JP3210450B2 - Tilt detector - Google Patents
Tilt detectorInfo
- Publication number
- JP3210450B2 JP3210450B2 JP32729092A JP32729092A JP3210450B2 JP 3210450 B2 JP3210450 B2 JP 3210450B2 JP 32729092 A JP32729092 A JP 32729092A JP 32729092 A JP32729092 A JP 32729092A JP 3210450 B2 JP3210450 B2 JP 3210450B2
- Authority
- JP
- Japan
- Prior art keywords
- light beam
- free liquid
- liquid surface
- angle
- inclination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
- Length Measuring Devices By Optical Means (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、測量機器、測定機器等
に用いられ傾き量の変化の測定をし、或は機器の傾きの
補正をする為に、傾き量を検出する傾斜検知装置に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tilt detecting device used for surveying equipment, measuring equipment, etc., which measures a change in tilt amount or detects a tilt amount in order to correct the tilt of the equipment. Things.
【0002】[0002]
【従来の技術】測量機器、測定機器等の基準面が水平面
に対してどの様に傾斜しているかを測定するには、基準
面内の少なくとも2軸方向の傾斜を検知しなれけばなら
ない。2. Description of the Related Art In order to measure how a reference plane of a surveying instrument, a measuring instrument, or the like is inclined with respect to a horizontal plane, it is necessary to detect inclination in at least two axes in the reference plane.
【0003】測量機器、測定機器等の基準面の傾斜を検
知する方法として自由液面を利用したものがある。As a method of detecting the inclination of a reference surface of a surveying instrument, a measuring instrument, or the like, there is a method using a free liquid level.
【0004】これは、自由液面に光束を入射させ、該光
束の反射光の光軸の変化量を受光器によって検知するも
のである。自由液面を有する液体として水銀等を使用し
た場合、この自由液面に対して垂直に光束を入射させれ
ば2次元方向全てに於いて液面の傾きに対して同じ感度
の反射角を得ることが可能であり、基準面の傾斜を検知
することができる。In this method, a light beam is made incident on a free liquid surface, and the amount of change in the optical axis of the reflected light of the light beam is detected by a light receiver. When mercury or the like is used as a liquid having a free liquid surface, if a light beam is incident perpendicularly to the free liquid surface, a reflection angle having the same sensitivity to the inclination of the liquid surface is obtained in all two-dimensional directions. It is possible to detect the inclination of the reference plane.
【0005】ところが、実際にはコスト的にも安全性か
ら見ても前記した水銀等の液体は使用しにくく、実用的
にはシリコンオイル等の透明液体を使用している。透明
液体を使用した場合、全反射を利用するが、液体と空気
との臨界角が存在する為、自由液面で光束を全反射させ
る為には、自由液面への光束の入射は前記臨界角に対応
した入射角θが必要となる。而して、自由液面を利用し
た従来の傾斜検知装置では所定角度をもって自由液面に
光束を入射させている。However, in practice, liquids such as mercury described above are difficult to use in terms of cost and safety, and transparent liquids such as silicone oil are practically used. When a transparent liquid is used, total reflection is used, but since there is a critical angle between the liquid and air, in order to totally reflect the light beam on the free liquid surface, the incidence of the light beam on the free liquid surface is the critical angle. An incident angle θ corresponding to the angle is required. Thus, in the conventional tilt detecting device using the free liquid surface, a light beam is incident on the free liquid surface at a predetermined angle.
【0006】自由液面に対して光束を所定角度をもって
入射させた場合、液面の傾きに対して、異なった2軸方
向に関する反射光の反射角度の変化は一様でなくなる。
従って、自由液面を利用した傾斜検知装置ではこの反射
角の変化が一様でないことに対する対策を講じている。[0006] When a light beam is incident on the free liquid surface at a predetermined angle, the change in the reflection angle of the reflected light in two different axial directions with respect to the inclination of the liquid surface is not uniform.
Therefore, in the inclination detecting device using the free liquid level, a measure is taken against the non-uniformity of the change of the reflection angle.
【0007】従来の傾斜検知装置の1つは、異なる2光
軸の光束を前記自由液面に所定の角度をもって入射さ
せ、それぞれ反射光を受光器により受光し、受光器それ
ぞれの受光位置の変化により、前記2光軸に関する傾斜
を検知し、検知した該2光軸の傾斜より水平面に対する
測量機器、測定機器等基準面傾きを演算により求めるも
のである。One of the conventional tilt detecting devices is such that light beams having two different optical axes are incident on the free liquid surface at a predetermined angle, reflected light is received by a light receiver, and a change in the light receiving position of each light receiver. Thus, the inclination with respect to the two optical axes is detected, and the inclination of a reference plane such as a surveying instrument or a measuring instrument with respect to a horizontal plane is calculated from the detected inclination of the two optical axes.
【0008】自由液面に所定の角度をもって光束を入射
させ、前記自由液面の全反射を利用する他の従来の傾斜
検知装置として、1光軸のみの光束を自由液面に入射さ
せ、該光束を受光器で検知し、該受光器での光束の2軸
方向、即ち該光束の光軸方向と他の軸方向との2方向の
受光位置の変化量を求め、更に演算により測量機器、測
定機器等基準面傾きを求めるものがある。該他の従来の
傾斜検知装置では光束の光軸方向と他の軸方向との2方
向では傾斜の変化に対する受光面状での位置変化の感度
が異なるので、感度の相違は電気的に補正している。[0008] As another conventional tilt detecting device utilizing a total reflection of the free liquid surface, a light beam having only one optical axis is made incident on the free liquid surface. The light beam is detected by the light receiver, and the two-axis direction of the light beam in the light receiver, that is, the amount of change in the light receiving position in the two directions of the optical axis direction of the light beam and the other axis direction is obtained. Some measuring instruments and the like determine the reference plane inclination. In the other conventional tilt detecting device, the sensitivity of the position change on the light receiving surface with respect to the change of the tilt differs in the two directions of the optical axis direction of the light beam and the other axis direction. ing.
【0009】[0009]
【発明が解決しようとする課題】従来の傾斜検知装置の
内、前者では光束の投影系が2つの光学系となることか
ら、装置の構成が複雑になるという不具合があり、又従
来の傾斜検知装置の後者では、自由液面からの光束の反
射角が、自由液面の傾斜量に対して受光面での2軸方向
で感度差があることから、少なくとも1方の検知結果に
対しては電気的に補正を必要とし、別途補正の為の電気
的処理系を設けなければならず、処理系が複雑になると
いう不具合があった。Among the conventional tilt detecting devices, the former has a disadvantage that the configuration of the device becomes complicated because the projection system of the light beam is two optical systems, and the conventional tilt detecting device has a disadvantage. In the latter device, the reflection angle of the light beam from the free liquid surface has a sensitivity difference in the two axial directions on the light receiving surface with respect to the amount of inclination of the free liquid surface. Electrical correction is required, and an electrical processing system for the correction must be separately provided, which causes a problem that the processing system becomes complicated.
【0010】本発明は斯かる実情に鑑み、1軸の光学系
のみで而も別途補正の為の電気的処理系を設けることな
く基準面の傾斜を検知しようとするものである。In view of such circumstances, the present invention seeks to detect the inclination of the reference plane using only a one-axis optical system and without providing an electrical processing system for separate correction.
【0011】[0011]
【課題を解決するための手段】本発明は、自由液面を形
成する様透明液体を封入した液体封入容器と、前記自由
液面で全反射させる様光束を該自由液面に所定の角度で
投射する投光系と、前記自由液面で反射された光束を投
下させるシリンドリカルレンズ系と、該シリンドリカル
レンズ系を透過した反射光束を受光する受光器を有し、
該受光器の受光面での反射光束の受光位置で自由液面の
傾斜量を検知する様にし、更に透明液体の温度変化に対
する温度分布の均一性を向上させようとするものであ
る。According to the present invention, there is provided a liquid filling container in which a transparent liquid is filled so as to form a free liquid surface, and a luminous flux totally reflected at the free liquid surface at a predetermined angle to the free liquid surface. A light projecting system for projecting, a cylindrical lens system for dropping a light beam reflected on the free liquid surface, and a light receiver for receiving a reflected light beam transmitted through the cylindrical lens system,
The amount of inclination of the free liquid surface is detected at the light receiving position of the reflected light beam on the light receiving surface of the light receiver, and the uniformity of the temperature distribution with respect to the temperature change of the transparent liquid is further improved.
【0012】[0012]
【作用】液体封入容器が傾斜し、自由液面に対する光束
の入射角が相対的に変化した場合の反射角の変化は自由
液面の傾斜方向によって感度が異なる。この感度の相違
を、シリンドリカルレンズ系によって光学的に補正し、
受光器で受光した反射光束の検知結果を電気的に補正す
ることなく自由液面の傾斜量を測定することができる。
更に、透明液体に温度分布を生ずると透明液体の屈折率
が一様でなくなり、光軸の屈折等を生じ、測定結果に影
響を及ぼすが、透明液体の温度分布の均一性を向上させ
ることで環境の温度変化に対する測定の安定性、信頼性
が向上する。The sensitivity of the change in the reflection angle when the angle of incidence of the light beam with respect to the free liquid surface changes relative to the free liquid surface depends on the inclination direction of the free liquid surface. This difference in sensitivity is optically corrected by a cylindrical lens system,
The amount of tilt of the free liquid surface can be measured without electrically correcting the detection result of the reflected light beam received by the light receiver.
Furthermore, if a temperature distribution is generated in the transparent liquid, the refractive index of the transparent liquid becomes non-uniform, causing refraction of the optical axis and the like, which affects the measurement result. However, by improving the uniformity of the temperature distribution of the transparent liquid, Stability and reliability of measurement against environmental temperature changes are improved.
【0013】[0013]
【実施例】以下、図面を参照しつつ本発明の一実施例を
説明する。An embodiment of the present invention will be described below with reference to the drawings.
【0014】先ず、自由液面に所定の角度をもって光束
を入射させ、前記自由液面で光束が全反射した場合に於
いて、自由液面が光束に対して相対的に傾斜した時、自
由液面の傾斜方向に対して反射角の変化の感度が相違す
ることを図1、図2に於いて説明する。First, a light beam is incident on the free liquid surface at a predetermined angle, and when the light beam is totally reflected on the free liquid surface, the free liquid surface is inclined relative to the light beam. The difference in the sensitivity of the change of the reflection angle with respect to the inclination direction of the surface will be described with reference to FIGS.
【0015】実際は自由液面が水平を保ち光束の入射方
向が変化するが、以下の説明は、光束の入射方向が一定
とし、自由液面が傾斜したと仮定して説明してある。Actually, the free liquid level is kept horizontal and the incident direction of the light beam changes. However, the following description is based on the assumption that the incident direction of the light beam is constant and the free liquid surface is inclined.
【0016】図中1は自由液面であり、該自由液面1に
入射光束2が角度θで入射したとする。前記自由液面1
と座標軸x,座標軸zとが形成するxz座標平面が略一
致するものとし、又該座標平面に垂直な座標軸をyとす
る。前記入射光束2の光軸は前記座標軸z,座標軸yが
形成する座標平面内に存在するとする。この状態から前
記自由液面1が座標軸xを中心に角度αだけ傾斜したと
すると反射光束3の光軸は前記yz座標平面内を移動し
て、yz座標平面内で反射角がξ1xだけ変化する。この
場合液面変位角αと反射変位角ξ1xとの関係は、ξ1x=
2αとなり、この場合にはxy座標平面内での反射変位
角ξ2xは生じない。図中、14はミラーを示す。In FIG. 1, reference numeral 1 denotes a free liquid surface, and it is assumed that an incident light beam 2 is incident on the free liquid surface 1 at an angle θ. The free liquid level 1
And an xz coordinate plane formed by the coordinate axis x and the coordinate axis z substantially coincide with each other, and a coordinate axis perpendicular to the coordinate plane is defined as y. It is assumed that the optical axis of the incident light beam 2 exists in a coordinate plane formed by the coordinate axes z and y. From this state, if the free liquid surface 1 is inclined by an angle α about the coordinate axis x, the optical axis of the reflected light beam 3 moves in the yz coordinate plane, and the reflection angle changes by ξ1x in the yz coordinate plane. . In this case, the relationship between the liquid surface displacement angle α and the reflected displacement angle ξ1x is ξ1x =
2α, and in this case, the reflection displacement angle ξ2x in the xy coordinate plane does not occur. In the figure, reference numeral 14 denotes a mirror.
【0017】これに対して図2に示す様に、前記自由液
面1が座標軸zを中心に角度αだけ傾斜したとすると前
記反射光束3は前記xy座標平面、前記yz座標平面か
らそれぞれ離反して移動する。従って、前記xy座標平
面、前記yz座標平面それぞれに、反射変位角ξ1zと反
射変位角ξ2zが現れる。更に反射変位角ξ1zと自由液面
1の液面変位角αとの関係は、On the other hand, as shown in FIG. 2, if the free liquid surface 1 is inclined by an angle α about the coordinate axis z, the reflected light flux 3 separates from the xy coordinate plane and the yz coordinate plane, respectively. Move. Accordingly, a reflection displacement angle ξ1z and a reflection displacement angle ξ2z appear on the xy coordinate plane and the yz coordinate plane, respectively. Further, the relationship between the reflection displacement angle ξ1z and the liquid surface displacement angle α of the free liquid surface 1 is as follows.
【0018】[0018]
【数1】 ξ1z= cos-1( cos2 θ cos2α+ sin2 θ) ξ2z=π/2− cos-1((1− cos2α) sinθ cosθ)[Number 1] ξ1z = cos -1 (cos 2 θ cos2α + sin 2 θ) ξ2z = π / 2- cos -1 ((1- cos2α) sinθ cosθ)
【0019】となるが、例えば、α=10′、θ=50
°とすると、ξ2z=1.7″となり、ξ2zは、精度上無
視できる値である。更に、液体透過後の光軸は、液体の
屈折率nとすると、Where α = 10 ′, θ = 50
In this case, ξ2z = 1.7 ″, and ξ2z is a value that can be neglected in terms of precision.
【0020】[0020]
【数2】ξ1x′=2nα ξ1z′=n・ cos-1( cos2 θ cos2α+ sin2 θ)と
なる。21x ′ = 2nαξ1z ′ = n · cos −1 (cos 2 θ cos 2α + sin 2 θ).
【0021】従って、前記反射変位角ξ1x′、反射変位
角ξ1z′とでは前記液面変位角αに対する感度が異な
る。本発明では、この反射変位角ξ1x′と反射変位角ξ
1z′との変位角の感度の相違を光学的手段によって補正
し、同じ感度にすることで全方向に対して常に一定の割
合で偏角する光軸を得る様にする。Therefore, the sensitivity to the liquid surface displacement angle α differs between the reflection displacement angle ξ1x 'and the reflection displacement angle ξ1z'. In the present invention, the reflected displacement angle ξ1x ′ and the reflected displacement angle ξ
The difference in sensitivity of the displacement angle from 1z 'is corrected by optical means, and by setting the same sensitivity, an optical axis which is always deviated at a constant rate in all directions is obtained.
【0022】図3に於いて更に説明する。Further description will be made with reference to FIG.
【0023】図中4は、測定機等機器の本体に設けられ
た液体封入容器であり、該液体封入容器4に封入された
液体によって自由液面1が形成されている。又該自由液
面1には光源6から発した光束をコリメートレンズ5を
介して自由液面1に対して全反射される様に所定の角度
をもって投射しており、該光束の光軸は前記した様にy
z座標平面内に位置させる。In the figure, reference numeral 4 denotes a liquid filling container provided in the main body of a measuring instrument or the like, and a free liquid surface 1 is formed by the liquid filled in the liquid filling container 4. The light beam emitted from the light source 6 is projected onto the free liquid surface 1 at a predetermined angle through the collimating lens 5 so as to be totally reflected on the free liquid surface 1, and the optical axis of the light beam is Y
It is located in the z coordinate plane.
【0024】前記自由液面1が傾斜していない状態で、
該自由液面1で全反射される反射光束3の光軸に沿って
一対のシリンドリカルレンズ7,8を有するシリンドリ
カルレンズ系9を配設する。前記シリンドリカルレンズ
7,8はそれぞれ1方向にのみ曲率を有し、前記シリン
ドリカルレンズ7は焦点距離f1 を有する凸シリンドリ
カルレンズ、シリンドリカルレンズ8は焦点距離f2 を
有する凹シリンドリカルレンズである。In a state where the free liquid level 1 is not inclined,
A cylindrical lens system 9 having a pair of cylindrical lenses 7 and 8 is provided along the optical axis of the reflected light beam 3 totally reflected by the free liquid surface 1. Each of the cylindrical lenses 7 and 8 has a curvature only in one direction. The cylindrical lens 7 is a convex cylindrical lens having a focal length f1, and the cylindrical lens 8 is a concave cylindrical lens having a focal length f2.
【0025】前記シリンドリカルレンズ系9を透過した
光束を受光する様に受光器10を配置する。該受光器1
0は受光部が碁盤状に4分割されており、分割された受
光部10a,10cの出力は差動増幅器11に入力さ
れ、分割された受光部10b,10dの出力は差動増幅
器12に入力される。前記差動増幅器11は反射光束3
の変位角のz軸方向の成分を出力し、前記差動増幅器1
2は反射光束3の変位角のx軸方向の成分を出力し、前
記差動増幅器11と前記差動増幅器12の出力は演算器
13に入力される。該演算器13は前記差動増幅器11
と前記差動増幅器12の出力を基に受光器10での反射
光束の光軸の位置を演算し、前記自由液面1の傾斜方
向、傾斜角αを演算し、演算結果をプリンタ、ディスプ
レイ等の表示装置に表示する。A light receiver 10 is arranged so as to receive the light beam transmitted through the cylindrical lens system 9. The light receiver 1
In the case of 0, the light receiving portion is divided into four in a grid pattern, the outputs of the divided light receiving portions 10a and 10c are input to the differential amplifier 11, and the outputs of the split light receiving portions 10b and 10d are input to the differential amplifier 12. Is done. The differential amplifier 11 has the reflected light beam 3
And outputs the component in the z-axis direction of the displacement angle of the differential amplifier 1
Numeral 2 outputs the component of the displacement angle of the reflected light beam 3 in the x-axis direction, and the outputs of the differential amplifier 11 and the differential amplifier 12 are input to a calculator 13. The arithmetic unit 13 is connected to the differential amplifier 11
Based on the output of the differential amplifier 12 and the position of the optical axis of the light beam reflected by the light receiver 10, the inclination direction and the inclination angle α of the free liquid surface 1 are calculated, and the calculation result is output to a printer, a display, etc. Is displayed on the display device.
【0026】以下作動を説明する。The operation will be described below.
【0027】先ず、図4(A)で示される様に、光束が
シリンドリカルレンズ7の曲率半径方向から入射した場
合の、該反射光束3とシリンドリカルレンズ7の光軸と
成す角、入射角a、前記シリンドリカルレンズ8からの
射出角a′との関係は、First, as shown in FIG. 4A, when a light beam enters from the direction of the radius of curvature of the cylindrical lens 7, an angle between the reflected light beam 3 and the optical axis of the cylindrical lens 7, an incident angle a, The relationship with the exit angle a ′ from the cylindrical lens 8 is as follows:
【0028】[0028]
【数3】a′=(f1 /f2 )aである。## EQU3 ## a '= (f1 / f2) a.
【0029】又、図4(B)で示される様に、光束がシ
リンドリカルレンズ7の曲面の母線を含む平面上から入
射した場合の反射光束3とシリンドリカルレンズ7の光
軸と成す角、入射角a、前記シリンドリカルレンズ8か
らの射出角a′との関係は、As shown in FIG. 4B, the angle between the reflected light beam 3 and the optical axis of the cylindrical lens 7 when the light beam is incident on a plane including the generatrix of the curved surface of the cylindrical lens 7, and the angle of incidence. a, the relationship with the exit angle a ′ from the cylindrical lens 8 is
【0030】[0030]
【数4】a=a′である。## EQU4 ## a = a '.
【0031】ここで、反射光束3がz軸を中心に前記自
由液面1が傾斜した時の反射光束の移動に対しては、前
記シリンドリカルレンズ系9を前記図4(A)で示され
る様に配置し、従って反射光束3がx軸を中心に前記自
由液面1が傾斜した時の反射光束の移動に対しては前記
シリンドリカルレンズ系9の配置は図4(B)で示され
る様に配置する。Here, with respect to the movement of the reflected light beam 3 when the free liquid surface 1 is tilted about the z-axis, the cylindrical lens system 9 is moved as shown in FIG. 4A. Therefore, the arrangement of the cylindrical lens system 9 is as shown in FIG. 4 (B) with respect to the movement of the reflected light beam when the free liquid surface 1 is inclined about the x-axis. Deploy.
【0032】而して、図3に於いて液体への設定入射角
θ=50°、機器の傾き角即ち自由液面1の傾き角α=
10′、液体の屈折率n=1.4とすると、数式2によ
り、自由液面1がx軸を中心に傾斜した場合の反射変位
角ξ1x′と自由液面1がz軸中心に傾斜した場合の反射
変位角ξ1z′は、それぞれξ1x′=28′,ξ1z′=1
8′となる。従って、前記反射変位角ξ1x′と反射変位
角ξ1z′とでは(ξ1x′/ξ1z′)=1.555倍の感
度の差がある。よって、この条件では、Thus, in FIG. 3, the set incident angle θ to the liquid is 50 °, the inclination angle of the apparatus, that is, the inclination angle α of the free liquid surface 1 is
Assuming that 10 ′ and the refractive index of the liquid n = 1.4, the reflection displacement angle ξ1x ′ when the free liquid surface 1 is inclined around the x-axis and the free liquid surface 1 is inclined around the z-axis according to Equation 2. In this case, the reflected displacement angle 1z ′ is ξ1x ′ = 28 ′ and ξ1z ′ = 1, respectively.
8 '. Therefore, there is a sensitivity difference of (ξ1x '/ ξ1z') = 1.555 times between the reflection displacement angle ξ1x 'and the reflection displacement angle ξ1z'. Therefore, in this condition,
【0033】[0033]
【数5】ξ1x′=2nα、ξ1z′=1.286nαとな
る。51x ′ = 2nα and ξ1z ′ = 1.286nα.
【0034】従って、数式aより(f1 /f2 )=2/
1.286であれば、前記シリンドリカルレンズ系9を
透過した光軸の変位角ξ1z′は、1.286nα×2/
1.286=2nαに変換され、シリンドリカルレンズ
系9透過後は、ξ1x′=ξ1z′となり、自由液面1があ
らゆる方向に傾斜しても、この傾斜に対して常に同一の
感度の反射変位角が得られる。Therefore, from the equation (a), (f1 / f2) = 2 /
If 1.286, the displacement angle ξ1z ′ of the optical axis transmitted through the cylindrical lens system 9 is 1.286nα × 2 /
1.286 = 2nα, and after transmission through the cylindrical lens system 9, ξ1x ′ = ξ1z ′. Even if the free liquid surface 1 is inclined in any direction, the reflection displacement angle always has the same sensitivity to this inclination. Is obtained.
【0035】而して、前記受光器10の受光面での位置
の変化は、前記自由液面1の傾斜に対応し、前記受光部
10a,10c,10b,10dの出力差を前記差動増
幅器11、差動増幅器12が検出し、更に前記差動増幅
器11、差動増幅器12の検出結果を前記演算器13が
演算することで、前記自由液面1の傾斜角α、傾斜方向
を測定することができる。The change in the position on the light receiving surface of the light receiver 10 corresponds to the inclination of the free liquid surface 1, and the output difference between the light receiving units 10a, 10c, 10b, and 10d is determined by the differential amplifier. 11, the differential amplifier 12 detects, and the arithmetic unit 13 calculates the detection results of the differential amplifier 11 and the differential amplifier 12, thereby measuring the inclination angle α and the inclination direction of the free liquid surface 1. be able to.
【0036】尚、上記受光器10を4分割した受光部を
有するものに変え、PSD、或はCCD素子を用いても
よい。It is to be noted that the photodetector 10 may be replaced with a photodetector having four divided light sections, and a PSD or a CCD element may be used.
【0037】次に、図3で示した実施例に対して、前記
シリンドリカルレンズ系9を90°回転させ、(f2 /
f1 )=1.555としてもよい。Next, with respect to the embodiment shown in FIG. 3, the cylindrical lens system 9 is rotated by 90 ° to obtain (f 2 /
f1) = 1.555.
【0038】前記シリンドリカルレンズ系9を90°回
転させた場合の反射光束3の入射と射出の関係を図5
(A)(B)で説明する。FIG. 5 shows the relationship between the incidence and emission of the reflected light beam 3 when the cylindrical lens system 9 is rotated by 90 °.
This will be described in (A) and (B).
【0039】前述したと同様、自由液面1に対する反射
光束3の光軸の反射変位角は、自由液面1の傾斜角α、
光束の設定入射角θ、液体の屈折率nとした時、x軸中
心に自由液面1が傾斜した場合、反射変位角ξ1x′=2
nαz軸中心に自由液面1が傾斜した場合、反射変位角
ξ1z′=1.286nαであるから、反射変位角ξ1x′
はシリンドリカルレンズ系9透過後、As described above, the reflection displacement angle of the optical axis of the reflected light beam 3 with respect to the free liquid surface 1 is represented by the inclination angle α of the free liquid surface 1,
When the set incident angle θ of the light beam and the refractive index n of the liquid are set, the reflection displacement angle ξ1x ′ = 2 when the free liquid surface 1 is inclined about the x-axis.
When the free liquid surface 1 is inclined around the center of the nαz axis, the reflection displacement angle z1z ′ = 1.286nα.
Is after transmission through the cylindrical lens system 9,
【0040】[0040]
【数6】 ξ1x′=2nα×1/1.555=1.286nα61x ′ = 2nα × 1 / 1.555 = 1.286nα
【0041】となり、反射変位角ξ1x′はシリンドリカ
ルレンズ系9透過後もそのまま保持されて、Thus, the reflection displacement angle ξ1x 'is maintained as it is after passing through the cylindrical lens system 9,
【0042】[0042]
【数7】ξ1z′=1.286nαとなる。71z ′ = 1.286nα.
【0043】よって、前述した実施例と同様、全ての方
向の入射角の変化に対する受光器10の受光面上での光
束移動量の感度は同じになる。而して、前記受光器10
からの信号を前記差動増幅器11、前記差動増幅器12
を介して前記演算器13に入力し、該演算器13で演算
することで2軸方向の自由液面1の傾斜角α、即ち機器
の傾きを測定することができる。Therefore, as in the above-described embodiment, the sensitivity of the light beam movement amount on the light receiving surface of the light receiver 10 to changes in the incident angle in all directions becomes the same. Thus, the light receiver 10
From the differential amplifier 11 and the differential amplifier 12
The inclination angle α of the free liquid surface 1 in the two axial directions, that is, the inclination of the device, can be measured by inputting to the arithmetic unit 13 through the arithmetic unit 13 and performing the arithmetic operation with the arithmetic unit 13.
【0044】次に、図6、図7により前記液体封入容器
4の具体例を説明する。Next, a specific example of the liquid enclosing container 4 will be described with reference to FIGS.
【0045】前記液体封入容器4は、他のレンズ系と共
に装置本体に固定されるか、或は装置の一部として構成
される。この場合、温度差の生ずる環境での装置の使用
があった場合、例えば室内から屋外へ運び出した場合等
に、液体封入容器4に封入した液体内部に温度分布が生
ずる。液体内部に温度分布が生じると、屈折率も該温度
分布に対応した分布を示す為、液内部で光軸の屈折が生
じてしまう。図6、図7で示す液体封入容器4の具体例
は斯かる不具合を解決する。The liquid enclosing container 4 is fixed to the apparatus main body together with another lens system, or is constituted as a part of the apparatus. In this case, when the device is used in an environment where a temperature difference occurs, for example, when the device is carried out from indoors to outdoors, a temperature distribution occurs inside the liquid sealed in the liquid sealing container 4. If a temperature distribution occurs inside the liquid, the refractive index also shows a distribution corresponding to the temperature distribution, so that the refraction of the optical axis occurs inside the liquid. The specific example of the liquid filling container 4 shown in FIGS. 6 and 7 solves such a problem.
【0046】以下、詳述する。The details will be described below.
【0047】逆台形形状の外ケース20の内部に該外ケ
ース20と相似形の内ケース21を設ける。該内ケース
21の上辺面に沿って平板状の空間22を形成し、又該
空間22に連通する光導入路23、光導出路24を形成
する。該光導入路23の軸心は入射する光束の光軸に一
致させ、又前記光導出路24の軸心は前記自由液面1が
水平の状態での反射光束3の光軸と一致させてある。An inner case 21 similar to the outer case 20 is provided inside the inverted trapezoidal outer case 20. A flat space 22 is formed along the upper side surface of the inner case 21, and a light introduction path 23 and a light extraction path 24 communicating with the space 22 are formed. The axis of the light introduction path 23 coincides with the optical axis of the incident light beam, and the axis of the light exit path 24 coincides with the optical axis of the reflected light beam 3 when the free liquid surface 1 is horizontal. .
【0048】前記空間22の底面に伝熱板25を固着す
る。該伝熱板25は中央に入射光束、反射光束が通過可
能な様に窓孔26を穿設してある。又、前記光導入路2
3と、前記光導出路24それぞれの上端に透明ガラス製
の栓27を固着し、栓27により透明液体28は密閉封
入される。該透明液体28は自由液面を形成する様、封
入量が決定される。The heat transfer plate 25 is fixed to the bottom of the space 22. The heat transfer plate 25 has a window hole 26 formed at the center thereof so that an incident light beam and a reflected light beam can pass therethrough. Further, the light introduction path 2
3 and a stopper 27 made of transparent glass is fixed to the upper end of each of the light guide paths 24, and the stopper 27 hermetically seals a transparent liquid 28. The amount of the transparent liquid 28 is determined so as to form a free liquid surface.
【0049】前記外ケース20は前記内ケース21を収
納すると共に該内ケース21の周囲に所要の囲繞空間2
9を形成する。又、該外ケース20の前記光導入路23
と、前記光導出路24それぞれの軸心が通過する位置に
透明なガラス窓30、ガラス窓31を設ける。又、前記
外ケース20は気密構造として、前記囲繞空間29は真
空とするか或は気体を封入する。The outer case 20 accommodates the inner case 21 and has a required surrounding space 2 around the inner case 21.
9 is formed. Further, the light introducing path 23 of the outer case 20 is
A transparent glass window 30 and a glass window 31 are provided at positions where the respective axes of the light guide paths 24 pass. The outer case 20 has an air-tight structure, and the surrounding space 29 is evacuated or filled with gas.
【0050】更に、前記外ケース20、内ケース21は
外部に対する放熱、吸熱を抑制する為、その材質を合成
樹脂等の熱伝導率の小さい材質とする。Further, the outer case 20 and the inner case 21 are made of a material having a low thermal conductivity such as a synthetic resin in order to suppress heat radiation and heat absorption to the outside.
【0051】前記した様に、透明液体28が封入されて
いる空間22は平板状で薄く、更に底面には伝熱板25
が設けられている為、熱の伝播速度が高められ、透明液
体28の温度変化状態での温度の均一性が向上する。
又、前記囲繞空間29が前記内ケース21に対する熱の
授受に関しての断熱層を形成し、前記透明液体28の温
度変化の抑制、或は温度変化速度を抑制する。As described above, the space 22 in which the transparent liquid 28 is sealed is flat and thin, and the heat transfer plate 25
Is provided, the speed of heat propagation is increased, and the uniformity of the temperature of the transparent liquid 28 in the temperature change state is improved.
Further, the surrounding space 29 forms a heat insulating layer with respect to the transfer of heat to and from the inner case 21, and suppresses the temperature change of the transparent liquid 28 or the temperature change speed.
【0052】而して、透明液体28内部での温度分布差
が生じるのが抑制され、光束の光軸の屈折、又屈折率の
変化に起因する光束の断面形状の変化を防止することが
でき、環境の温度変化に対しても安定性が増大し、測定
精度が向上する。Thus, the occurrence of a difference in temperature distribution inside the transparent liquid 28 is suppressed, and the refraction of the optical axis of the light beam and the change in the sectional shape of the light beam due to the change in the refractive index can be prevented. In addition, the stability is increased with respect to environmental temperature changes, and the measurement accuracy is improved.
【0053】次に、図8は液体封入容器4の他の具体例
を示し、内ケース21の周囲に囲繞空間29を形成する
ことなく、断熱材から成る外ケース20で前記内ケース
21を覆い、該外ケース20により前記内ケース21の
周囲に断熱層を形成したものである。Next, FIG. 8 shows another specific example of the liquid enclosing container 4, in which the inner case 21 is covered with an outer case 20 made of a heat insulating material without forming a surrounding space 29 around the inner case 21. The heat insulation layer is formed around the inner case 21 by the outer case 20.
【0054】尚、液体封入容器4の形状については、上
記実施例に限定されるものでないことは言う迄もない。It is needless to say that the shape of the liquid enclosing container 4 is not limited to the above embodiment.
【0055】[0055]
【発明の効果】以上述べた如く本発明によれば、自由液
面での入射光束の全反射を利用して傾きを検出する傾斜
検知装置で、一軸の光束投射系のみの構成で全ての方向
の傾斜量を検出することができ、又シリンドリカルレン
ズ系による光学的な補正のみで電気的な補正をする必要
がないので構成が簡単で測定精度、信頼性が向上し、更
に温度変化のある環境でも安定した測定を行うことがで
きる。As described above, according to the present invention, an inclination detecting device for detecting an inclination by using the total reflection of an incident light beam on a free liquid surface is provided. It is possible to detect the amount of inclination of the lens, and it is not necessary to make electrical corrections only by optical correction using a cylindrical lens system. Therefore, the configuration is simple and measurement accuracy and reliability are improved. However, stable measurement can be performed.
【図1】自由液面が傾斜した場合の反射光束の反射角の
変化を説明する説明図である。FIG. 1 is an explanatory diagram illustrating a change in a reflection angle of a reflected light beam when a free liquid surface is inclined.
【図2】自由液面が傾斜した場合の反射光束の反射角の
変化を説明する説明図である。FIG. 2 is an explanatory diagram illustrating a change in a reflection angle of a reflected light beam when a free liquid surface is inclined.
【図3】本発明の一実施例の構成図である。FIG. 3 is a configuration diagram of one embodiment of the present invention.
【図4】(A)(B)はシリンドリカルレンズ系に対す
る透過光束の光軸の変化を示す説明図である。FIGS. 4A and 4B are explanatory diagrams showing changes in the optical axis of a transmitted light beam with respect to a cylindrical lens system.
【図5】(A)(B)はシリンドリカルレンズ系に対す
る透過光束の光軸の変化を示す説明図である。FIGS. 5A and 5B are explanatory diagrams showing changes in the optical axis of a transmitted light beam with respect to a cylindrical lens system.
【図6】液体封入容器の具体例を示す正断面図である。FIG. 6 is a front sectional view showing a specific example of the liquid filling container.
【図7】図6のA−A矢視図である。FIG. 7 is a view taken in the direction of arrows AA in FIG. 6;
【図8】液体封入容器の他の具体例を示す正断面図であ
る。FIG. 8 is a front sectional view showing another specific example of the liquid filling container.
【符号の説明】 1 自由液面 2 入射光束 3 反射光束 4 液体封入容器 6 光源 9 シリンドリカルレンズ系 10 受光器 28 透明液体[Description of Signs] 1 Free liquid surface 2 Incident light beam 3 Reflected light beam 4 Liquid enclosure 6 Light source 9 Cylindrical lens system 10 Light receiver 28 Transparent liquid
───────────────────────────────────────────────────── フロントページの続き (72)発明者 古平 純一 東京都板橋区蓮沼町75番1号 株式会社 トプコン内 (56)参考文献 特開 昭49−127657(JP,A) 特開 昭60−169706(JP,A) 特開 昭60−183511(JP,A) 特開 昭60−232502(JP,A) 特開 昭61−108908(JP,A) 特開 昭61−204515(JP,A) 特開 昭62−266447(JP,A) 特開 昭62−274211(JP,A) 特開 昭64−50908(JP,A) 特開 平1−145642(JP,A) 特開 平5−256647(JP,A) 実開 昭54−91860(JP,U) 実開 平3−4213(JP,U) 特公 昭45−4208(JP,B1) (58)調査した分野(Int.Cl.7,DB名) G01C 9/00 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junichi Kodaira 75-1 Hasunuma-cho, Itabashi-ku, Tokyo Inside Topcon Corporation (56) References JP-A-49-127657 (JP, A) JP-A-60-169706 (JP, A) JP-A-60-183511 (JP, A) JP-A-60-232502 (JP, A) JP-A-61-108908 (JP, A) JP-A-61-204515 (JP, A) JP-A-62-266447 (JP, A) JP-A-62-274211 (JP, A) JP-A-64-50908 (JP, A) JP-A-1-1455642 (JP, A) JP-A-5-256647 (JP, A) JP, A) JP-A 54-91860 (JP, U) JP-A 3-4213 (JP, U) JP-B 45-4208 (JP, B1) (58) Fields surveyed (Int. Cl. 7 , (DB name) G01C 9/00
Claims (4)
た液体封入容器と、前記自由液面で全反射させる様光束
を該自由液面に所定の角度で投射する投光系と、前記自
由液面で反射された光束を透過させるシリンドリカルレ
ンズ系と、該シリンドリカルレンズ系を透過した反射光
束を受光する受光器を有し、該受光器の受光面での反射
光束の受光位置で自由液面の傾斜量を検知する様にした
ことを特徴とする傾斜検知装置。A liquid-filled container filled with a transparent liquid so as to form a free liquid surface; a light projecting system for projecting a light beam to be totally reflected at the free liquid surface onto the free liquid surface at a predetermined angle; A cylindrical lens system for transmitting the light beam reflected by the free liquid surface; and a light receiving device for receiving the reflected light beam transmitted through the cylindrical lens system, and the free liquid is received at the light receiving position of the reflected light beam on the light receiving surface of the light receiving device. An inclination detecting device for detecting an amount of inclination of a surface.
の傾斜検知装置。2. A plate-shaped space containing a transparent liquid.
Tilt detection device.
2の傾斜検知装置。3. The inclination detecting device according to claim 2, wherein a heat transfer plate is provided on a bottom surface of the plate-shaped space.
熱層を形成した請求項1の傾斜検知装置。4. The tilt detecting device according to claim 1, wherein a heat insulating layer is formed around the inner case filled with the transparent liquid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32729092A JP3210450B2 (en) | 1992-11-12 | 1992-11-12 | Tilt detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32729092A JP3210450B2 (en) | 1992-11-12 | 1992-11-12 | Tilt detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06147892A JPH06147892A (en) | 1994-05-27 |
JP3210450B2 true JP3210450B2 (en) | 2001-09-17 |
Family
ID=18197481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32729092A Expired - Fee Related JP3210450B2 (en) | 1992-11-12 | 1992-11-12 | Tilt detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3210450B2 (en) |
-
1992
- 1992-11-12 JP JP32729092A patent/JP3210450B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06147892A (en) | 1994-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10444300B2 (en) | Magnetic field measuring device and method for manufacturing magnetic field measuring device | |
EP0626561A1 (en) | Automatic inclination angle compensator | |
US4307516A (en) | Directional two-axis differential optical inclinometer | |
EP0802396B2 (en) | Inclination sensor and surveying instrument using the same | |
EP2793042B1 (en) | Positioning device comprising a light beam | |
US5847820A (en) | Laser apparatus for sensing rotational orientation and levelness | |
US5052800A (en) | Boresighting method and apparatus | |
EP0694758A1 (en) | Automatic tilt angle compensator and tilt detector | |
EP0797071A2 (en) | Automatic inclination correction for a laser beam surveying instrument | |
US5704130A (en) | Measuring instrument | |
JP3210450B2 (en) | Tilt detector | |
JP3210451B2 (en) | Tilt detector | |
CN207832205U (en) | A kind of caliberating device of star sensor benchmark prism square installation error | |
CN106247992A (en) | A kind of high accuracy, wide scope and big working distance autocollimation and method | |
US4600304A (en) | Optical level | |
CN108020244A (en) | A kind of caliberating device and method of star sensor benchmark prism square installation error | |
JP3228578B2 (en) | Automatic vertical angle compensator | |
JP3228577B2 (en) | Automatic vertical angle compensator | |
EP0081651A2 (en) | Three-axis angle sensor | |
JP2004012203A (en) | Optical inclination angle detecting device | |
RU2204116C2 (en) | Device transmitting horizontal direction from one level to another level | |
SU1523907A1 (en) | Spherometer | |
CN106323200A (en) | Laser large working distance auto-collimation device and method | |
JPH10176927A (en) | Inclination sensor | |
RU2122227C1 (en) | Device for adjustment of composite spherical mirror |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080713 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080713 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090713 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |