JP3232148B2 - Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties - Google Patents
Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic propertiesInfo
- Publication number
- JP3232148B2 JP3232148B2 JP33907092A JP33907092A JP3232148B2 JP 3232148 B2 JP3232148 B2 JP 3232148B2 JP 33907092 A JP33907092 A JP 33907092A JP 33907092 A JP33907092 A JP 33907092A JP 3232148 B2 JP3232148 B2 JP 3232148B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- rolling
- finish
- annealing
- grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、主にトランスやその
他の電気機器の鉄心材料として使用される磁気特性の優
れた一方向性けい素鋼板の製造方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a unidirectional silicon steel sheet having excellent magnetic properties, which is mainly used as a core material for transformers and other electric equipment.
【0002】[0002]
【従来の技術】この種の電気機器の鉄心材料としては、
磁気特性に優れること、具体的には磁場の強さ 800A/
mにおける磁束密度B8 (T)が高く、また50Hzの交流
磁束密度 1.7Tにおける鉄損特性W17/50 (W/kg)が
低いことが要求される。このため方向性けい素鋼板は、
2次再結晶を利用して{110 }<001 >方位いわゆるゴ
ス方位の結晶粒を発達させたものである。そして磁気特
性の優れた材料を得るには、磁化容易軸である<001 >
軸を圧延方向に高度に揃えることが必要であり、適当な
圧延と熱処理を組合わせた諸工程によって、ゴス方位に
2次再結晶粒を安定して発達させることが重要である。
特にインヒビターと呼ばれるAlN 又はMnS、MnSe等の析
出物を均一かつ微細に分散させることが肝要である。2. Description of the Related Art As the iron core material of this kind of electric equipment,
Excellent magnetic properties, specifically 800A /
It is required that the magnetic flux density B 8 (T) at m is high and the iron loss characteristic W 17/50 (W / kg) at an AC magnetic flux density of 1.7 T at 50 Hz is low. For this reason, oriented silicon steel sheets
The {110} <001> orientation, a so-called Goss orientation, is developed using secondary recrystallization. In order to obtain a material with excellent magnetic properties, the easy axis <001>
The axis must be highly aligned in the rolling direction, and it is important to stably develop the secondary recrystallized grains in the Goss orientation by various processes combining appropriate rolling and heat treatment.
In particular, it is important to uniformly and finely disperse a precipitate called an inhibitor such as AlN or MnS or MnSe.
【0003】これを達成するために、特公昭50−21291
号公報には、熱間圧延時の仕上前面温度を1150℃以下に
し仕上圧延中にインヒビターを析出させる方法が提示さ
れている。これは、AlN 等のインヒビター析出温度以下
に鋼板を冷却し、これに圧延による歪を導入することに
よりAlN 等のインヒビターを析出させる方法である。し
かし、上記の方法では、仕上圧延前に表層部分が冷却さ
れるため、板面表層部の(AlN 等の)インヒビターが粗
大析出するという問題がある。To achieve this, Japanese Patent Publication No. 50-21291
Japanese Patent Laid-Open Publication No. H10-15064 discloses a method in which the finish front temperature during hot rolling is set to 1150 ° C. or lower to precipitate an inhibitor during finish rolling. In this method, a steel sheet is cooled to a temperature lower than the precipitation temperature of an inhibitor such as AlN or the like, and strain such as rolling is introduced into the steel sheet to precipitate an inhibitor such as AlN. However, in the above method, the surface layer is cooled before the finish rolling, so that there is a problem that the inhibitor (such as AlN) on the surface of the sheet surface is coarsely precipitated.
【0004】また、特公昭59−45730 号公報では、AlN
の析出制御を熱間圧延の巻取時に高温巻取・保持する方
法を示しているしかし、この方法では工業的にコイル長
手・幅方向に温度を均一に制御することは難しく、実用
的ではない。In Japanese Patent Publication No. 59-45730, AlN
This shows a method of controlling the precipitation of steel at a high temperature during hot rolling, but it is difficult to control the temperature uniformly in the longitudinal and width directions of the coil industrially, which is not practical. .
【0005】[0005]
【発明が解決しようとする課題】この発明は、磁気特性
の優れた一方向性電磁鋼板を工業的に安定して得ること
のできる製造方法を提案することを目的とするものであ
る。SUMMARY OF THE INVENTION An object of the present invention is to propose a manufacturing method capable of industrially stably obtaining a grain-oriented electrical steel sheet having excellent magnetic properties.
【0006】[0006]
【課題を解決するための手段】この発明は、重量%でS
i: 2.0〜4.5 %、C:0.01〜0.12%、酸可溶性Al:0.0
10 〜0.06%、N:0.0030〜0.0120%を含み、さらに必
要に応じてMn:0.02〜0.15%に加えてS又はSeのいずれ
か一種または二種を0.005 〜0.060 %含有する鋼を熱間
圧延後、1回以上の冷間圧延を施し最終板厚となし、次
いで脱炭焼鈍に引続き最終仕上焼鈍を施す一連の工程に
よって一方向性電磁鋼板を製造するにあたり、熱間圧延
時の仕上圧延入側温度を1100℃以上1250℃以下、仕上圧
延出側温度を1050℃超とし、その直後に冷却を行い巻取
温度を 700℃以下とし、かつ前記脱炭焼鈍後の鋼板表面
酸化膜のファイヤライトとSiO2の重量比率を0.2 以下と
することを特徴とする磁気特性の優れた一方向性電磁鋼
板の製造方法である。SUMMARY OF THE INVENTION The present invention relates to a method for producing S by weight%.
i: 2.0-4.5%, C: 0.01-0.12%, acid-soluble Al: 0.0
Hot-rolled steel containing 10 to 0.06%, N: 0.0030 to 0.0120%, and if necessary, 0.005 to 0.060% of one or two of S and Se in addition to 0.02 to 0.15% of Mn. Then, one or more times of cold rolling is performed to obtain a final sheet thickness, and then a series of steps of decarburizing annealing followed by final finishing annealing are performed. The side temperature is 1100 ° C or higher and 1250 ° C or lower, the finish-rolling outlet temperature is higher than 1050 ° C, and immediately after cooling, the winding temperature is set to 700 ° C or lower. And a weight ratio of SiO 2 to 0.2 or less.
【0007】[0007]
【作用】本発明者らは、電磁特性の優れた、電磁鋼板を
得るためにインヒビター制御の方法を鋭意検討した結
果、熱間圧延時の板厚表面部のインヒビター微細化及び
仕上焼鈍時の酸化性雰囲気による板厚表層部インヒビタ
ーの酸化分解を押さえる手段が大いに有効であることを
発見した。The present inventors have intensively studied an inhibitor control method in order to obtain an electromagnetic steel sheet having excellent electromagnetic characteristics. As a result, the inhibitor thickness was reduced during hot rolling and oxidation during finish annealing was performed. It has been found that a means for suppressing the oxidative decomposition of the surface layer inhibitor due to a neutral atmosphere is very effective.
【0008】すなわち、熱間圧延時の板面表層部インヒ
ビターを微細化する手段として仕上圧延で歪を入れた
後、板を冷却し、インヒビターを一気に析出させる方法
が有効であること、また最終仕上焼鈍時のインヒビター
の表層酸化に対しては、脱炭焼鈍時の鋼板表面への酸化
膜をSiO2を増すことにより緻密化する方法が有効である
ことを見出した。That is, as a means for refining the surface layer portion inhibitor during hot rolling, a method is effective in which strain is applied by finish rolling, then the sheet is cooled, and the inhibitor is precipitated at a stroke. For the surface oxidation of the inhibitor during annealing, it was found that a method of densifying the oxide film on the steel sheet surface during decarburizing annealing by increasing SiO 2 was effective.
【0009】まず、この発明で用いる電磁鋼板の好まし
い組成範囲について説明する。 Si: 2.0〜4.5 % Siは、鋼板の比抵抗を高め鉄損の低減に有効に寄与する
が、 4.5%を上回ると冷延性が損なわれ、一方 2.0%に
満たないと比抵抗が低下するだけでなく、2次再結晶・
純化のために行われる最終高温焼鈍中にα−γ変態によ
って結晶方位のランダム化を生じ、十分な鉄損改善効果
が得られないので、Si量は 2.0〜4.5 %程度とするのが
好ましい。First, a preferred composition range of the electromagnetic steel sheet used in the present invention will be described. Si: 2.0-4.5% Si increases the specific resistance of the steel sheet and effectively contributes to the reduction of iron loss. However, when it exceeds 4.5%, the cold-rolling property is impaired, whereas when it is less than 2.0%, the specific resistance only decreases. Not secondary recrystallization
Since the crystal orientation is randomized by the α-γ transformation during the final high-temperature annealing performed for purification, and a sufficient iron loss improvement effect cannot be obtained, the Si content is preferably about 2.0 to 4.5%.
【0010】C:0.01〜0.12% Cは、熱間圧延、冷間圧延中の組織の均一微細化のみな
らず、ゴス方位の発達に有用な元素であり、少なくとも
0.01%以上の含有が好ましい。しかしながら0.12%を超
えて含有されるとかえってゴス方位に乱れが生じるので
上限は0.12%程度が好ましい。C: 0.01 to 0.12% C is an element useful not only for uniform micronization of the structure during hot rolling and cold rolling, but also for development of the Goss orientation.
The content is preferably 0.01% or more. However, if the content exceeds 0.12%, the Goss orientation is rather disturbed. Therefore, the upper limit is preferably about 0.12%.
【0011】Mn:0.02〜0.15% Mnは、熱間脆化を防止するため少なくとも0.02%程度を
必要とするが、あまりに多すぎると磁気特性を劣化させ
るので、上限は0.12%程度に定めるのが好ましい。イン
ヒビターとしては、いわゆる下記のAlN 系のほかに、 M
nS、MnSe系がある。Mn: 0.02 to 0.15% Mn needs to be at least about 0.02% in order to prevent hot embrittlement, but if it is too much, it deteriorates the magnetic properties. Therefore, the upper limit should be set to about 0.12%. preferable. Inhibitors include the following AlN-based inhibitors,
There are nS and MnSe systems.
【0012】まずAlN 系の場合は、 酸可溶性Al:0.01〜0.06% N:0.0030〜0.0120% Al及びNは、方向性けい素鋼板の2次再結晶を制御する
インヒビターとして有力な元素である。抑制力確保の観
点からは、少なくともAlは0.01%及びNは0.0090%を必
要とするが、Alは0.060 %及びNは0.0120%を超えると
その効果が損なわれるので、その下限はそれぞれAl:0.
01%及びN:0.0030%、上限はAl:0.06%及びN:0.01
20%とする。First, in the case of AlN system, acid soluble Al: 0.01 to 0.06% N: 0.0030 to 0.0120% Al and N are effective elements as inhibitors for controlling secondary recrystallization of grain-oriented silicon steel sheets. From the viewpoint of securing the restraining force, at least 0.01% of Al and 0.0090% of N are required. However, if Al exceeds 0.060% and N exceeds 0.0120%, the effects are impaired. .
01% and N: 0.0030%, upper limit is Al: 0.06% and N: 0.01
20%.
【0013】またMnS 、MnSe系の場合は、 Se、Sのうちから選ばれる少なくとも1種:0.005 〜0.
060 % Se、Sの範囲についても、上述したAlN 系の場合と同様
な理由により、上記の範囲に定めた。なお上述したMnS
、MnSe系及びAlN 系はそれぞれ併用することが電磁特
性上望ましい。In the case of MnS or MnSe, at least one selected from Se and S: 0.005 to 0.3.
The ranges of 060% Se and S are also set in the above ranges for the same reason as in the case of the AlN system described above. MnS described above
, MnSe-based and AlN-based are preferably used together in terms of electromagnetic characteristics.
【0014】インヒビター成分としては上記したS、S
e、Alの他、Cu、Ni、Sn、Cr、Ge、Sb、Mo、Zn、Te、Bi
及びPなども有利に適合するので、それぞれ少量併せて
含有させることもできる。ここに上記成分の好適添加範
囲はそれぞれ、Cu、Ni、Sn、Cr:0.01〜0.15%、Ge、S
b、Mo、Zn、Te、Bi:0.005 〜0.1 %、P:0.01〜0.2
%であり、これらの各インヒビター成分についても、単
独使用及び複合使用いずれもが可能である。The inhibitor components include S, S described above.
e, Al, Cu, Ni, Sn, Cr, Ge, Sb, Mo, Zn, Te, Bi
And P etc. are also advantageously used, so that they can be contained together in small amounts. Here, the preferable addition ranges of the above components are Cu, Ni, Sn, Cr: 0.01 to 0.15%, Ge, S
b, Mo, Zn, Te, Bi: 0.005 to 0.1%, P: 0.01 to 0.2
%, And each of these inhibitor components can be used alone or in combination.
【0015】さて上記の成分組成になるけい素鋼スラブ
は、所定成分に溶製された溶鋼から、連続鋳造等により
製造される。そしてこのけい素鋼スラブは、高温例えば
1300℃以上に加熱され熱間粗圧延を実施する。熱間仕上
圧延入側温度を1100℃以上1250℃以下とし、仕上圧延出
側温度は1050℃超を確保して仕上圧延を実施する。仕上
圧延直後に急冷し、700 ℃以下にして巻取を実施する。The silicon steel slab having the above-described composition is manufactured by continuous casting or the like from molten steel produced by melting a predetermined component. And this silicon steel slab is hot
It is heated to 1300 ℃ or more and hot rough rolling is performed. Hot finish rolling entry side temperature of 1100 ° C. or higher 1250 ° C. or less, finish rolling delivery temperature to implement the finish rolling to secure the 1050 ° C. greater. Immediately after finish rolling, it is quenched, and the temperature is reduced to 700 ° C or less and winding is performed.
【0016】熱間仕上圧延の入側温度は1250℃を超える
と仕上圧延時に再結晶がおき、電磁特性上不利となる。
また、1100℃未満では、板表面部のインヒビターが板端
に粗大化するため電磁特性が劣化する。AlN の析出を微
細化するためには、仕上圧延で歪を導入し、その後で急
冷することで達成可能であり、1050℃超で仕上圧延を終
了し、その後急冷する方法が有効である。If the entry temperature of hot finish rolling exceeds 1250 ° C., recrystallization occurs during finish rolling, which is disadvantageous in terms of electromagnetic characteristics.
If the temperature is lower than 1100 ° C., the inhibitor on the surface of the plate becomes coarse at the plate edge, so that the electromagnetic characteristics are deteriorated. To refine the deposition of AlN introduces distortion in the finish rolling is achievable by quenching thereafter, terminates the finish rolling at 1050 ° C. greater, it is effective then quenching method of.
【0017】巻取温度が700 ℃超では、巻取後のコイル
自己焼鈍によりインヒビター析出状況のコイル内均一性
が確保できない。上記の如く、得られた熱延板を公知の
手法により1回以上の冷間圧延を施した後、仕上焼鈍前
の脱炭焼鈍時に鋼板表面酸化膜を、ファイヤライトとSi
O2の重量比率を0.2 以下の組成とした後仕上焼鈍を施
す。なお、脱炭焼鈍時の酸化膜のファイヤライトとSiO2
の比率の変動は、脱炭雰囲気中の水蒸気分圧と水素分圧
の比を制御することにより容易にできる。If the coiling temperature is higher than 700 ° C., the coil self-annealing after coiling cannot ensure the uniformity of the inhibitor deposition in the coil. As described above, after the obtained hot-rolled sheet is subjected to one or more cold rolling operations by a known method, the surface oxide film of the steel sheet is subjected to decarburizing annealing before finish annealing, and firelite and Si
Finish annealing is performed after the composition of O 2 has a weight ratio of 0.2 or less. Note that the oxide film firelite and SiO 2
Can be easily controlled by controlling the ratio between the partial pressure of water vapor and the partial pressure of hydrogen in the decarburized atmosphere.
【0018】この比率が0.2 を超えると、仕上焼鈍時鋼
板表層部のインヒビターの酸化・分解により、電磁特性
が劣化する。以上の方法により、電磁特性の良好な一方
向性けい素鋼板を工業的に安定して得ることができる。If this ratio exceeds 0.2, the electromagnetic properties are degraded due to oxidation and decomposition of the inhibitor on the surface layer of the steel sheet during the finish annealing. By the above method, a unidirectional silicon steel sheet having good electromagnetic characteristics can be obtained industrially stably.
【0019】[0019]
実施例1 C:0.06%、Si:3.05%、sol.Al:0.023 %、Mn:0.07
5 %、S:0.025 %、N:0.0085%を含み、残部実質的
に鉄及び不可避的不純物からなる、連続鋳造にて得た多
数のけい素スラブを、1370℃で30分間加熱後、仕上圧延
時の温度条件を表1に示す種々の条件で実施し、1.8mm
厚に熱間圧延した。次いで熱延板を1050℃で連続焼鈍し
た後60秒間で常温まで急冷し、その後88.9%の圧下率で
冷間圧延し、0.23mmの最終板厚とし、引き続き脱炭焼鈍
時の表層酸化物の組成を変えたものについて、H2 :25
%及びN2 :75%の雰囲気中で1200℃の最終焼鈍を施し
た。Example 1 C: 0.06%, Si: 3.05%, sol. Al: 0.023%, Mn: 0.07%
A large number of silicon slabs containing 5%, S: 0.025%, N: 0.0085%, and substantially consisting of iron and inevitable impurities, obtained by continuous casting, are heated at 1370 ° C for 30 minutes, and then finish-rolled The temperature conditions at the time were carried out under various conditions shown in Table 1, and 1.8 mm
It was hot rolled thick. Next, the hot-rolled sheet was continuously annealed at 1050 ° C., then rapidly cooled to room temperature for 60 seconds, and then cold-rolled at a reduction rate of 88.9% to a final sheet thickness of 0.23 mm. H 2 : 25
% And N 2: was subjected to final annealing of 1200 ° C. in 75% atmosphere.
【0020】かくして、得られた最終製品における電磁
特性をコイル全長にわたって調査した結果の平均値を表
1に併せて示す。本発明のコイルNo.II のものに顕著な
電磁特性の改善効果がみられる。The average value of the results obtained by examining the electromagnetic properties of the final product thus obtained over the entire length of the coil is also shown in Table 1. The coil No. II of the present invention has a remarkable effect of improving the electromagnetic characteristics.
【0021】[0021]
【表1】 [Table 1]
【0022】実施例2 C:0.06%、Si:3.05%、sol.Al:0.028 %、Mn:0.07
0 %、S:0.020 %、N:0.0090%を含み、残部実質的
に鉄及び不可避的不純物からなる、連続鋳造にて得た多
数のけい素スラブを、1400℃で20分間加熱後熱延条件を
変更し、1.8mm厚に熱間圧延した。次いで熱延板を1100
℃で連続焼鈍した後60秒間で常温まで急冷し、その後8
7.2%の圧下率で冷間圧延し、0.23mmの最終板厚とし、
引き続き脱炭焼鈍時の表層酸化物の組成を変更したもの
についてH2 :25%及びN2 :75%の雰囲気中で1200℃
の最終焼鈍を施した。得られた最終製品の電磁特性と製
造条件等を図1に示す。Example 2 C: 0.06%, Si: 3.05%, sol. Al: 0.028%, Mn: 0.07
A number of silicon slabs containing 0%, S: 0.020%, N: 0.0090%, and substantially consisting of iron and inevitable impurities, obtained by continuous casting, were heated at 1400 ° C for 20 minutes, and then hot-rolled. And hot-rolled to a thickness of 1.8 mm. Then hot rolled sheet 1100
After continuous annealing at ℃, rapidly cooled to room temperature for 60 seconds, then 8
Cold rolling at a rolling reduction of 7.2% to a final thickness of 0.23mm,
Subsequently, the composition of the surface oxide during the decarburization annealing was changed to 1200 ° C. in an atmosphere of H 2 : 25% and N 2 : 75%.
Was subjected to final annealing. FIG. 1 shows the electromagnetic characteristics and manufacturing conditions of the obtained final product.
【0023】磁気特性において、本発明の優位性が認め
られる。 実施例3 C:0.06%、Si:3.05%、sol.Al:0.030 %、N:0.00
95%を含み、残部実質的に鉄及び不可避的不純物からな
る、連続鋳造にて得た多数のけい素鋼スラブを、1360℃
で50分間加熱後表2に示すように熱延条件を変更し1.8m
m 厚に熱間圧延した。次いで熱延板を1050℃で連続焼鈍
した後60秒間で常温まで急冷し、その後88.9%の圧下率
で冷間圧延し、0.20mmの最終板厚とし、引き続き脱炭焼
鈍時の表層酸化物の組成を変更したものについてH2 :
25%及びN2 :75%の雰囲気中で1200℃の最終焼鈍を施
した。かくして得られた最終製品におけるコイル全長に
わたる磁気特性の平均値について調べた結果を、表2に
示す。The superiority of the present invention in the magnetic properties is recognized. Example 3 C: 0.06%, Si: 3.05%, sol. Al: 0.030%, N: 0.00
A large number of silicon steel slabs obtained by continuous casting, containing 95%, with the balance substantially consisting of iron and unavoidable impurities,
After heating for 50 minutes, change the hot rolling conditions as shown in Table 2 to 1.8m
It was hot rolled to a thickness of m. Next, the hot-rolled sheet is continuously annealed at 1050 ° C., then rapidly cooled to room temperature for 60 seconds, and then cold-rolled at a rolling reduction of 88.9% to a final sheet thickness of 0.20 mm. H 2 for the modified composition:
A final anneal at 1200 ° C. was performed in an atmosphere of 25% and N 2 : 75%. Table 2 shows the results obtained by examining the average value of the magnetic properties over the entire length of the coil in the final product thus obtained.
【0024】同様に本発明により、良好な電磁特性が得
られることがわかる。Similarly, according to the present invention, it can be seen that good electromagnetic characteristics can be obtained.
【0025】[0025]
【表2】 [Table 2]
【0026】[0026]
【発明の効果】この発明によれば、コイル全長にわたっ
て良好な電磁特性をもつ一方向性けい素鋼板を工業的に
安定して得ることができる。According to the present invention, a unidirectional silicon steel sheet having good electromagnetic characteristics over the entire length of the coil can be obtained in an industrially stable manner.
【図1】製造条件と電磁特性の関係を示すグラフであ
る。FIG. 1 is a graph showing a relationship between manufacturing conditions and electromagnetic characteristics.
フロントページの続き (56)参考文献 特開 昭60−197819(JP,A) 特開 昭61−12823(JP,A) 特開 平2−133525(JP,A) 特開 平4−154914(JP,A) 特開 平4−323(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C21D 9/46 501 C22C 38/00 303 C22C 38/06 H01F 1/16 Continuation of front page (56) References JP-A-60-197819 (JP, A) JP-A-61-12823 (JP, A) JP-A-2-133525 (JP, A) JP-A-4-154914 (JP) (A) JP-A-4-323 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 8/12 C21D 9/46 501 C22C 38/00 303 C22C 38/06 H01F 1 / 16
Claims (2)
0.12%、酸可溶性Al:0.010 〜0.06%、N:0.0030〜0.
0120%を含有する鋼を熱間圧延後、1回以上の冷間圧延
を施し最終板厚となし、次いで脱炭焼鈍に引続き最終仕
上焼鈍を施す一連の工程によって一方向性電磁鋼板を製
造するにあたり、熱間圧延時の仕上圧延入側温度を1100
℃以上1250℃以下、仕上圧延出側温度を1050℃超とし、
その直後に冷却を行い巻取温度を 700℃以下とし、かつ
前記脱炭焼鈍後の鋼板表面酸化膜のファイヤライトとSi
O2の重量比率を0.2 以下とすることを特徴とする磁気特
性の優れた一方向性電磁鋼板の製造方法。(1) Si: 2.0-4.5% by weight, C: 0.01-% by weight
0.12%, acid-soluble Al: 0.010-0.06%, N: 0.0030-0.
After the steel containing 120% is hot-rolled, the steel sheet is subjected to one or more cold rolling steps to a final thickness, and then subjected to a decarburizing annealing followed by a final finishing annealing to produce a unidirectional magnetic steel sheet. In the hot rolling, the finish-rolling inlet temperature during hot rolling was 1100
° C. or higher 1250 ° C. or less, the finish rolling exit side temperature of 1050 ° C. greater,
Immediately thereafter, cooling was performed to reduce the coiling temperature to 700 ° C or less.
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, wherein the weight ratio of O 2 is 0.2 or less.
0.12%、酸可溶性Al:0.010 〜0.06%、N:0.0030〜0.
0120%、Mn:0.02〜0.15%を含み、さらにS又はSeのい
ずれか一種または二種を0.005 〜0.060 %含有する鋼を
熱間圧延後、1回以上の冷間圧延を施し最終板厚とな
し、次いで脱炭焼鈍に引続き最終仕上焼鈍を施す一連の
工程によって一方向性電磁鋼板を製造するにあたり、熱
間圧延時の仕上圧延入側温度を1100℃以上1250℃以下、
仕上圧延出側温度を1050℃超とし、その直後に冷却を行
い巻取温度を 700℃以下とし、かつ前記脱炭焼鈍後の鋼
板表面酸化膜のファイヤライトとSiO2の重量比率を0.2
以下とすることを特徴とする磁気特性の優れた一方向性
電磁鋼板の製造方法。2. Si: 2.0-4.5% by weight, C: 0.01-% by weight
0.12%, acid-soluble Al: 0.010-0.06%, N: 0.0030-0.
[0120] After hot rolling a steel containing Mn: 0.02 to 0.15% and further containing 0.005 to 0.060% of one or two of S or Se, the steel sheet is subjected to one or more cold rollings to obtain a final sheet thickness. None, then, to produce a grain-oriented electrical steel sheet by a series of steps of performing the final finish annealing subsequent to decarburization annealing, the finish rolling entry temperature during hot rolling is 1100 ° C or more and 1250 ° C or less,
A finish rolling delivery temperature and 1050 ° C. greater than the coiling temperature perform cooling immediately after the 700 ° C. or less, and a fayalite and SiO 2 weight ratio of the steel sheet surface oxide film after the decarburization annealing 0.2
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, characterized by the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33907092A JP3232148B2 (en) | 1992-12-18 | 1992-12-18 | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33907092A JP3232148B2 (en) | 1992-12-18 | 1992-12-18 | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06184639A JPH06184639A (en) | 1994-07-05 |
JP3232148B2 true JP3232148B2 (en) | 2001-11-26 |
Family
ID=18323978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33907092A Expired - Fee Related JP3232148B2 (en) | 1992-12-18 | 1992-12-18 | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3232148B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101693516B1 (en) | 2014-12-24 | 2017-01-06 | 주식회사 포스코 | Grain-orientied electrical steel sheet and method for manufacturing the smae |
-
1992
- 1992-12-18 JP JP33907092A patent/JP3232148B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06184639A (en) | 1994-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2983128B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP3674183B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP3359449B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JP3415377B2 (en) | Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss | |
JP2883226B2 (en) | Method for producing thin grain silicon steel sheet with extremely excellent magnetic properties | |
JPH01198426A (en) | Manufacture of non-oriented magnetic steel sheet excellent in magnetic property | |
JP2951852B2 (en) | Method for producing unidirectional silicon steel sheet with excellent magnetic properties | |
JP3008003B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP3357603B2 (en) | Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss | |
JPH0121851B2 (en) | ||
JP3132936B2 (en) | Method for producing grain-oriented silicon steel sheet with excellent magnetic properties | |
JP3232148B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP3348802B2 (en) | Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
KR950009760B1 (en) | Method of manufacturing grain oriented silicon steel sheet | |
JP3368310B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP2888324B2 (en) | Manufacturing method of grain-oriented electromagnetic steel sheet with high magnetic flux density | |
JP2983129B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP3179986B2 (en) | Method for producing unidirectional silicon steel sheet with excellent magnetic properties | |
JP2709549B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP4206538B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JPH06306473A (en) | Production of grain-oriented magnetic steel sheet excellent in magnetic property | |
JP3338263B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet | |
JP3443151B2 (en) | Method for producing grain-oriented silicon steel sheet | |
JPH0580527B2 (en) | ||
JP3451652B2 (en) | Method for producing unidirectional silicon steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080914 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080914 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090914 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090914 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120914 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |