Nothing Special   »   [go: up one dir, main page]

JP3237330B2 - Purification method of aluminum alloy scrap - Google Patents

Purification method of aluminum alloy scrap

Info

Publication number
JP3237330B2
JP3237330B2 JP20408293A JP20408293A JP3237330B2 JP 3237330 B2 JP3237330 B2 JP 3237330B2 JP 20408293 A JP20408293 A JP 20408293A JP 20408293 A JP20408293 A JP 20408293A JP 3237330 B2 JP3237330 B2 JP 3237330B2
Authority
JP
Japan
Prior art keywords
molten metal
cooling body
rotary cooling
aluminum alloy
crystallized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20408293A
Other languages
Japanese (ja)
Other versions
JPH0754070A (en
Inventor
倫男 土橋
照己 金森
高明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP20408293A priority Critical patent/JP3237330B2/en
Publication of JPH0754070A publication Critical patent/JPH0754070A/en
Application granted granted Critical
Publication of JP3237330B2 publication Critical patent/JP3237330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶解原料に含まれてい
る不純物を晶出分離しながら、目標組成をもつアルミニ
ウム材料を得る精製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a purification method for obtaining an aluminum material having a target composition while crystallizing and separating impurities contained in a raw material for melting.

【0002】[0002]

【従来の技術】アルミニウム溶湯に含まれているFe等
の不純物を分離除去するため、Mnを添加し、Mnと不
純物との間で金属間化合物を生成させ、晶出した金属間
化合物を分離する方法が採用されている。たとえば、特
公昭57−2134号公報ではAl−Mn系金属間化合
物を添加し、特公昭59−12731号公報ではMn又
はAl−MnとMg又はAl−Mgとを併用添加してい
る。何れの方法においても、不純物の一部であるFe
は、Al−Fe−Mn系金属間化合物として分離除去さ
れる。
2. Description of the Related Art In order to separate and remove impurities such as Fe contained in molten aluminum, Mn is added, an intermetallic compound is generated between Mn and the impurity, and the crystallized intermetallic compound is separated. The method has been adopted. For example, in Japanese Patent Publication No. 57-2134, an Al-Mn intermetallic compound is added, and in Japanese Patent Publication No. 59-12731, Mn or Al-Mn is added in combination with Mg or Al-Mg. In either method, Fe, which is a part of the impurity, is used.
Is separated and removed as an Al-Fe-Mn intermetallic compound.

【0003】[0003]

【発明が解決しようとする課題】Mn系等の添加材を使
用した精製方法では、Fe及びMnの除去ができるだけ
であり、得られた精製アルミニウムのFe濃度も0.5
重量%程度が限界である。しかも、Mnの添加によって
不純物を分離除去するとき、過剰量のMn添加を必要と
することから、精製後のアルミニウム材料に多量のMn
が含まれる。また、特開昭57−82437号公報で紹
介されている方法でアルミニウム原料を精製すると、初
晶として金属間化合物が晶出する系では晶出するアルミ
ニウムの結晶強度が弱い。そのため、冷却管の回転速度
が外周速2.5〜8m/秒まで上昇すると、冷却体表面
に晶出したアルミニウムの一部が離脱して溶湯に移行
し、見掛け上の凝固速度が低下する。最悪の場合、凝固
体の成長可能な厚さに上限が加わる事態も生じる。
In the refining method using an additive such as a Mn-based additive, only Fe and Mn can be removed, and the Fe concentration of the obtained purified aluminum is also 0.5%.
Weight percent is the limit. In addition, when impurities are separated and removed by the addition of Mn, an excessive amount of Mn needs to be added.
Is included. Further, when an aluminum raw material is purified by a method introduced in JP-A-57-82437, in a system in which an intermetallic compound is crystallized as a primary crystal, the crystal strength of aluminum crystallized is low. Therefore, when the rotation speed of the cooling pipe increases to an outer peripheral speed of 2.5 to 8 m / sec, part of the aluminum crystallized on the surface of the cooling body is separated and transferred to the molten metal, and the apparent solidification speed decreases. In the worst case, an upper limit may be added to the thickness at which the solidified body can grow.

【0004】しかも、初晶として晶出する金属間化合物
の晶出温度は、α−Alの凝固点に比較して通常数十℃
高い。そのため、不純物は、アルミニウムの晶出に先立
って、金属間化合物として冷却体表面に晶出凝固する。
この凝固層は、その上に晶出する精製アルミニウムの純
度を低下させる原因になるため、原理的にも実用的にも
精製工程に問題を含む。本発明は、このような問題を解
消すべく案出されたものであり、溶湯から不純物を金属
間化合物として予め晶出分離する工程を組み込むことに
より、冷却体表面に晶出するアルミニウムに不純物が混
入することを回避し、高歩留りで精製アルミニウムを得
ることを目的とする。
In addition, the crystallization temperature of the intermetallic compound crystallized as a primary crystal is usually several tens of degrees Celsius compared to the freezing point of α-Al.
high. Therefore, the impurities crystallize and solidify on the surface of the cooling body as an intermetallic compound before the crystallization of aluminum.
This solidified layer causes a reduction in the purity of the purified aluminum crystallized thereon, and thus involves a problem in the purification process in principle and practically. The present invention has been devised in order to solve such a problem. By incorporating a step of preliminarily crystallizing and separating impurities from the molten metal as an intermetallic compound, the impurities crystallized on the surface of the cooling body are free from impurities. An object of the present invention is to obtain purified aluminum with high yield while avoiding mixing.

【0005】[0005]

【課題を解決するための手段】本発明の精製方法は、そ
の目的を達成するため、不純物の一部としてFe、M
n、Crを含有するAl−Si系のアルミニウム合金ス
クラップ溶湯を精製容器に収容し、α−Alの凝固点か
ら最高でも10℃高い温度範囲に前記溶湯を保持するこ
とにより前記Fe、Mn、Crをアルミニウム合金中の
Al及びSiとで金属間化合物を形成させて前記精製容
器の底部に沈降させた後、前記溶湯に回転冷却体を浸漬
し、該回転冷却体を回転させながら前記溶湯を冷却して
α−Al晶を前記回転冷却体の表面に晶出成長させるこ
とを特徴とする。溶湯に浸漬した回転冷却体は、精製容
器の底部に沈降した金属間化合物がα−Al晶の晶出物
に混入しない外周速0.5〜2m/秒で回転させること
が好ましい。回転冷却体は、精錬の開始段階から溶湯に
浸漬しておくこともできる。この場合、α−Alの凝固
点から最高でも10℃高い温度範囲に溶湯が冷却したと
き、回転冷却体に冷却ガスを送り込み、α−Al晶の晶
出物として回転冷却体の表面に晶出成長させる。
According to the purification method of the present invention, in order to achieve the object, Fe, M
n, Cr-containing Al-Si based aluminum alloy scrap melt is accommodated in a purification vessel, and the Fe, Mn, and Cr are retained by maintaining the melt in a temperature range that is at most 10 ° C. higher than the solidification point of α-Al. After forming an intermetallic compound with Al and Si in the aluminum alloy and allowing it to settle to the bottom of the purification vessel, a rotating cooling body is immersed in the molten metal, and the molten metal is cooled while rotating the rotating cooling body. The α-Al crystal is crystallized and grown on the surface of the rotary cooling body. The rotary cooling body immersed in the molten metal is preferably rotated at an outer peripheral speed of 0.5 to 2 m / sec so that the intermetallic compound settled at the bottom of the refining vessel does not mix in the crystallized α-Al crystals. The rotary cooling body can be immersed in the molten metal from the beginning of refining. In this case, when the melt is cooled to a temperature range that is at most 10 ° C. higher than the solidification point of α-Al, a cooling gas is sent to the rotary cooling body to crystallize and grow on the surface of the rotary cooling body as α-Al crystals. Let it.

【0006】本発明に従った精製方法は、たとえば図1
に示す設備構成の装置を使用して実施される。精製容器
10としては、黒鉛製のルツボ或いは黒鉛とSiCとを
混合焼成したルツボが通常使用される。ルツボ本体11
を外容器12に入れ、蓋体13を装着する。蓋体13に
は、温度制御用のバーナ14を取り付けても良い。精製
容器10の外周には、加熱機構20が外容器12を取り
囲んで配置されている。加熱機構20は、内周側にヒー
タ21を取り付けた耐火れんが製のヒータブロック22
〜24を備え、各ヒータブロック22〜24の熱量が独
立して制御されるものが好ましい。精製容器10の底部
にも、ヒータブロック25を配置する。精製されるアル
ミニウムスクラップは、精製容器10に装入した後、ヒ
ータブロック22〜25からの加熱によって溶解され、
α−Alの凝固点より僅かに高い温度に保持される。
[0006] The purification method according to the present invention is, for example, shown in FIG.
It is carried out using the equipment having the equipment configuration shown in FIG. As the purification vessel 10, a crucible made of graphite or a crucible obtained by mixing and firing graphite and SiC is usually used. Crucible body 11
Into the outer container 12 and the lid 13 is attached. A burner 14 for temperature control may be attached to the lid 13. A heating mechanism 20 is arranged on the outer periphery of the purification container 10 so as to surround the outer container 12. The heating mechanism 20 includes a heater block 22 made of a refractory brick having a heater 21 mounted on the inner peripheral side.
To 24, and the amount of heat of each of the heater blocks 22 to 24 is independently controlled. A heater block 25 is also arranged at the bottom of the purification vessel 10. The aluminum scrap to be purified is melted by heating from the heater blocks 22 to 25 after being charged into the purification container 10,
The temperature is kept slightly higher than the freezing point of α-Al.

【0007】溶融状態に保持された溶湯Mに、回転冷却
体30が浸漬される。回転冷却体30は、軸方向にガス
通路をもつ内管31の先端部近傍に外管32を嵌め合せ
ている。内管31は、蓋体13を貫通して上方に延び、
カップリング33を介しモータ34の出力軸35に接続
されている。モータ33から延びたアーム36は、モー
タ37で回転される送りネジ38に嵌挿されている。こ
れにより、回転冷却体30は、精製容器10の内部で昇
降自在に回転する。外管32は、図示するように底面側
が閉塞されており、内管31の下端との間にギャップ3
9を形成する。内管31から送り込まれた冷却媒体g
は、ギャップ39を経て外管32から放出される。或い
は、内管31及び外管32の二重間構造に代え、所定の
ガス通路を形成した黒鉛ブロックを使用することもでき
る。
The rotary cooling body 30 is immersed in the molten metal M held in a molten state. The rotary cooling body 30 has an outer tube 32 fitted near the tip of an inner tube 31 having a gas passage in the axial direction. The inner tube 31 extends upward through the lid 13,
It is connected to an output shaft 35 of a motor 34 via a coupling 33. The arm 36 extending from the motor 33 is inserted into a feed screw 38 rotated by the motor 37. Thereby, the rotary cooling body 30 is rotatable up and down inside the purification vessel 10. The outer tube 32 has a bottom surface closed as shown in FIG.
9 is formed. Cooling medium g sent from inner pipe 31
Is discharged from the outer tube 32 through the gap 39. Alternatively, instead of the double structure of the inner tube 31 and the outer tube 32, a graphite block having a predetermined gas passage may be used.

【0008】冷却媒体gには、空気,非酸化性ガス,霧
状の水分を含む空気等が使用される。冷却媒体gの流動
により、外管32の管壁を介して溶湯Mが冷却され、外
管32の周囲にα−Al晶が晶出して凝固体Aが成長す
る。溶湯Mの温度及び凝固体Aの成長速度は、冷却媒体
gの流量制御によって最適に維持される。溶湯Mの降温
に従って、Al−Si−Fe−Mn系等の金属間化合物
として不純物Iが晶出する。晶出した不純物Iは、溶湯
Mより大きな比重をもっているので、溶湯M中を下降し
て精製容器10の底部に沈積する。金属間化合物Iの沈
積量は、溶湯Mの冷却に応じて多くなる。
As the cooling medium g, air, non-oxidizing gas, air containing mist-like water, or the like is used. Due to the flow of the cooling medium g, the molten metal M is cooled through the tube wall of the outer tube 32, and α-Al crystals are crystallized around the outer tube 32, and the solidified body A grows. The temperature of the melt M and the growth rate of the solidified body A are optimally maintained by controlling the flow rate of the cooling medium g. As the temperature of the molten metal M falls, the impurity I is crystallized as an intermetallic compound such as an Al-Si-Fe-Mn system. The crystallized impurity I has a higher specific gravity than the molten metal M, and therefore descends in the molten metal M and deposits on the bottom of the purification vessel 10. The deposition amount of the intermetallic compound I increases as the molten metal M is cooled.

【0009】溶湯Mが凝固を開始する温度Tは、溶解原
料の成分及び含有量や冷却過程で晶出した不純物の量等
に基づいて予め定まっている。溶湯MがT〜(T+10
℃)の温度範囲まで降温したとき、溶湯Mに回転冷却体
30を浸漬し、或いはすでに浸漬している回転冷却体3
0に冷却媒体gを供給する。これにより、不純物が晶出
分離した溶湯Mが回転冷却体30で冷却され、回転冷却
体30の表面にα−Al晶が凝固体Aとして晶出する。
このとき、回転冷却体30が回転しているので、凝固体
Aの近傍にある溶湯と母液との間に生じる不純物の濃度
勾配が解消され、金属間化合物の晶出が促進されると共
に溶湯Mの冷却速度も速められる。
[0009] The temperature T at which the molten metal M starts to solidify is determined in advance based on the components and content of the molten raw material, the amount of impurities crystallized in the cooling process, and the like. Melt M is T ~ (T + 10
° C), the rotating cooling body 30 is immersed in the molten metal M, or the rotating cooling body 3
0 is supplied with cooling medium g. Thereby, the molten metal M in which the impurities are crystallized and separated is cooled by the rotary cooling body 30, and α-Al crystals are crystallized as a solidified body A on the surface of the rotary cooling body 30.
At this time, since the rotary cooling body 30 is rotating, the concentration gradient of impurities generated between the molten metal and the mother liquor in the vicinity of the solidified body A is eliminated, the crystallization of the intermetallic compound is promoted, and the molten metal M The cooling rate is also increased.

【0010】回転冷却体30は、凝固時に偏析作用で排
出される不純物元素を凝固界面から溶湯Mに拡散させ
る。その結果、回転冷却体30の表面に晶出凝固するα
−Al晶の凝固体Aに対する精製効率が良くなる。しか
し、回転冷却体30が高速回転するとき、回転冷却体3
0の凝固界面で晶出するα−Al晶の一部が遠心力によ
って剥離し溶湯Mに飛散するため、凝固速度を低下させ
る。したがって、精製効率に悪影響を与えず且つ凝固速
度を大きく低下させない回転速度として、外周における
周速0.5〜2m/秒で回転冷却体30を回転させるこ
とが好ましい。
[0010] The rotary cooling body 30 diffuses impurity elements discharged by segregation during solidification from the solidification interface into the molten metal M. As a result, α which crystallizes and solidifies on the surface of the rotary cooling body 30
-The purification efficiency of the coagulated body A of the Al crystal is improved. However, when the rotating cooling body 30 rotates at a high speed, the rotating cooling body 3
Part of the α-Al crystals crystallized at the solidification interface of 0 is separated by the centrifugal force and scattered in the molten metal M, so that the solidification speed is reduced. Therefore, it is preferable to rotate the rotary cooling body 30 at a peripheral speed of 0.5 to 2 m / sec on the outer periphery as a rotational speed that does not adversely affect the purification efficiency and does not significantly reduce the solidification speed.

【0011】溶湯Mの温度がα−Alの凝固点近傍に達
したとき、冷却媒体gの供給を停止し、回転冷却体30
の回転を止め、モータ37を駆動させて回転冷却体30
を精製容器10から取り出す。その後、直ちに精製容器
10を傾動させ、残湯を移湯することにより沈積した金
属間化合物Iから分離される。α−Al晶として晶出さ
れた凝固体Aは、機械的な掻取り,再溶融等によって回
転冷却体30から分離され、精製アルミニウムとして回
収される。金属間化合物Iの分離は、精製終了後に行う
ことに代え、α−Al晶が凝固体Aとして晶出する前に
行うことも可能である。この場合、温度調整炉及び精製
炉をそれぞれ別個に設け、温度調整炉で凝固を開始する
温度直上まで溶湯を降温させた後、精製炉に移湯し、精
製に収容された溶湯に回転冷却体を浸漬して精製する。
或いは、精製容器10の底部に沈積した金属間化合物I
を適宜のメタルポンプで吸引除去した後、回転冷却体3
0を使用した精製を行うこともできる。
When the temperature of the molten metal M reaches the vicinity of the solidification point of α-Al, the supply of the cooling medium g is stopped,
Is stopped, and the motor 37 is driven to rotate the cooling body 30.
From the purification vessel 10. Thereafter, the refining vessel 10 is immediately tilted, and the remaining hot water is decanted to be separated from the deposited intermetallic compound I. The solidified body A crystallized as α-Al crystals is separated from the rotary cooling body 30 by mechanical scraping, re-melting, etc., and collected as purified aluminum. The separation of the intermetallic compound I may be performed before the α-Al crystal is crystallized as the solidified body A, instead of performing the separation after the purification. In this case, the temperature adjusting furnace and the refining furnace are separately provided, and the temperature of the molten metal is lowered to just above the temperature at which solidification starts in the temperature adjusting furnace. And immersion for purification.
Alternatively, the intermetallic compound I deposited on the bottom of the purification vessel 10
Is removed by suction with an appropriate metal pump,
Purification using 0 can also be performed.

【0012】[0012]

【作用】たとえば、不純物として多量のFe,Mn等を
含むAl−Si系アルミニウム合金スクラップを溶解し
た溶湯Mを冷却するとき、先ずAl−Si−Fe−Mn
系金属間化合物として不純物が晶出する。晶出した金属
間化合物Iは、比重差によって溶湯を降下し、精製容器
10の底部に沈積する。その結果、残った溶湯Mは、不
純物が除去された純度の高いアルミニウム合金溶湯とな
る。そこで、溶湯Mを回転冷却体30の表面に凝固させ
ると、α−Al晶が凝固体Aとして得られる。このよう
に、不純物が金属間化合物Iとして晶出するタイミング
と、α−Al晶が回転冷却体30の表面に晶出凝固する
タイミングとをずらせることによって、簡単な操作によ
ってアルミニウム溶湯が精製される。α−Al晶が回転
冷却体の表面に晶出するタイミングは、溶湯Mが凝固開
始する直上の温度に設定される。溶湯Mが凝固開始する
直前になったとき、溶湯Mに回転冷却体30を浸漬し、
或いはすでに浸漬している回転冷却体Mに冷却媒体gを
送り込む。回転冷却体30を溶湯Mに浸漬するタイミン
グは、溶湯Mの温度を連続測定することによって容易に
知ることができる。α−Al晶は、金属間化合物Iとし
て晶出した不純物から分離された状態で回転冷却体30
の表面に凝固する。その後、回転冷却体30から分離さ
れ、精製アルミニウムとして回収される。
For example, when cooling a molten metal M in which Al-Si-based aluminum alloy scrap containing a large amount of Fe, Mn, etc. as impurities is cooled, first, Al-Si-Fe-Mn
Impurities are crystallized as a system intermetallic compound. The crystallized intermetallic compound I descends from the molten metal due to a difference in specific gravity and deposits on the bottom of the purification vessel 10. As a result, the remaining molten metal M becomes a high purity aluminum alloy molten metal from which impurities have been removed. Then, when the molten metal M is solidified on the surface of the rotary cooling body 30, α-Al crystals are obtained as the solidified body A. As described above, by shifting the timing at which the impurities are crystallized as the intermetallic compound I and the timing at which the α-Al crystals are crystallized and solidified on the surface of the rotary cooling body 30, the molten aluminum is purified by a simple operation. You. The timing at which the α-Al crystals crystallize on the surface of the rotary cooling body is set to a temperature immediately above the temperature at which the molten metal M starts to solidify. Immediately before the molten metal M starts to solidify, the rotary cooling body 30 is immersed in the molten metal M,
Alternatively, the cooling medium g is fed into the rotary cooling body M already immersed. The timing at which the rotary cooling body 30 is immersed in the molten metal M can be easily known by continuously measuring the temperature of the molten metal M. The α-Al crystals are separated from the impurities crystallized as the intermetallic compound I, and
Solidifies on the surface of Then, it is separated from the rotary cooling body 30 and recovered as purified aluminum.

【0013】[0013]

【実施例】内径200mm及び高さ600mmの黒鉛製
ルツボを図1に示す精製装置に装着し、溶湯を精製し
た。回転冷却体30としては、外径100mmの黒鉛管
を使用した。表1に不純物濃度を示すα−Alの凝固点
が約595℃のAl−Si系アルミニウム合金スクラッ
プ原料溶湯35kgをルツボに装入し、640℃に加熱
した。溶融が完了した時点で、溶湯Mに回転冷却体30
を深さ160mmで浸漬し、自然放冷により溶湯30を
徐々に冷却した。この段階では、回転冷却体30に冷却
媒体gを供給しなかった。溶湯Mが温度603℃に降温
した時点で、冷却媒体gとして冷却空気を流量400リ
ットル/分で回転冷却体30に供給した。40分後に冷
却空気の供給を停止し、回転冷却体30を精製容器10
から取り出した。回転冷却体30の表面に形成された凝
固体Aは、加熱溶融により回転冷却体30から分離回収
された。得られた精製アルミニウムは、表1に示す不純
物濃度をもっていた。このときの回収率は、20%であ
った。また、精製容器10の底部に、3.4kgのAl
−Si−Fe−Mn系の金属間化合物Iが沈積してい
た。
EXAMPLE A graphite crucible having an inner diameter of 200 mm and a height of 600 mm was mounted on a purifying apparatus shown in FIG. 1 to purify a molten metal. As the rotary cooling body 30, a graphite tube having an outer diameter of 100 mm was used. A crucible was charged with 35 kg of an Al-Si-based aluminum alloy scrap raw material melt having an α-Al solidification point of about 595 ° C, which has an impurity concentration shown in Table 1, and heated to 640 ° C. When the melting is completed, the rotary cooling body 30
Was immersed at a depth of 160 mm, and the molten metal 30 was gradually cooled by natural cooling. At this stage, the cooling medium g was not supplied to the rotary cooling body 30. When the temperature of the molten metal M dropped to 603 ° C., cooling air as a cooling medium g was supplied to the rotary cooling body 30 at a flow rate of 400 L / min. After 40 minutes, the supply of the cooling air was stopped, and the rotary cooling body 30 was
Removed from The solidified body A formed on the surface of the rotary cooling body 30 was separated and recovered from the rotary cooling body 30 by heating and melting. The resulting purified aluminum had the impurity concentrations shown in Table 1. The recovery at this time was 20%. In addition, 3.4 kg of Al
-Si-Fe-Mn intermetallic compound I was deposited.

【0014】比較のため、同じ溶湯Mに、金属間化合物
Iが晶出する温度620℃で回転冷却体30を浸漬し、
浸漬直後から流量400リットル/分で冷却空気を供給
しながら溶湯Mを冷却した。このときに得られた精製ア
ルミニウムの不純物濃度を、表1に比較例として併せ示
す。表1から明らかなように、回転冷却体30による冷
却をα−Alの凝固点(約595℃)直上の温度で開始
したとき、精製アルミニウム中のFe濃度及びMn濃度
が大幅に下がっていることが判る。これは、溶湯Mから
最初に晶出する金属間化合物Iが凝固体Aに取り込まれ
ることなく、精製容器10の底部に沈降分離されたこと
を示す。また、溶湯Mが603℃に降温した時点で回転
冷却体30を溶湯Mに浸漬した場合でも、同様にFe及
びMn濃度が低下した精製アルミニウムが得られた。
For comparison, the rotary cooling body 30 is immersed in the same molten metal M at a temperature of 620 ° C. at which the intermetallic compound I crystallizes.
Immediately after the immersion, the molten metal M was cooled while supplying cooling air at a flow rate of 400 L / min. The impurity concentration of the purified aluminum obtained at this time is also shown in Table 1 as a comparative example. As is clear from Table 1, when the cooling by the rotary cooling body 30 is started at a temperature just above the solidification point of α-Al (about 595 ° C.), the Fe concentration and the Mn concentration in the purified aluminum are significantly reduced. I understand. This indicates that the intermetallic compound I first crystallized from the melt M was sedimented and separated at the bottom of the purification vessel 10 without being taken into the solidified body A. Further, even when the rotary cooling body 30 was immersed in the molten metal M when the temperature of the molten metal M dropped to 603 ° C., purified aluminum having similarly reduced Fe and Mn concentrations was obtained.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】以上に説明したように、本発明において
は、Al及びSiとで金属間化合物を形成するFe、M
n、Crを不純物として含有するAl−Si系アルミニ
ウム合金スクラップの溶湯を偏析凝固させアルミニウム
を精製するとき、前記不純物Fe、Mn、Crを金属間
化合物として溶湯から沈降させた後で、純化されたアル
ミニウムを回転冷却体の表面に凝固させている。そのた
め、アルミニウム溶湯の冷却過程で晶出する金属間化合
物の影響を受けることなく、純度の高い精製アルミニウ
ムが安定操業条件の下で得られる。
As described above, in the present invention, Fe and M which form an intermetallic compound with Al and Si are used.
When segregating and solidifying a melt of an Al-Si-based aluminum alloy scrap containing n and Cr as impurities, and purifying aluminum, the impurities Fe, Mn, and Cr were precipitated from the melt as intermetallic compounds and then purified. Aluminum is solidified on the surface of the rotating cooling body. Therefore, highly purified aluminum can be obtained under stable operating conditions without being affected by intermetallic compounds crystallized in the process of cooling the molten aluminum.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に従った精製方法を実施する精製装置
の一例
FIG. 1 shows an example of a purifying apparatus for performing a purifying method according to the present invention.

【符号の説明】[Explanation of symbols]

M:溶湯 A:凝固体 g:冷却媒体 10:精製容器 20:加熱機構 30:回転冷却
M: molten metal A: solidified body g: cooling medium 10: purification vessel 20: heating mechanism 30: rotary cooling body

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−105940(JP,A) 特開 昭64−73027(JP,A) 特開 昭60−190531(JP,A) 特開 昭63−162823(JP,A) 特開 平5−295465(JP,A) 特開 平6−299265(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22B 1/00 - 61/00 C22C 1/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-105940 (JP, A) JP-A-64-73027 (JP, A) JP-A-60-190531 (JP, A) 162823 (JP, A) JP-A-5-295465 (JP, A) JP-A-6-299265 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22B 1/00-61 / 00 C22C 1/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 不純物の一部としてFe、Mn、Crを
含有するAl−Si系のアルミニウム合金スクラップ
湯を精製容器に収容し、α−Alの凝固点から最高でも
10℃高い温度範囲に前記溶湯を保持することにより
記Fe、Mn、Crをアルミニウム合金中のAl及びS
iとで金属間化合物を形成させて前記精製容器の底部に
沈降させた後、前記溶湯に回転冷却体を浸漬し、該回転
冷却体を回転させながら前記溶湯を冷却してα−Al晶
前記回転冷却体の表面に晶出成長させることを特徴と
するアルミニウム合金スクラップの精製方法。
1. Fe, Mn, Cr as part of impurities
The Al-Si-based aluminum alloy scrap melt contained is contained in a refining vessel, and the melt is maintained at a temperature range that is at most 10 ° C. higher than the solidification point of α-Al, thereby pre- heating the melt.
Fe, Mn, and Cr were converted to Al and S in an aluminum alloy.
i, an intermetallic compound is formed and settled at the bottom of the refining vessel. Then, a rotary cooling body is immersed in the molten metal, and the molten metal is cooled while rotating the rotary cooling body to form an α-Al crystal.
Purification method of an aluminum alloy scrap, characterized in that to the crystallization grown on the surface of the rotary cooling member.
【請求項2】 精製開始段階で回転冷却体を溶湯に浸漬
し、前記溶湯の冷却により不純物を金属間化合物として
炉底に晶出沈降分離し、α−Alの凝固点から最高でも
10℃高い温度範囲に前記溶湯が冷却したとき、前記回
転冷却体に冷却ガスを送り込み、α−Al晶を前記回転
冷却体の表面に晶出成長させることを特徴とするアルミ
ニウム合金スクラップの精製方法。
2. A rotary cooling body is immersed in a molten metal at a refining start stage, and impurities are crystallized and separated at a furnace bottom by cooling the molten metal as an intermetallic compound, and the temperature is at most 10 ° C. higher than the solidification point of α-Al. when the melt is cooled to a range, the aluminum, characterized in that the the rotary cooling body feeding a cooling gas to crystallization grow alpha-Al crystals on the surface of the rotary cooling body
Method for refining scrap of aluminum alloy .
【請求項3】 精製容器の底部に沈降した金属間化合物
α−Al晶の晶出物に混入しない外周速0.5〜2m
/秒で、溶湯に浸漬した回転冷却体を回転させる請求項
1又は2記載の精製方法。
3. An outer peripheral speed of 0.5 to 2 m at which intermetallic compounds settled at the bottom of the purification vessel are not mixed with the α-Al crystallized product.
The refining method according to claim 1 or 2, wherein the rotary cooling body immersed in the molten metal is rotated at a rate of / sec.
JP20408293A 1993-08-18 1993-08-18 Purification method of aluminum alloy scrap Expired - Fee Related JP3237330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20408293A JP3237330B2 (en) 1993-08-18 1993-08-18 Purification method of aluminum alloy scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20408293A JP3237330B2 (en) 1993-08-18 1993-08-18 Purification method of aluminum alloy scrap

Publications (2)

Publication Number Publication Date
JPH0754070A JPH0754070A (en) 1995-02-28
JP3237330B2 true JP3237330B2 (en) 2001-12-10

Family

ID=16484488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20408293A Expired - Fee Related JP3237330B2 (en) 1993-08-18 1993-08-18 Purification method of aluminum alloy scrap

Country Status (1)

Country Link
JP (1) JP3237330B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035909A1 (en) * 2017-08-16 2019-02-21 Alcoa Usa Corp. Methods of recycling aluminum alloys and purification thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1000456C2 (en) * 1995-05-31 1996-12-03 Hoogovens Aluminium Bv Process for refining an aluminum scrap melt, and aluminum alloy from refined aluminum scrap.
JP5134817B2 (en) * 2006-12-28 2013-01-30 昭和電工株式会社 Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP5128167B2 (en) * 2007-04-18 2013-01-23 昭和電工株式会社 Metal refining method, metal refining device, refined metal, casting, metal product and electrolytic capacitor
CN109219669B (en) * 2016-06-02 2020-07-24 昭和电工株式会社 Method and apparatus for refining substance, apparatus for holding molten metal by heating, and system for continuously refining high-purity substance
WO2019198476A1 (en) * 2018-04-09 2019-10-17 株式会社神戸製鋼所 Impurity removal method
JP7123834B2 (en) * 2018-04-09 2022-08-23 株式会社神戸製鋼所 Impurity removal method
CN110950368A (en) * 2020-01-06 2020-04-03 郑州卓玉新材料有限公司 Preparation method of low-sodium corundum
CN113026109B (en) * 2021-03-08 2022-03-29 中国科学院过程工程研究所 Device and method for preparing high-purity metal through rotary segregation purification
CN114199021A (en) * 2021-12-31 2022-03-18 昆明理工大学 Device and method for treating low-vanadium titanium aluminum waste and preparing high-quality aluminum

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035909A1 (en) * 2017-08-16 2019-02-21 Alcoa Usa Corp. Methods of recycling aluminum alloys and purification thereof

Also Published As

Publication number Publication date
JPH0754070A (en) 1995-02-28

Similar Documents

Publication Publication Date Title
EP2198077B1 (en) Method for processing silicon powder to obtain silicon crystals
EP0027052B1 (en) Process for purifying aluminum
JP3329013B2 (en) Continuous refining method and apparatus for Al-Si aluminum scrap
JP3237330B2 (en) Purification method of aluminum alloy scrap
JPS6345112A (en) Purification of silicon
EP0375308A1 (en) Process and apparatus for producing high purity aluminum
CN102351188B (en) Method for preparing acicular high-purity silicon aggregates and equipment thereof
US4948102A (en) Method of preparing high-purity metal and rotary cooling member for use in apparatus therefor
JP5134817B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP3237438B2 (en) Purification method of aluminum scrap
JPH0873959A (en) Method for refining aluminum and device therefor
JP2002155322A (en) Method and equipment for refining aluminum or aluminum alloy
JP5479729B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JPH0754063A (en) Apparatus for refining aluminum scrap
JP3531450B2 (en) Aluminum purification method
JPH0754073A (en) Refining method for aluminum scrap
JPH06299265A (en) Method for refining aluminum scrap
JP6751604B2 (en) Material purification method and equipment, continuous purification system for high-purity substances
JPH0754074A (en) Refining method for aluminum scrap
JP3211622B2 (en) Purification method of aluminum scrap
JPH05295461A (en) Method and apparatus for purifying aluminum
JP5415066B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP3721804B2 (en) Aluminum purification method and use thereof
JPH05295463A (en) Method and apparatus for purifying aluminum
US3477844A (en) Aluminum reduction of beryllium halide

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees