-17 2011-03-09 주식회사 이온팜스 Production-apparatus of ion water
JP4652479B1 (en) * 2010-07-14 2011-03-16 ミズ株式会社 Selective hydrogenation device for biological fluids
CN103327986B (en) 2010-07-22 2018-05-25 雷文制药有限公司 Comprising the treatment using magnetic dipole stabilizing solutions or improve disease and enhance the method for performance
US9688550B2 (en) * 2010-08-09 2017-06-27 Aqua Vectors, Incorporated Electrolytic apparatus and method for treating water to remove nitrates, phosphates, arsenates, and molecules of high molecular weight
JPWO2014006740A1 (en) * 2012-07-06 2016-06-02 株式会社日本トリム Dialysate preparation water production equipment
KR20140027866A (en) * 2012-08-27 2014-03-07 임신교 Electrolytic bath for manufacturing acid water and the using method of the water
JP5883891B2 (en) * 2014-01-22 2016-03-15 株式会社日本トリム Electrolyzed water generator
CN105198045A (en) * 2014-06-18 2015-12-30 Mag技术株式会社 Electrolytic Bath For Manufacturing Acid Water And Using Method Of The Water
KR101779032B1 (en) 2015-06-05 2017-09-15 김일봉 A beauty apparatus using it and water electrolytic cell
WO2017064967A1 (en) * 2015-10-14 2017-04-20 日立マクセル株式会社 Hydrogen water generating device
WO2017200772A1 (en) 2016-05-17 2017-11-23 Cryovac, Inc. Alkaline and chlorine solutions produced using electro-chemical activation
JP6169762B1 (en) * 2016-08-02 2017-07-26 MiZ株式会社 Hydrogen water generation method
JP6921209B2 (en) 2017-01-26 2021-08-18 ディバーシー,インコーポレーテッド Neutralization in electrochemical activation system
KR101946046B1 (en) 2017-07-12 2019-02-08 최환선 Electrolyzed Hydrogen water generating Device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025477B2 (en) * 1982-04-30 1990-02-02 Advance Kk
JPH07966A (en) * 1991-12-27 1995-01-06 Nobuo Sumida Liquid coexisting hydrogen ion or hydroxide ion with oxidizing-reducing material by electrolyzing pure water and its production
JPH07214063A (en) * 1994-02-05 1995-08-15 Permelec Electrode Ltd Production of electrolytic acidic water and producting device therefor
JPH07331475A (en) * 1994-06-06 1995-12-19 Permelec Electrode Ltd Method for electrolyzing brine
JPH0874082A (en) * 1994-09-09 1996-03-19 Mitsubishi Chem Corp Operation of ion-exchange membrane electrtolytic cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908109A (en) * 1985-10-24 1990-03-13 Mercer International, Inc. Electrolytic purification system utilizing rapid reverse current plating electrodes
JPH0243987A (en) * 1988-05-11 1990-02-14 Permelec Electrode Ltd Bipolar system electrolytic cell
JPH05111690A (en) * 1991-08-29 1993-05-07 Hideo Hayakawa Water treatment
JP3412267B2 (en) * 1994-06-30 2003-06-03 東陶機器株式会社 Water electrolysis treatment method and apparatus
JPH0928769A (en) * 1995-07-18 1997-02-04 Mizu Kk Disinfection washing method using electrodialysis and device therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025477B2 (en) * 1982-04-30 1990-02-02 Advance Kk
JPH07966A (en) * 1991-12-27 1995-01-06 Nobuo Sumida Liquid coexisting hydrogen ion or hydroxide ion with oxidizing-reducing material by electrolyzing pure water and its production
JPH07214063A (en) * 1994-02-05 1995-08-15 Permelec Electrode Ltd Production of electrolytic acidic water and producting device therefor
JPH07331475A (en) * 1994-06-06 1995-12-19 Permelec Electrode Ltd Method for electrolyzing brine
JPH0874082A (en) * 1994-09-09 1996-03-19 Mitsubishi Chem Corp Operation of ion-exchange membrane electrtolytic cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016564A1 (en) 2004-08-11 2006-02-16 Miz Co., Ltd. Performance maintaining method in electrolysis functional water producing device
JP2010162544A (en) * 2004-08-11 2010-07-29 Mizu Kk Performance maintaining method in electrolytic functional water producing device
WO2013183448A1 (en) 2012-06-04 2013-12-12 ミズ株式会社 High-concentration hydrogen gas supply device for living bodies
WO2014084348A1 (en) 2012-11-30 2014-06-05 ミズ株式会社 Device for supplying highly concentrated hydrogen gas for biological applications
JP2015112570A (en) * 2013-12-13 2015-06-22 千鶴子 澤田 Electrolytic water generator and method of operating the same

Also Published As

Publication number Publication date
CA2270199C (en) 2005-08-09
CA2270199A1 (en) 1999-03-04
US6251259B1 (en) 2001-06-26
WO1999010286A1 (en) 1999-03-04

Similar Documents

Publication Publication Date Title
JP3349710B2 (en) Electrolyzer and electrolyzed water generator
JP5913693B1 (en) Electrolytic device and electrolytic ozone water production device
JP5764474B2 (en) Electrolytic synthesis apparatus, electrolytic treatment apparatus, electrolytic synthesis method, and electrolytic treatment method
JPH09290269A (en) Production of acidic water, and electrolytic cell
JP4090665B2 (en) Electrolyzed water production method
JP4249657B2 (en) Electrolyzed water generator
JP4597263B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
JP3353964B2 (en) Method and apparatus for producing electrolyzed water
JP6847477B1 (en) Electrolyzed water production equipment and method for producing electrolyzed water using this
JP4677993B2 (en) Electrolyzed water generator
JP3550858B2 (en) Electrolysis device and ion water generator
JP3568290B2 (en) Electrolyzed water generator
JP3568291B2 (en) Electrolyzed water generator
JP2605642B2 (en) Electrolytic ionic water generating apparatus and electrolytic ionic water generating method
JPH08164392A (en) Electrolyzed water forming device
JPH11221566A (en) Production of electrolytic water
CN108602695B (en) Electrolyzed water generation device
JP4249658B2 (en) Electrolyzed water generator
JPH08117753A (en) Electrolytic water-making apparatus
JP3056511B2 (en) Treatment water treatment equipment
JP3518779B2 (en) Aquarium water disinfection equipment
US20240174533A1 (en) Electrolyzed water production apparatus, and electrolyzed water production method using same
JPH09108677A (en) Electrolytic water generator
JP3840710B2 (en) ELECTROLYTIC DEVICE AND ION WATER GENERATOR HAVING THE SAME
JPH0871561A (en) Method for producing electrolytically generated water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070913

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130913

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140913

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term