JP3237125B2 - Anodizing method for conductive film - Google Patents
Anodizing method for conductive filmInfo
- Publication number
- JP3237125B2 JP3237125B2 JP08908591A JP8908591A JP3237125B2 JP 3237125 B2 JP3237125 B2 JP 3237125B2 JP 08908591 A JP08908591 A JP 08908591A JP 8908591 A JP8908591 A JP 8908591A JP 3237125 B2 JP3237125 B2 JP 3237125B2
- Authority
- JP
- Japan
- Prior art keywords
- conductive film
- oxidized
- region
- anodic oxidation
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Formation Of Insulating Films (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は導電性膜の陽極酸化方法
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for anodizing a conductive film.
【0002】[0002]
【従来の技術】絶縁膜を形成する方法として、アルミニ
ウムやタンタル等の金属膜や、n型またはp型のシリコ
ン半導体膜等の導電性膜を陽極酸化して、この導電性膜
を絶縁膜化する方法がある。2. Description of the Related Art As a method of forming an insulating film, a metal film such as aluminum or tantalum, or a conductive film such as an n-type or p-type silicon semiconductor film is anodized to convert the conductive film into an insulating film. There is a way to do that.
【0003】上記導電性膜の陽極酸化は、従来、図10
に示した方法で行なわれている。[0003] Anodization of the conductive film is conventionally performed by using a method shown in FIG.
This is performed by the method shown in FIG.
【0004】図10において、図中1は電解液槽であ
り、その内部には電解液2が満たされている。In FIG. 10, reference numeral 1 denotes an electrolytic solution tank, and the inside thereof is filled with an electrolytic solution 2.
【0005】この電解液2中には、白金等からなる網状
の陰極3が垂直に浸漬されており、この陰極3は直流電
源4の−極に接続されている。なお、この陰極3は、そ
の上端部が電解液面上に突出する状態に設けられてお
り、液面上に突出する上端部において前記直流電源4に
接続されている。[0005] A reticulated cathode 3 made of platinum or the like is vertically immersed in the electrolytic solution 2, and the cathode 3 is connected to a negative electrode of a DC power supply 4. The cathode 3 is provided with its upper end protruding above the electrolyte surface, and is connected to the DC power supply 4 at the upper end protruding above the liquid surface.
【0006】一方、10は、一面に導電性膜11を形成
した絶縁性基板であり、この基板10は、その導電性膜
11の膜面を上記陰極3に対向させて、電解液2中に垂
直に浸漬される。[0006] On the other hand, reference numeral 10 denotes an insulating substrate having a conductive film 11 formed on one surface thereof. The substrate 10 is provided in the electrolyte 2 with the film surface of the conductive film 11 facing the cathode 3. Dipped vertically.
【0007】この基板10は、その上端部および導電性
膜11の上端部が電解液面上に突出する状態で電解液2
中に浸漬されており、この基板10の上端部には、導電
性膜11の上端部に導通接触するクリップ式接続部材5
が着脱可能に止着されている。この接続部材5は、前記
直流電源4の+極に接続されている。[0007] The substrate 10 has an electrolyte 2 with its upper end and the upper end of the conductive film 11 protruding above the electrolyte surface.
The clip type connecting member 5 which is immersed in the upper end of the substrate 10 and is in conductive contact with the upper end of the conductive film 11.
Are detachably fastened. This connection member 5 is connected to the positive pole of the DC power supply 4.
【0008】そして、上記導電性膜11の陽極酸化は、
導電性膜11を電解液2中において陰極3と対向させた
状態で、導電性膜11と陰極3との間に電圧を印加する
ことによって行なわれており、このように導電性膜11
と陰極との間に電圧を印加すると、導電性膜11が電解
液2中で化成反応を起して陽極酸化される。The anodic oxidation of the conductive film 11 is performed as follows.
This is performed by applying a voltage between the conductive film 11 and the cathode 3 in a state where the conductive film 11 faces the cathode 3 in the electrolytic solution 2.
When a voltage is applied between the electrode and the cathode, the conductive film 11 undergoes a chemical reaction in the electrolytic solution 2 to be anodized.
【0009】なお、上記導電性膜11は、電解液2中に
浸漬された被酸化領域だけが陽極酸化され、電解液面上
に突出している上端部は酸化されないため、この上端部
は導電性膜のままである。この導電性膜部分は、必要に
応じて、導電性膜として利用されるか、あるいは、後工
程でエッチング除去されている。In the conductive film 11, only the region to be oxidized immersed in the electrolytic solution 2 is anodized, and the upper end protruding above the surface of the electrolytic solution is not oxidized. It remains a membrane. This conductive film portion is used as a conductive film as necessary, or is removed by etching in a later step.
【0010】[0010]
【発明が解決しようとする課題】しかしながら、上記従
来の陽極酸化方法は、導電性膜11をその被酸化領域全
体にわたって均等に酸化させることができず、そのた
め、導電性膜11の被酸化領域に、酸化されない部分が
残ってしまうという問題をもっていた。However, the above-described conventional anodic oxidation method cannot uniformly oxidize the conductive film 11 over the entire region to be oxidized. However, there is a problem that a portion that is not oxidized remains.
【0011】これは、導電性膜11の各部の電圧に差が
あるためである。This is because there is a difference in the voltage of each part of the conductive film 11.
【0012】すなわち、直流電源4から接続部材5を介
して導電性膜11に印加される電圧は、上記接続部材5
が接触している電圧印加箇所から導電性膜全体に加わる
が、この電圧は導電性膜自体の抵抗により電圧降下する
ため、導電性膜11にかかる電圧は、上記電圧印加箇所
から離れるのにともなって低くなる。That is, the voltage applied from the DC power supply 4 to the conductive film 11 via the connecting member 5 is
Is applied to the entire conductive film from the voltage application point where it is in contact, but since this voltage drops due to the resistance of the conductive film itself, the voltage applied to the conductive film 11 increases with the distance from the voltage application point. Lower.
【0013】そして、導電性膜11の膜厚方向への酸化
深さおよびその進行速度は、主に、導電性膜11と陰極
3との間に加わる電圧によって決まるため、導電性膜1
1の陽極酸化は、電解液2中に浸漬している部分のう
ち、電圧印加箇所に近い上端側、つまり高い電圧がかか
る側ほど速く進行する。The depth of oxidation of the conductive film 11 in the thickness direction and the speed of its progress are mainly determined by the voltage applied between the conductive film 11 and the cathode 3.
The anodic oxidation of 1 progresses faster on the upper end side closer to the voltage application point, that is, on the side where a higher voltage is applied, of the part immersed in the electrolytic solution 2.
【0014】図11は上記従来の陽極酸化方法によって
導電性膜11を陽極酸化した場合の、導電性膜11の酸
化進行状況を示しており、(a)は酸化初期の状態、
(b)は酸化がある程度進んだ状態、(c)は酸化の進
行が止った状態を示している。FIG. 11 shows the progress of oxidation of the conductive film 11 when the conductive film 11 is anodized by the above-mentioned conventional anodic oxidation method. FIG.
(B) shows a state where the oxidation has progressed to some extent, and (c) shows a state where the progress of the oxidation has stopped.
【0015】図11において、11aは、導電性膜11
が陽極酸化された酸化層を示している。この酸化層11
aは高抵抗の絶縁層であり、導電性膜11の未酸化層
(金属層)の厚さは、酸化層11aの厚さ(酸化深さ)
が大きくなるのにつれて薄くなり、これにともなって導
電性膜11の抵抗値が大きくなって行く。In FIG. 11, reference numeral 11a denotes a conductive film 11;
Indicates an anodized oxide layer. This oxide layer 11
a is a high-resistance insulating layer, and the thickness of the unoxidized layer (metal layer) of the conductive film 11 is the thickness of the oxide layer 11a (oxidation depth).
Becomes smaller, the resistance value of the conductive film 11 increases.
【0016】そして、従来の陽極酸化方法では、導電性
膜11の酸化が電圧印加箇所に近い上端側ほど速く進行
するため、この部分が図11(c)に示すように導電性
膜11の全厚さにわたって酸化されると、この部分で電
流経路が断たれて、この部分から下の導電性膜部分には
電圧がかからなくなり、この時点で導電性膜11の陽極
酸化の進行が止ってしまう。In the conventional anodic oxidation method, the oxidation of the conductive film 11 progresses more rapidly toward the upper end side closer to the voltage application point, and this portion is entirely covered with the conductive film 11 as shown in FIG. When oxidized over the thickness, the current path is cut off at this portion, and no voltage is applied to the portion of the conductive film below this portion. At this point, the anodic oxidation of the conductive film 11 stops and I will.
【0017】このため、従来の陽極酸化方法では、導電
性膜11の被酸化領域のうち、電圧印加箇所に近い上端
側はその全厚さにわたって酸化されるが、この部分より
下端側の部分は、膜表面だけを酸化された状態となり、
この部分が導電性をもったままとなってしまう。For this reason, in the conventional anodic oxidation method, of the region to be oxidized of the conductive film 11, the upper end near the voltage application point is oxidized over the entire thickness, but the lower end from this portion is oxidized. , Only the membrane surface is oxidized,
This portion remains conductive.
【0018】これは、特に、大面積の導電性膜11ほど
顕著であり、導電性膜11の面積が大きいと、その上端
側と下端側とにかかる電圧差が大きくなるため、導電性
膜11の被酸化領域に、膜表面だけしか酸化されない部
分、あるいは膜表面もほとんど酸化されない部分が広く
残ってしまう。This is particularly remarkable for the conductive film 11 having a large area. If the area of the conductive film 11 is large, the voltage difference between the upper end and the lower end thereof becomes large. In the region to be oxidized, a portion where only the film surface is oxidized or a portion where the film surface is hardly oxidized remains widely.
【0019】本発明は、導電性膜の被酸化領域をその全
体にわたってほぼ均等に酸化することができる、導電性
膜の陽極酸化方法を提供することを目的とするものであ
る。An object of the present invention is to provide a method of anodizing a conductive film, which can oxidize a region to be oxidized of the conductive film almost uniformly over the entire region.
【0020】[0020]
【0021】[0021]
【課題を解決するための手段】本発明の陽極酸化方法
は、導電性膜の被酸化領域を囲む外周部の膜厚を前記被
酸化領域より厚くしておき、前記導電性膜の外周部の少
なくとも1箇所に印加される電圧を、導電性膜外周部の
厚膜部分を電流経路として前記導電性膜の被酸化領域に
印加することを特徴とするものである。 According to the anodic oxidation method of the present invention, the thickness of the outer peripheral portion surrounding the region to be oxidized of the conductive film is adjusted.
The voltage applied to at least one portion of the outer peripheral portion of the conductive film is applied to a region to be oxidized of the conductive film using the thick portion of the outer peripheral portion of the conductive film as a current path. It is characterized by the following.
【0022】[0022]
【0023】[0023]
【0024】[0024]
【作用】本発明は、導電性膜の被酸化領域を囲む外周部
の膜厚を前記被酸化領域より厚くして、この部分を電流
経路としたものである。 According to the present invention, the thickness of the outer peripheral portion surrounding the oxidized region of the conductive film is made larger than that of the oxidized region , and this portion is used as a current path.
【0025】この電流経路は上記被酸化領域とともに表
面側から陽極酸化されるが、この電流経路の膜厚は厚い
ため、その表面層が酸化されるだけで下層側は金属のま
まであるから、上記電流経路は常に導通状態にある。This current path is anodic oxidized from the surface side together with the oxidized region. However, since the current path is thick, only the surface layer is oxidized and the lower layer side remains a metal. The current path is always conductive.
【0026】したがって、この発明において、導電性膜
の被酸化領域のうち陽極酸化が遅れて進行する領域にも
その周囲から電圧を印加し続けることができ、したがっ
て、導電性膜の被酸化領域は、その全体にわたってほぼ
均等に酸化されて行く。Therefore, in the present invention, it is possible to continue to apply a voltage from the periphery of the oxidized region of the conductive film to the region where the anodic oxidation proceeds with a delay. , It is almost evenly oxidized throughout.
【0027】[0027]
【実施例】まず、陽極酸化方法の具体例を図1〜図4を
参照して説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a specific example of the anodic oxidation method will be described with reference to FIGS.
【0028】図1は陽極酸化を行なうための装置を示し
ており、この陽極酸化装置は、電解液2を満たした電解
液槽1と、電解液2中に垂直に浸漬された白金等からな
る網状の陰極3と、直流電源4と、電解液2中に垂直に
浸漬される絶縁性基板(例えばガラス基板)10の上端
部に着脱可能に止着されて上記基板10面に形成されて
いる導電性膜11の上端部に導通接触する電源接続用の
クリップ式接続部材5とからなっている。なお、この陽
極酸化装置は、図10に示したものと同じ構成であるか
ら、その詳細な説明は省略する。FIG. 1 shows an apparatus for performing anodic oxidation. This anodic oxidation apparatus comprises an electrolytic solution tank 1 filled with an electrolytic solution 2 and platinum or the like vertically immersed in the electrolytic solution 2. A reticulated cathode 3, a DC power supply 4, and an insulating substrate (for example, a glass substrate) 10 vertically immersed in the electrolytic solution 2 are detachably fastened to the upper end of the substrate 10 and formed on the surface of the substrate 10. A clip-type connecting member 5 for power supply connection, which is in conductive contact with the upper end of the conductive film 11. Note that this anodizing apparatus has the same configuration as that shown in FIG. 10, and a detailed description thereof will be omitted.
【0029】この陽極酸化方法は、上記基板10面に形
成した被酸化導電性膜11の被酸化領域を囲む外周部表
面をフォトレジスト等の絶縁膜12で覆っておいて、こ
の導電性膜11の被酸化領域を上記陽極酸化装置により
陽極酸化するもので、上記絶縁膜12は、図2および図
3に示すように、クリップ式接続部材5が接触する電圧
印加箇所を除いて、導電性膜11の外周部全周に設けら
れている。In this anodic oxidation method, the outer peripheral surface surrounding the oxidized region of the oxidized conductive film 11 formed on the substrate 10 is covered with an insulating film 12 such as a photoresist. The anodized region is anodically oxidized by the anodizing apparatus. The insulating film 12 is made of a conductive film except for a voltage application portion where the clip-type connecting member 5 contacts, as shown in FIGS. 11 is provided all around the outer peripheral portion.
【0030】上記被酸化導電性膜11は、例えばアルミ
ニウムまたはタンタル等の金属膜であり、この導電性膜
11の陽極酸化は、導電性膜11を形成した基板10
を、その上端部および導電性膜11の上端部が電解液面
上に突出する状態で電解液2中に垂直に浸漬し、直流電
源4から導電性膜11の上端部と陰極3とに電圧を印加
して、導電性膜11と陰極3との間に電圧を印加するこ
とによって行なう。The conductive film 11 to be oxidized is, for example, a metal film such as aluminum or tantalum, and the anodic oxidation of the conductive film 11 is performed on the substrate 10 on which the conductive film 11 is formed.
Is vertically immersed in the electrolyte solution 2 with its upper end and the upper end of the conductive film 11 protruding above the electrolyte surface, and a voltage is applied from the DC power supply 4 to the upper end of the conductive film 11 and the cathode 3. By applying a voltage between the conductive film 11 and the cathode 3.
【0031】このように導電性膜11と陰極3との間に
電圧を印加すると、導電性膜11の電解液2中に浸漬し
ている部分が化成反応を起して表面側から陽極酸化され
て行く。When a voltage is applied between the conductive film 11 and the cathode 3 as described above, a portion of the conductive film 11 which is immersed in the electrolytic solution 2 undergoes a chemical reaction and is anodized from the surface side. Go.
【0032】この場合、導電性膜11の陽極酸化は、電
解液2中に浸漬している部分のうち、電圧印加箇所(ク
リップ式接続部材5の接触箇所)に近い上端側、つまり
高い電圧がかかる側ほど速く進行するため、導電性膜1
1の被酸化領域のうち、上記電圧印加箇所に近い部分が
陽極酸化の進行にともなって高抵抗となる。In this case, the anodic oxidation of the conductive film 11 is performed in the portion immersed in the electrolytic solution 2 on the upper end side near the voltage application point (the contact point of the clip type connection member 5), that is, when the high voltage is applied. Since such a side proceeds faster, the conductive film 1
Of the one oxidized region, a portion near the above-mentioned voltage application portion becomes higher in resistance as anodic oxidation proceeds.
【0033】しかし、この陽極酸化方法では、上記導電
性膜11の被酸化領域を囲む外周部表面を絶縁膜12で
覆っているため、この部分は陽極酸化されず、したがっ
て、この導電性膜11の外周部は常に導通状態にある。However, in this anodic oxidation method, since the outer peripheral surface surrounding the oxidized region of the conductive film 11 is covered with the insulating film 12, this portion is not anodic oxidized. Is always in a conductive state.
【0034】このため、導電性膜11の被酸化領域のう
ち、上記電圧印加箇所に近い上端側部分が陽極酸化の進
行にともなって高抵抗となっても、上記電圧印加箇所に
印加される電圧は、導電性膜外周部の非酸化部分を通っ
て導電性膜11の被酸化領域にその周囲から印加され
る。For this reason, even if the upper end portion of the oxidized region of the conductive film 11 close to the above-mentioned voltage application portion becomes high in resistance with the progress of anodic oxidation, the voltage applied to the above-mentioned voltage application portion becomes high. Is applied to the region to be oxidized of the conductive film 11 from the periphery through the non-oxidized portion of the outer peripheral portion of the conductive film.
【0035】すなわち、上記陽極酸化方法は、導電性膜
11の被酸化領域を囲む外周部表面を絶縁膜12で覆っ
ておき、導電性膜11の上端部に印加される電圧を、前
記絶縁膜12で覆われた導電性膜外周部を電流経路Aと
して導電性膜11の被酸化領域に印加するものである。That is, in the anodic oxidation method, the outer peripheral surface surrounding the oxidized region of the conductive film 11 is covered with the insulating film 12, and the voltage applied to the upper end of the conductive film 11 is reduced by the insulating film 12. The outer peripheral portion of the conductive film covered with 12 is applied as a current path A to the oxidized region of the conductive film 11.
【0036】この陽極酸化方法によれば、導電性膜11
の被酸化領域のうち、電圧印加箇所に近い上端側部分が
陽極酸化の進行にともなって高抵抗となっても、上記電
圧印加箇所に印加される電圧が導電性膜外周部の電流経
路Aを介して導電性膜11の被酸化領域にその周囲から
印加されるため、この被酸化領域のうち陽極酸化が遅れ
て進行する領域にも十分高い電圧(電流経路Aにおいて
電圧降下しただけの電圧)を印加し続けることができ、
したがって、導電性膜11の被酸化領域は、その全体に
わたってほぼ均等に酸化されて行く。According to this anodic oxidation method, the conductive film 11
Of the region to be oxidized, even if the upper end portion near the voltage application point becomes higher in resistance with the progress of anodic oxidation, the voltage applied to the voltage application point passes through the current path A on the outer periphery of the conductive film. Is applied from the periphery to the region to be oxidized of the conductive film 11 through the region, so that a sufficiently high voltage is applied to the region of the oxidized region where anodic oxidation proceeds with a delay (a voltage that is merely a voltage drop in the current path A). Can be continuously applied,
Therefore, the region to be oxidized of the conductive film 11 is almost uniformly oxidized throughout.
【0037】図4は上記陽極酸化方法によって導電性膜
11を陽極酸化した場合の、導電性膜11の酸化進行状
況を示しており、(a)は酸化初期の状態、(b)は酸
化がある程度進んだ状態、(c)は酸化終了状態を示し
ている。FIGS. 4A and 4B show the progress of oxidation of the conductive film 11 when the conductive film 11 is anodized by the above-described anodic oxidation method, wherein FIG. 4A shows the initial oxidation state, and FIG. A state advanced to some extent, (c) shows an oxidation completed state.
【0038】この陽極酸化方法においても、酸化初期は
図4(a)のように、導電性膜11の陽極酸化は、電圧
印加箇所に近い上端側部分ほど速く進行するため、酸化
層11aの深さは、従来の陽極酸化方法と同様に、電圧
印加箇所に近い上端側部分ほど大きくなる。In this anodic oxidation method as well, in the initial stage of oxidation, as shown in FIG. 4A, the anodic oxidation of the conductive film 11 progresses faster at the upper end portion closer to the voltage application point. As in the case of the conventional anodic oxidation method, the magnitude increases as the upper end portion is closer to the voltage application point.
【0039】しかし、この上端側部分が陽極酸化の進行
にともなって高抵抗となっても、上記電圧印加箇所に印
加される電圧は、上記電流経路Aを介して導電性膜11
の被酸化領域にその周囲から印加されるため、この被酸
化領域は、図4(b)のようにその全体にわたってほぼ
均等に酸化されて行き、最終的には、被酸化領域全体
が、図4(c)のようにその全厚さにわたって酸化され
る。However, even if the upper end portion becomes higher in resistance with the progress of anodic oxidation, the voltage applied to the above-mentioned voltage application portion is not applied to the conductive film 11 through the above-mentioned current path A.
Is applied to the region to be oxidized from the periphery thereof, the region to be oxidized is almost uniformly oxidized as shown in FIG. 4B, and finally the entire region to be oxidized is It is oxidized over its entire thickness as in FIG. 4 (c).
【0040】このように、上記陽極酸化方法によれば、
導電性膜11の被酸化領域をその全体にわたってほぼ均
等に酸化することができるから、導電性膜11の面積が
大きくても、その全域を全厚さにわたって酸化すること
ができる。As described above, according to the anodic oxidation method,
Since the region to be oxidized of the conductive film 11 can be almost uniformly oxidized over the entire region, even if the area of the conductive film 11 is large, the entire region can be oxidized over the entire thickness.
【0041】なお、上記導電性膜11は、電解液2中に
浸漬された部分のうち、絶縁膜12で覆われていない領
域だけが陽極酸化され、絶縁膜12で覆われている電流
経路部分および電解液面上に突出している上端部は酸化
されないため、この非酸化部分は導電性膜のままである
が、この導電性膜部分は、必要に応じて、導電性膜とし
て利用するか、あるいは後工程でエッチング除去すれば
よい。In the conductive film 11, only a portion of the portion immersed in the electrolytic solution 2 which is not covered with the insulating film 12 is anodized, and a current path portion covered with the insulating film 12 is formed. And since the upper end projecting above the electrolyte surface is not oxidized, this non-oxidized portion remains a conductive film, but this conductive film portion is used as a conductive film if necessary, Alternatively, it may be removed by etching in a later step.
【0042】上記の陽極酸化方法では、導電成膜11の
外周部のうち、上端部の1箇所から電圧を印加している
が、導電性膜11への電圧の印加は、導電性膜11の外
周部の複数箇所にそれぞれ接続部材5を接触させて、複
数箇所から印加してもよい。In the anodic oxidation method described above, the voltage is applied from one of the upper end portions of the outer peripheral portion of the conductive film 11, but the voltage is applied to the conductive film 11. The connection member 5 may be brought into contact with a plurality of locations on the outer periphery, and the voltage may be applied from a plurality of locations.
【0043】また、上記の陽極酸化方法では、導電性膜
11をその上端部を除いて電解液2中に浸漬している
が、この導電性膜11は、その全体を電解液2中に浸漬
してもよく、その場合は、電圧印加箇所を接続部材5の
上から絶縁コーティングしておけばよい。In the anodic oxidation method described above, the conductive film 11 is immersed in the electrolytic solution 2 except for the upper end, but the conductive film 11 is entirely immersed in the electrolytic solution 2. In such a case, the voltage application location may be coated with insulation from above the connection member 5.
【0044】さらに、上記陽極酸化方法は、金属膜に限
らず、n型またはp型のシリコン半導体膜等からなる導
電性膜の陽極酸化にも適用できる。なお、シリコン半導
体膜の陽極酸化は、電解液中に浸漬したシリコン半導体
膜と陰極との間に電圧を印加するとともに、上記シリコ
ン半導体膜に光を照射して行なわれる。Further, the above-described anodic oxidation method can be applied not only to the metal film but also to the anodic oxidation of a conductive film made of an n-type or p-type silicon semiconductor film or the like. The anodic oxidation of the silicon semiconductor film is performed by applying a voltage between the silicon semiconductor film immersed in the electrolytic solution and the cathode and irradiating the silicon semiconductor film with light.
【0045】次に、本発明の実施例を図5〜図7を参照
して説明する。Next, an embodiment of the present invention will be described with reference to FIGS.
【0046】この発明の実施例の陽極酸化方法は、上述
した図1乃至図4に示した陽極酸化方法のように導電性
膜の外周部表面を絶縁膜で覆う代わりに、この導電性膜
の被酸化領域を囲む外周部の膜厚を前記被酸化領域より
厚くして、この外周部分を電極経路Aとしたものであ
り、上記導電性膜の陽極酸化は、図に示した陽極酸化装
置によって行なう。The anodic oxidation method of the embodiments of the present invention, described above
Instead of covering the outer peripheral surface of the conductive film with the insulating film as in the anodic oxidation method shown in FIGS. 1 to 4, the thickness of the outer peripheral portion surrounding the oxidized region of the conductive film is changed to the oxidized region. more <br/> by thickening is obtained by the outer peripheral portion and electrode path a, anodic oxidation of the conductive film is performed by anodic oxidation apparatus shown in FIG.
【0047】図5および図6は絶縁性基板10面に形成
された導電性膜11を示しており、導電性膜11は、ア
ルミニウムまたはタンタル等の金属膜である。この導電
性膜11の外周部は、その下に導電性膜外周部全周にわ
たって形成された枠状導電膜13と、上記導電性膜11
とからなる二層の厚膜とされている。FIGS. 5 and 6 show the conductive film 11 formed on the surface of the insulating substrate 10, and the conductive film 11 is a metal film such as aluminum or tantalum. The outer peripheral portion of the conductive film 11 is formed by a frame-shaped conductive film 13 formed thereover over the entire outer peripheral portion of the conductive film.
And a two-layer thick film consisting of
【0048】なお、枠状導電膜13は、陽極酸化する導
電性膜11と同じ金属または他の低抵抗金属によって形
成されており、この枠状導電膜13の厚さは、被酸化導
電性膜11との膜厚と同程度またはそれ以上の厚さに形
成されている。The frame-shaped conductive film 13 is formed of the same metal as the conductive film 11 to be anodized or another low-resistance metal. 11 is formed to a thickness approximately equal to or greater than the thickness of the film 11.
【0049】そして、上記導電性膜11の陽極酸化は、
この導電性膜11を形成した基板10を、前述した第1
の発明の実施例と同様に、その上端部および導電性膜1
1の上端部が電解液面上に突出する状態で電解液2中に
垂直に浸漬し、導電性膜11の上端部と陰極との間に電
圧を印加することによって行なう。The anodic oxidation of the conductive film 11 is performed as follows.
The substrate 10 on which the conductive film 11 is formed is connected to the first
As in the embodiment of the present invention, the upper end portion and the conductive film 1
1 is vertically immersed in the electrolytic solution 2 with the upper end protruding above the electrolyte surface, and a voltage is applied between the upper end of the conductive film 11 and the cathode.
【0050】すなわち、この実施例の陽極酸化方法は、
導電性膜11の被酸化領域を囲む外周部の膜厚を厚くし
ておき、直流電源からクリップ式接続部材5を介して導
電性膜11の上端部に印加される電圧を、導電性膜外周
部の厚膜部分を電流経路Aとして導電性膜11の被酸化
領域に印加するものである。That is, the anodic oxidation method of this embodiment is as follows.
The thickness of the outer peripheral portion of the conductive film 11 surrounding the region to be oxidized is increased, and the voltage applied from the DC power supply to the upper end portion of the conductive film 11 via the clip-type connecting member 5 is reduced. The thick film portion is applied as a current path A to the oxidized region of the conductive film 11.
【0051】この陽極酸化方法においても、上記第1の
発明と同様に、導電性膜11の被酸化領域のうちの陽極
酸化が遅れて進行する領域にも、その周囲から十分高い
電圧(電流経路Aにおいて電圧降下しただけの電圧)を
印加し続けることができ、したがって、導電性膜11の
被酸化領域は、その全体にわたってほぼ均等に酸化され
て行く。In this anodic oxidation method, similarly to the first invention, a sufficiently high voltage (current path) is also applied to the region of the conductive film 11 to be oxidized where the anodic oxidation proceeds with a delay. A can be continuously applied, so that the oxidized region of the conductive film 11 is almost uniformly oxidized throughout.
【0052】図7は上記陽極酸化方法によって導電性膜
11を陽極酸化した場合の、導電性膜11の酸化進行状
況を示しており、(a)は酸化初期の状態、(b)は酸
化がある程度進んだ状態、(c)は酸化終了状態を示し
ている。FIGS. 7A and 7B show the progress of oxidation of the conductive film 11 when the conductive film 11 is anodized by the above-described anodic oxidation method. FIG. 7A shows the initial oxidation state, and FIG. A state advanced to some extent, (c) shows an oxidation completed state.
【0053】この陽極酸化方法においても、酸化初期は
図7(a)のように、導電性膜11の陽極酸化は、電圧
印加箇所に近い上端側部分ほど速く進行する。Also in this anodic oxidation method, in the initial stage of oxidation, as shown in FIG. 7A, the anodic oxidation of the conductive film 11 proceeds more rapidly at the upper end portion closer to the voltage application point.
【0054】ただし、導電性膜外周部の電流経路Aは、
その膜厚が厚いために抵抗が小さく、この電流経路部分
での電圧降下は小さいから、電圧印加箇所に印加された
電圧は、電流経路Aを介して導電性膜11の被酸化領域
にその周囲から印加される。However, the current path A on the outer periphery of the conductive film is
Since the film thickness is large, the resistance is small and the voltage drop in the current path portion is small. Therefore, the voltage applied to the voltage application point is transferred to the oxidized region of the conductive film 11 through the current path A in the vicinity thereof. Is applied.
【0055】このため、導電性膜11の電圧印加箇所に
近い側(上端側)と遠い側(下端側)との酸化速度の差
は、上記第1の発明の実施例より小さくなる。Therefore, the difference in the oxidation rate between the side near the voltage application point (upper end) and the side farther (lower end) of the conductive film 11 is smaller than that of the first embodiment.
【0056】また、この場合、導電性膜11の外周部の
電流経路Aも、導電性膜11の被酸化領域とともに表面
側から陽極酸化されるが、この電流経路Aの膜厚は厚い
ため、その表面層が酸化されるだけで下層側は金属のま
まであるから、上記電流経路Aは常に導通状態にある。In this case, the current path A on the outer peripheral portion of the conductive film 11 is also anodized from the front side together with the oxidized region of the conductive film 11, but since the current path A is thick, Since only the surface layer is oxidized and the lower layer remains a metal, the current path A is always in a conductive state.
【0057】このため、導電性膜11の電圧印加箇所に
近い上端側部分が陽極酸化の進行にともなって高抵抗と
なっても、上記電圧印加箇所に印加される電圧は、上記
電流経路Aを介して導電性膜11の被酸化領域にその周
囲から印加される。For this reason, even if the upper end portion of the conductive film 11 close to the voltage application location becomes higher in resistance with the progress of anodic oxidation, the voltage applied to the voltage application location will not pass through the current path A. A voltage is applied to the region to be oxidized of the conductive film 11 from the periphery thereof.
【0058】したがって、導電性膜11の被酸化領域
は、図7(b)のようにその全体にわたってほぼ均等に
酸化されて行き、最終的には、被酸化領域全体が、図7
(c)のようにその全厚さにわたって酸化される。Therefore, the oxidized region of the conductive film 11 is almost uniformly oxidized as shown in FIG. 7B, and finally, the entire oxidized region becomes
It is oxidized over its entire thickness as in (c).
【0059】このように、上記陽極酸化方法によれば、
導電性膜11の被酸化領域をその全体にわたってほぼ均
等に酸化することができるから、導電性膜11の面積が
大きくても、その全域を全厚さにわたって酸化して均質
な絶縁膜を得ることができる。As described above, according to the anodic oxidation method,
Since the region to be oxidized of the conductive film 11 can be oxidized almost uniformly over the entire area, even if the area of the conductive film 11 is large, the entire area is oxidized over the entire thickness to obtain a uniform insulating film. Can be.
【0060】なお、上記導電性膜11は、電解液2中に
浸漬された部分だけが陽極酸化され、電解液面上に突出
している上端部は酸化されず、また導電性膜外周部の電
流経路部分は、その表面層が酸化されるだけで下層側は
金属のままであるが、これらの部分は、必要に応じて、
導電性膜として利用するか、あるいは後工程でエッチン
グ除去すればよい。In the conductive film 11, only the portion immersed in the electrolyte 2 is anodized, the upper end protruding above the surface of the electrolyte is not oxidized, and the current on the outer periphery of the conductive film 11 is not oxidized. The path portions are oxidized only on the surface layer, and the lower layer remains metal, but these portions may be used if necessary.
It may be used as a conductive film or may be removed by etching in a later step.
【0061】この陽極酸化方法においても、導電性膜1
1への電圧の印加は、導電性膜11の外周部の複数箇所
にそれぞれクリップ式接続部材5等を接触させて、複数
箇所から印加してもよく、また、導電性膜11の全体を
電解液2中に浸漬して陽極酸化してもよい。In this anodic oxidation method, the conductive film 1
1 may be applied from a plurality of locations by bringing the clip-type connecting member 5 or the like into contact with a plurality of locations on the outer peripheral portion of the conductive film 11, respectively. Anodization may be performed by dipping in the liquid 2.
【0062】また、上記実施例では、導電性膜外周部を
厚膜の電流経路Aとするための枠状導電膜13を被酸化
導電性膜11の外周部の下に形成しているが、上記枠状
導電膜13は、図8に示すように、被酸化導電性膜11
の外周部の上に形成してもよい。In the above embodiment, the frame-shaped conductive film 13 for forming the outer peripheral portion of the conductive film as the thick current path A is formed below the outer peripheral portion of the conductive film 11 to be oxidized. As shown in FIG. 8, the frame-shaped conductive film 13 is a conductive film 11 to be oxidized.
May be formed on the outer periphery.
【0063】さらに、上記電流経路Aは、図9に示すよ
うな単層膜でもよく、その場合は、導電性膜11を厚く
形成し、その外周部を除く被酸化領域を所定の膜厚まで
エッチングして、外周部に残した厚膜部分を電流経路A
とすればよい。Further, the current path A may be a single-layer film as shown in FIG. 9. In this case, the conductive film 11 is formed thick, and the oxidized region except the outer peripheral portion is formed to a predetermined thickness. After etching, the thick film portion left on the outer peripheral portion is
And it is sufficient.
【0064】なお、上記陽極酸化方法も、金属膜に限ら
ず、n型またはp型のシリコン半導体膜等からなる導電
性膜の陽極酸化にも適用できることはもちろんである。The above-described anodic oxidation method is of course applicable to not only the metal film but also the anodic oxidation of a conductive film made of an n-type or p-type silicon semiconductor film or the like.
【0065】[0065]
【発明の効果】本発明の陽極酸化方法は、導電性膜の被
酸化領域を囲む外周部の膜厚を前記被酸化領域より厚く
しておき、この導電性膜の外周部の少なくとも1箇所に
印加される電圧を、導電性膜外周部の厚膜部分を電流経
路として前記導電性膜の被酸化領域に印加するものであ
るから、導電性膜の被酸化領域をその全体にわたってほ
ぼ均等に酸化することができる。According to the anodic oxidation method of the present invention, the outer peripheral portion of the conductive film surrounding the oxidized region is made thicker than the oxidized region.
The voltage applied to at least one portion of the outer peripheral portion of the conductive film is applied to the oxidized region of the conductive film using the thick film portion of the outer peripheral portion of the conductive film as a current path. In addition, the oxidized region of the conductive film can be oxidized almost uniformly over the entire region.
【図1】第1の発明の一実施例を示す陽極酸化装置の斜
視図。FIG. 1 is a perspective view of an anodizing apparatus according to an embodiment of the first invention.
【図2】被酸化導電性膜の正面図。FIG. 2 is a front view of a conductive film to be oxidized.
【図3】図2の断面図。FIG. 3 is a sectional view of FIG. 2;
【図4】第1の発明による導電性膜の酸化進行状況図。FIG. 4 is a diagram showing the progress of oxidation of a conductive film according to the first invention.
【図5】第2の発明の一実施例を示す被酸化導電性膜の
正面図。FIG. 5 is a front view of an oxidizable conductive film showing one embodiment of the second invention.
【図6】図5の断面図。FIG. 6 is a sectional view of FIG. 5;
【図7】第2の発明による導電性膜の酸化進行状況図。FIG. 7 is a diagram showing the progress of oxidation of a conductive film according to the second invention.
【図8】第2の発明の他の実施例を示す被酸化導電性膜
の断面図。FIG. 8 is a cross-sectional view of an oxidized conductive film showing another embodiment of the second invention.
【図9】第2の発明の他の実施例を示す被酸化導電性膜
の断面図。FIG. 9 is a cross-sectional view of an oxidizable conductive film showing another embodiment of the second invention.
【図10】従来の陽極酸化方法を示す陽極酸化装置の斜
視図。FIG. 10 is a perspective view of an anodizing apparatus showing a conventional anodizing method.
【図11】従来の陽極酸化方法による導電性膜の酸化進
行状況図。FIG. 11 is a diagram showing the progress of oxidation of a conductive film by a conventional anodic oxidation method.
1…電解液槽、2…電解液、3…陰極、4…電源、5…
接続部材、10…基板、11…被酸化導電性膜、11a
…酸化層、12…絶縁膜、13…枠状導電膜、A…電流
経路。DESCRIPTION OF SYMBOLS 1 ... Electrolyte tank, 2 ... Electrolyte, 3 ... Cathode, 4 ... Power supply, 5 ...
Connection member, 10: substrate, 11: conductive film to be oxidized, 11a
... oxide layer, 12 ... insulating film, 13 ... frame-shaped conductive film, A ... current path.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/316 C25D 11/00 308 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) H01L 21/316 C25D 11/00 308
Claims (1)
性膜と、前記電解液中に浸漬した陰極との間に電圧を印
加して、前記導電性膜を陽極酸化する方法において、 前記導電性膜の被酸化領域を囲む外周部の膜厚を前記被
酸化領域より厚くしておき、前記導電性膜の外周部の少
なくとも1箇所に印加される電圧を、導電性膜外周部の
厚膜部分を電流経路として前記導電性膜の被酸化領域に
印加することを特徴とする導電性膜の陽極酸化方法。1. A method of immersing a conductive film in an electrolytic solution and applying a voltage between the conductive film and a cathode immersed in the electrolytic solution to anodize the conductive film. , the thickness of the outer peripheral portion surrounding the oxidized region of the conductive layer the object
The voltage applied to at least one portion of the outer peripheral portion of the conductive film is applied to a region to be oxidized of the conductive film using the thick portion of the outer peripheral portion of the conductive film as a current path. An anodic oxidation method for a conductive film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08908591A JP3237125B2 (en) | 1991-03-29 | 1991-03-29 | Anodizing method for conductive film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08908591A JP3237125B2 (en) | 1991-03-29 | 1991-03-29 | Anodizing method for conductive film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04302430A JPH04302430A (en) | 1992-10-26 |
JP3237125B2 true JP3237125B2 (en) | 2001-12-10 |
Family
ID=13961032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08908591A Expired - Fee Related JP3237125B2 (en) | 1991-03-29 | 1991-03-29 | Anodizing method for conductive film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3237125B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5196616B1 (en) * | 2012-06-29 | 2013-05-15 | アイシン軽金属株式会社 | Partial anodizing apparatus and anodizing method using the same |
-
1991
- 1991-03-29 JP JP08908591A patent/JP3237125B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04302430A (en) | 1992-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5202274A (en) | Method of fabricating thin film transistor | |
JP3237125B2 (en) | Anodizing method for conductive film | |
US4098637A (en) | Process for the production of a planar conductor path system for integrated semiconductor circuits | |
JPS5994438A (en) | Forming method of patterned aluminum layer | |
JP3294621B2 (en) | Anodizing method | |
JPH04299830A (en) | Anodizing method for conductive film | |
US3700569A (en) | Method of metallizing devices | |
JPH04301097A (en) | Formation of electrically conductive film for selective oxidation | |
JPS5954228A (en) | Anodic oxidation method for compound semiconductor | |
JPH02277242A (en) | Manufacture of semiconductor device | |
JPS6032346B2 (en) | Manufacturing method of electrolytic capacitor | |
JP3074023B2 (en) | Method for manufacturing semiconductor device | |
JPH0144014B2 (en) | ||
JPH04302431A (en) | Anodic oxidation method of conductive film | |
JP4204533B2 (en) | Electrolytic capacitor manufacturing method | |
JP3138639B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH0138371B2 (en) | ||
JPH01291429A (en) | Electrolytic etching of semiconductor substrate | |
JPH0563075A (en) | Manufacture of porous semiconductor layer | |
JPS5811732B2 (en) | handout | |
JP3020678B2 (en) | Method of forming protective film for compound semiconductor | |
JPS6132421A (en) | Manufacture of semiconductor device | |
JPS5837981B2 (en) | Selective processing method for a metal layer made of or containing Cr attached to a semiconductor surface | |
JPH08306940A (en) | Manufacture of optical transmission type infrared-ray detecting element | |
JPH02234431A (en) | Anodic oxidation method of thin-film pattern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |