JP3224578B2 - Manufacturing method of oxide superconductor - Google Patents
Manufacturing method of oxide superconductorInfo
- Publication number
- JP3224578B2 JP3224578B2 JP01182692A JP1182692A JP3224578B2 JP 3224578 B2 JP3224578 B2 JP 3224578B2 JP 01182692 A JP01182692 A JP 01182692A JP 1182692 A JP1182692 A JP 1182692A JP 3224578 B2 JP3224578 B2 JP 3224578B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide superconductor
- temperature
- test piece
- producing
- onset
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002887 superconductor Substances 0.000 title claims description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- -1 aliphatic alcohols Chemical class 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000003960 organic solvent Substances 0.000 claims description 8
- 239000013067 intermediate product Substances 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 230000001747 exhibiting effect Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 30
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000007654 immersion Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 238000009423 ventilation Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 2
- 229910014454 Ca-Cu Inorganic materials 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は酸化物超伝導体の製造方
法に関し、詳細には超伝導転移温度(以下Tcという)
の高温化を図ることのできる酸化物超伝導体の製造方法
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconductor, and more particularly to a superconducting transition temperature (hereinafter referred to as Tc).
The present invention relates to a method for producing an oxide superconductor capable of increasing the temperature of a superconductor.
【0002】[0002]
【従来の技術】La−Ba−Cuの酸化物が超伝導特性
を示すことが明らかにされて以来、Y−Ba−Cu系酸
化物超伝導体(以下Y系と略すこともある)、Bi−S
r−Ca−Cu系酸化物超伝導体(以下Bi系と略すこ
ともある)やTl−Ba−Ca−Cu系酸化物超伝導体
(以下Tl系と略すこともある)などが次々に発見され
た。2. Description of the Related Art Since it was revealed that La-Ba-Cu oxides exhibited superconducting properties, Y-Ba-Cu-based oxide superconductors (hereinafter sometimes abbreviated as Y-based), Bi -S
An r-Ca-Cu-based oxide superconductor (hereinafter sometimes abbreviated as Bi-based) and a Tl-Ba-Ca-Cu-based oxide superconductor (hereinafter sometimes abbreviated as Tl-based) are found one after another. Was done.
【0003】例えばBi系はBi,Sr,Ca,Cuの
組成比によってTcが異なり、上記組成比が例えば2:
2:2:3である場合(以下高温相という)には105
〜110K程度のTcを示すが、上記組成比が例えば
2:2:1:2である場合(以下低温相という)ではT
cは高くて80K、場合により液体窒素温度(77K)
を大きく下回る程度であることが知られている。また、
一般的な製造条件下では上記高温相と低温相が混在し易
く高温相の単相化は技術的に困難であるとされている。For example, the Bi system has a different Tc depending on the composition ratio of Bi, Sr, Ca, and Cu.
In the case of 2: 2: 3 (hereinafter referred to as high temperature phase), 105
Although Tc of about 110 K is shown, when the above composition ratio is, for example, 2: 2: 1: 2 (hereinafter referred to as a low temperature phase),
c is as high as 80K, and in some cases liquid nitrogen temperature (77K)
Is known to be much less than Also,
Under general manufacturing conditions, the high-temperature phase and the low-temperature phase are apt to coexist, and it is technically difficult to form a single-phase high-temperature phase.
【0004】[0004]
【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、酸化物超伝導体のTcを
高温化し、通常の製造方法では液体窒素温度を下回るT
cの組成物であっても液体窒素温度以上にTcを高温化
することのできる超伝導材料の製造方法を提供しようと
するものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is intended to raise the Tc of an oxide superconductor to a high temperature.
An object of the present invention is to provide a method for producing a superconducting material capable of raising Tc to a temperature higher than the liquid nitrogen temperature even with the composition of c.
【0005】[0005]
【課題を解決するための手段】上記目的を達成した本発
明に係る酸化物超伝導体の製造方法とは、酸化物超伝導
体製造工程における中間生成物又は超伝導特性を示すに
至ったものを、有機溶媒中、50℃以上の温度で浸漬処
理することを要旨とするものである。Means for Solving the Problems A method for producing an oxide superconductor according to the present invention, which has achieved the above object, comprises an intermediate product in an oxide superconductor production process or a compound exhibiting superconductivity. Is to be immersed in an organic solvent at a temperature of 50 ° C. or higher.
【0006】上記有機溶媒としては、脂肪族アルコー
ル、脂肪族ケトン、脂肪族アルデヒド、脂肪族ニトリ
ル、ジメチルスルホキシドが好ましい。これらの有機溶
媒は比較的安定して最適な効果を得ることができる。そ
の他、ホルムアミド、ニトロメタン等も使用できる。As the organic solvent, aliphatic alcohols, aliphatic ketones, aliphatic aldehydes, aliphatic nitriles, and dimethyl sulfoxide are preferred. These organic solvents can obtain an optimum effect relatively stably. In addition, formamide, nitromethane and the like can be used.
【0007】尚本発明の製造方法に用いることのできる
酸化物超伝導体は、形状の如何によって限定されるもの
ではなく、粉末状,バルク状,線材,薄膜等いずれであ
ってもよい。さらにバルク状の酸化物超伝導体を製造す
るにあたっては原料粉末を混合した後、乾燥して成形
し、予備焼結を行なって前駆体とし、さらに1回または
2回以上の焼結を行なって酸化物超伝導体を製造する方
法が一般的であるが、上記前駆体以降の中間生成物を本
発明の製造方法に適用してもよい。[0007] The oxide superconductor that can be used in the manufacturing method of the present invention is not limited by the shape, and may be any of powder, bulk, wire, thin film and the like. Further, in producing a bulk oxide superconductor, the raw material powders are mixed, dried and molded, pre-sintered to obtain a precursor, and further sintered once or twice. Although a method for producing an oxide superconductor is generally used, an intermediate product after the above precursor may be applied to the production method of the present invention.
【0008】以下バルク状の酸化物超伝導体を製造する
場合を代表的にとりあげて、本発明に係る製造方法を説
明する。Hereinafter, the production method according to the present invention will be described with reference to a case where a bulk oxide superconductor is produced as a representative.
【0009】まず酸化物超伝導体を構成する金属元素は
少なくともBi,Sr,Ca,Cuを含むことが好まし
く、Biの一部をPbで置換したものや、Srの一部を
Laで置換したもの等であってもよい。上記金属元素を
供給するための原料化合物は特に限定されず、酸化物の
ほか炭酸塩,硝酸塩,硫酸塩等の無機酸塩や、酢酸塩,
しゅう酸塩等の有機酸塩又はアルコキシド化合物や錯化
合物等が適用可能である。First, the metal element constituting the oxide superconductor preferably contains at least Bi, Sr, Ca and Cu, and a part of Bi is replaced by Pb and a part of Sr is replaced by La. Or the like. The raw material compound for supplying the metal element is not particularly limited. In addition to oxides, inorganic acid salts such as carbonates, nitrates and sulfates, acetates,
Organic acid salts such as oxalate, alkoxide compounds, complex compounds and the like are applicable.
【0010】また混合方法についても特に限定されず、
例えば機械的混合,均一溶液化法,共沈法等の公知の方
法から化合物の種類や物性により適宜選択すればよい。The mixing method is not particularly limited.
For example, a known method such as mechanical mixing, a uniform solution method, and a coprecipitation method may be appropriately selected according to the type and physical properties of the compound.
【0011】原料化合物からなる混合物は必要に応じて
乾燥させた後焼成を行なう。焼成は粉砕成形工程を間に
はさんで2回以上行なうことが好ましく、最終焼成温度
は800℃以上が好ましい。The mixture comprising the starting compounds is dried if necessary and then fired. The firing is preferably performed at least twice with a pulverization molding step interposed therebetween, and the final firing temperature is preferably 800 ° C. or higher.
【0012】本発明に特徴的な製造方法は、焼成した成
形品を用いて、有機溶媒中、50℃以上の温度で浸漬処
理することにある。50℃未満の温度で浸漬処理しても
Tcを高温化する効果は殆どみられない。高温側は、有
機溶媒が熱分解したりすることがなければよく、特に制
限はない。経済的なことも考えれば通常250℃以下で
行なえばよい。50℃以上の沸点をもつ有機溶媒の場合
は常圧下で加熱還流下で浸漬処理する方法が最も簡便で
ある。密閉容器中で加圧下に50℃以上に加熱して浸漬
処理する方法もよい。A production method characteristic of the present invention resides in that a baked molded article is immersed in an organic solvent at a temperature of 50 ° C. or higher. Even if the immersion treatment is performed at a temperature lower than 50 ° C., the effect of increasing the temperature of Tc is hardly observed. The high temperature side is not particularly limited as long as the organic solvent does not thermally decompose. In consideration of economy, it is usually sufficient to carry out at 250 ° C. or lower. In the case of an organic solvent having a boiling point of 50 ° C. or more, the method of immersion treatment under heating and reflux under normal pressure is the simplest. A method of immersion treatment by heating to 50 ° C. or more under pressure in a closed container may be used.
【0013】浸漬処理後、乾燥させる。乾燥条件は特に
制約されないが、低温での通風によるおだやかな乾燥が
好ましい。After the immersion treatment, the substrate is dried. Drying conditions are not particularly limited, but gentle drying by ventilation at a low temperature is preferable.
【0014】[0014]
【作用】以上の工程を経て製造された酸化物超伝導体
は、従来の製造方法による酸化物超伝導体に比較して大
幅なTcの向上という変化を示すものである。処理に伴
う物質移動及び電子構造の変化がTcの向上をもたらし
たものと考えられる。The oxide superconductor manufactured through the above-described steps shows a change in that Tc is greatly improved as compared with the oxide superconductor manufactured by the conventional manufacturing method. It is considered that the mass transfer and the change in the electronic structure associated with the treatment resulted in an increase in Tc.
【0015】[0015]
【実施例】実施例1,比較例1 Bi2O3,PbO,SrCO3,CaCO3,CuO の各市販試薬(和光純
薬製、純度99.9%)を金属原子比がBi1.8Pb0.2Sr2Ca1Cu
2 となるように秤取し、らいかい機でらいかい混合した
後、大気中750℃、10時間焼成して前駆体を得た。
この前駆体を粉砕した粉末を、直径約15mm,厚さ約2
mmの円盤状に加圧成形し、大気中830℃で24時間焼
成した。この段階で得られた成形品は従来の低温相のB
i系酸化物超伝導体に属するものである。これは比較例
1の試験片とした。EXAMPLES Example 1 and Comparative Example 1 Commercially available reagents of Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , and CuO (manufactured by Wako Pure Chemical Industries, purity 99.9%) were prepared using a metal atom ratio of Bi 1.8 Pb 0.2 Sr 2. Ca 1 Cu
The mixture was weighed to 2 and mixed by a triturator, and then calcined in the air at 750 ° C. for 10 hours to obtain a precursor.
A powder obtained by pulverizing this precursor is applied to a powder having a diameter of about 15 mm and a thickness of about 2
It was press-formed into a disk having a diameter of mm and fired at 830 ° C. in the atmosphere for 24 hours. The molded product obtained at this stage is a conventional low-temperature phase B
It belongs to the i-based oxide superconductor. This was the test piece of Comparative Example 1.
【0016】上記成形品をメタノール中、加熱還流下
(65℃)28時間浸漬し、ぬき出した後大気通風下室
温で乾燥して実施例1の試験片を得た。The molded article was immersed in methanol for 28 hours under reflux with heating (65 ° C.), extruded, and dried at room temperature under ventilation to obtain a test piece of Example 1.
【0017】上記試験片を通常の四端子法により超伝導
転移開始温度(以下Tconsetという)及びゼロ抵抗温
度(以下Tc0という)を測定した。結果は表1に示
す。[0017] was measured superconducting transition initiation temperature (hereinafter referred to as Tc onset) and zero resistance temperature (hereinafter referred to as Tc 0) to the test strip by conventional four-terminal method. The results are shown in Table 1.
【0018】実施例2 メタノールのかわりにアセトンを用いた以外は実施例1
と同様にして試験片を得た。加熱還流時の温度は57℃
であった。得られた試験片のTconset ,Tc0 を測定
した。結果は表1に併記する。 Example 2 Example 1 except that acetone was used instead of methanol.
A test piece was obtained in the same manner as described above. The temperature at the time of heating reflux is 57 ° C.
Met. Tc onset of the resulting test piece was measured Tc 0. The results are shown in Table 1.
【0019】実施例3 SUS製耐圧容器に比較例1の試験片を入れ、メタノー
ルを加えて浸漬させ、密閉した。容器を加熱し、中の液
温180℃にて3時間保った。試験片をぬき出した後大
気通風下室温で乾燥して実施例3の試験片とした。 Example 3 The test piece of Comparative Example 1 was placed in a SUS pressure-resistant container, to which methanol was added, immersed and sealed. The vessel was heated and maintained at a liquid temperature of 180 ° C. for 3 hours. After the test piece was exposed, it was dried at room temperature under ventilation to give a test piece of Example 3.
【0020】得られた試験片のTconset ,Tc0 を測
定した。結果は表1に併記する。Tc onset and Tc 0 of the obtained test piece were measured. The results are shown in Table 1.
【0021】実施例4 メタノールのかわりにアセトンを用いた以外は実施例3
と同様にして試験片を得た。得られた試験片のTc
onset ,Tc0 を測定した。結果は表1に併記する。 Example 4 Example 3 except that acetone was used instead of methanol.
A test piece was obtained in the same manner as described above. Tc of the obtained test piece
onset and Tc 0 were measured. The results are shown in Table 1.
【0022】実施例5 メタノールのかわりにベンゼンを用いた以外は実施例3
と同様にして試験片を得た。得られた試験片のTc
onset ,Tc0 を測定した。結果は表1に併記する。 Example 5 Example 3 except that benzene was used instead of methanol.
A test piece was obtained in the same manner as described above. Tc of the obtained test piece
onset and Tc 0 were measured. The results are shown in Table 1.
【0023】実施例6 メタノールのかわりにアセトニトリルを用いた以外は実
施例3と同様にして試験片を得た。得られた試験片のT
conset ,Tc0 を測定した。結果は表1に併記する。 Example 6 A test piece was obtained in the same manner as in Example 3 except that acetonitrile was used instead of methanol. T of the obtained test piece
C onset and Tc 0 were measured. The results are shown in Table 1.
【0024】実施例7 メタノールのかわりにn−ブチルアルデヒドを用いた以
外は実施例3と同様にして試験片を得た。得られた試験
片のTconset ,Tc0 を測定した。結果は表1に併記
する。 Example 7 A test piece was obtained in the same manner as in Example 3 except that n-butyraldehyde was used instead of methanol. Tc onset of the resulting test piece was measured Tc 0. The results are shown in Table 1.
【0025】実施例8 メタノールのかわりにジメチルスルホキシドを用い、浸
漬時間を6時間とした以外は実施例1と同様にして試験
片を得た。加熱還流時の温度は189℃であった。得ら
れた試験片のTconset ,Tc0 を測定した。結果は表
1に併記する。比較例2 浸漬温度を40℃とした以外は実施例1と同様にして試
験片を得た。得られた試験片のTconset ,Tc0 を測
定した。結果は表1に併記する。 Example 8 A test piece was obtained in the same manner as in Example 1 except that dimethyl sulfoxide was used instead of methanol and the immersion time was changed to 6 hours. The temperature at the time of heating to reflux was 189 ° C. Tc onset of the resulting test piece was measured Tc 0. The results are shown in Table 1. Comparative Example 2 A test piece was obtained in the same manner as in Example 1 except that the immersion temperature was changed to 40 ° C. Tc onset of the resulting test piece was measured Tc 0. The results are shown in Table 1.
【0026】比較例3〜7 メタノールのかわりに各々アセトン、ベンゼン、アセト
ニトリル、n−ブチルアルデヒド、ジメチルスルホキシ
ドを用い、浸漬温度を40℃とした以外は実施例1と同
様にして試験片を得た。得られた試験片のTconset ,
Tc0 を測定した。結果は表1に併記する。 Comparative Examples 3 to 7 Test pieces were obtained in the same manner as in Example 1 except that acetone, benzene, acetonitrile, n-butyraldehyde, and dimethyl sulfoxide were used instead of methanol, and the immersion temperature was 40 ° C. . Tc onset of the obtained test piece,
Tc 0 was measured. The results are shown in Table 1.
【0027】[0027]
【表1】 [Table 1]
【0028】実施例9,比較例8 Bi2O3,SrCO3,CaCO3,CuO の各市販試薬(和光純薬
製、純度99.9%)を金属原子比が Bi2Sr2Ca1Cu2 となる
ように秤取し、らいかい機でらいかい混合した後、大気
中750℃、10時間焼成して前駆体を得た。この前駆
体を粉砕した粉末を、直径約15mm,厚さ約2mmの円盤
状に加圧成形し、大気中840℃で24時間焼成した。
この段階で得られた成形品は従来の低温相のBi系酸化
物超伝導体に属するものである。これは比較例8の試験
片とした。 Example 9, Comparative Example 8 Bi 2 O 3 , SrCO 3 , CaCO 3 , and CuO commercially available reagents (purity 99.9%, manufactured by Wako Pure Chemical Industries) were mixed with Bi 2 Sr 2 Ca 1 Cu 2 having a metal atom ratio of The mixture was weighed so as to be mixed, mixed by a mill, and then calcined in the air at 750 ° C. for 10 hours to obtain a precursor. The powder obtained by pulverizing this precursor was pressed into a disk having a diameter of about 15 mm and a thickness of about 2 mm, and fired at 840 ° C. for 24 hours in the atmosphere.
The molded article obtained at this stage belongs to a conventional low-temperature phase Bi-based oxide superconductor. This was a test piece of Comparative Example 8.
【0029】SUS製耐圧容器に上記成形品を入れ、メ
タノールを加えて浸漬させ、密閉した。容器を加熱し、
中の液温180℃にて3時間保った。試験片をぬき出し
た後大気通風下室温で乾燥して実施例9の試験片とし
た。The above-mentioned molded product was put in a SUS pressure-resistant container, methanol was added thereto, and the container was immersed and sealed. Heat the container,
The inside liquid temperature was kept at 180 ° C. for 3 hours. After the test piece was exposed, it was dried at room temperature under ventilation to give a test piece of Example 9.
【0030】上記試験片のTconset ,Tc0 を測定し
た。結果は表2に示す。The test pieces were measured for Tc onset and Tc 0 . The results are shown in Table 2.
【0031】[0031]
【表2】 [Table 2]
【0032】[0032]
【発明の効果】本発明の製造方法によれば酸化物超伝導
体のTcが大幅に高温化でき、なかでもBi系低温相組
成においては液体窒素温度を確実に上回るTcを安定し
て確保できる。According to the production method of the present invention, the Tc of the oxide superconductor can be significantly increased, and especially in the Bi-based low-temperature phase composition, the Tc that reliably exceeds the liquid nitrogen temperature can be stably secured. .
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01G 1/00 C04B 41/82 CA(STN) JICSTファイル(JOIS) WPI(DIALOG)──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) C01G 1/00 C04B 41/82 CA (STN) JICST file (JOIS) WPI (DIALOG)
Claims (3)
成物又は超伝導特性を示すに至ったものを、有機溶媒
中、50℃以上の温度で浸漬処理することを特徴とする
酸化物超伝導体の製造方法。1. An oxide superconductor characterized by immersing an intermediate product or a material exhibiting superconductivity in a process of producing an oxide superconductor in an organic solvent at a temperature of 50 ° C. or higher. How to make the body.
たものが、少なくともBi,Sr,Ca及びCuを含有
する酸化物である請求項1に記載の酸化物超伝導体の製
造方法。2. The process for producing an oxide superconductor according to claim 1, wherein the intermediate product or the material exhibiting superconductivity is an oxide containing at least Bi, Sr, Ca and Cu.
トン、脂肪族アルデヒド、脂肪族ニトリル、ジメチルス
ルホキシドから選ばれる溶媒である請求項1または2に
記載の酸化物超伝導体の製造方法。3. The method for producing an oxide superconductor according to claim 1, wherein the organic solvent is a solvent selected from aliphatic alcohols, aliphatic ketones, aliphatic aldehydes, aliphatic nitriles, and dimethyl sulfoxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01182692A JP3224578B2 (en) | 1992-01-27 | 1992-01-27 | Manufacturing method of oxide superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01182692A JP3224578B2 (en) | 1992-01-27 | 1992-01-27 | Manufacturing method of oxide superconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05201727A JPH05201727A (en) | 1993-08-10 |
JP3224578B2 true JP3224578B2 (en) | 2001-10-29 |
Family
ID=11788574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01182692A Expired - Fee Related JP3224578B2 (en) | 1992-01-27 | 1992-01-27 | Manufacturing method of oxide superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3224578B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2756659B1 (en) * | 1996-12-02 | 1999-01-08 | Forrat Francis | ATOMIC FUSION EXPLOSIVE FOR PROJECTILE |
-
1992
- 1992-01-27 JP JP01182692A patent/JP3224578B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05201727A (en) | 1993-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0643268B2 (en) | Oxide high temperature superconductor | |
US5075282A (en) | Printing method of forming oxide superconducting films on La2 Cu O.sub. | |
JP3224578B2 (en) | Manufacturing method of oxide superconductor | |
JP3164392B2 (en) | Manufacturing method of oxide superconductor | |
JP2806071B2 (en) | Manufacturing method of oxide superconductor | |
EP0337656A2 (en) | High efficiency antenna | |
JP2677882B2 (en) | Method for producing bismuth oxide superconductor | |
JP2632514B2 (en) | Manufacturing method of ceramic superconductor | |
JP2806070B2 (en) | Manufacturing method of oxide superconductor | |
JP3053238B2 (en) | Method for producing Bi-based oxide superconductor | |
JP2696689B2 (en) | Oxide superconducting material | |
JP2831755B2 (en) | Oxide superconductor | |
JP2634187B2 (en) | Method for producing thallium-based oxide superconductor | |
JP2855124B2 (en) | Oxide superconductor | |
JPH0238359A (en) | Production of superconductor | |
JP2783559B2 (en) | Oxide-based composite sintered body, method for producing the same, and resistor using the same | |
JP3668510B2 (en) | Method for producing Bi-based oxide superconductor | |
JP2632543B2 (en) | Method for producing Bi-Sr-Ca-Cu-O-based superconductor | |
JP3012257B2 (en) | Bismuth-based oxide superconductor | |
JP2696691B2 (en) | Oxide superconducting material | |
JPH01305812A (en) | Production of y-ba-cu-o type superconductive powder | |
JP2698689B2 (en) | Oxide superconducting material and manufacturing method thereof | |
JP2854338B2 (en) | Copper oxide superconductor | |
JPH02160655A (en) | Precursor composition of superconducting ceramics | |
JPH0764626B2 (en) | Method for manufacturing high temperature superconducting ceramics compact |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |