JP3210139B2 - Magnetoresistive magnetic head - Google Patents
Magnetoresistive magnetic headInfo
- Publication number
- JP3210139B2 JP3210139B2 JP14050093A JP14050093A JP3210139B2 JP 3210139 B2 JP3210139 B2 JP 3210139B2 JP 14050093 A JP14050093 A JP 14050093A JP 14050093 A JP14050093 A JP 14050093A JP 3210139 B2 JP3210139 B2 JP 3210139B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- magnetoresistive
- insulating layer
- recording
- magnetoresistive element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Magnetic Heads (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は磁気記録再生装置に用い
られる磁気抵抗効果型磁気ヘッドおよびその製造方法に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive head used in a magnetic recording / reproducing apparatus and a method of manufacturing the same.
【0002】[0002]
【従来の技術】近年、コンピューターの外部記録装置で
は、小型大容量化が望まれるようになってきたが、磁気
記録を用いた外部記録装置の小型大容量化を実現するた
めには、線記録密度の向上以外に、トラック密度の向上
も必要になってきている。これらの要求に対して現在で
は媒体速度に出力が依存せず高出力が得られ、さらに高
トラック密度が得られる磁気抵抗素子を用いた磁気抵抗
効果型磁気ヘッドが利用されるようになってきた。2. Description of the Related Art In recent years, there has been a demand for an external recording device for a computer to have a small size and a large capacity. However, in order to realize a small and large capacity of an external recording device using magnetic recording, linear recording is required. In addition to increasing the density, it is also necessary to increase the track density. In response to these demands, a magnetoresistive effect type magnetic head using a magnetoresistive element capable of obtaining a high output without depending on the medium speed and obtaining a high track density has been used at present. .
【0003】以下に従来の磁気抵抗素子を用いた磁気抵
抗効果型磁気ヘッドおよびその製造方法について説明す
る。図6は磁気記録媒体側からみた磁気抵抗効果型磁気
ヘッドの構成図である。1は磁気抵抗素子部であって、
下部シールド3上に形成された下部絶縁層2上に形成さ
れている。下部絶縁層2は磁気抵抗素子部1と下部シー
ルド3を磁気的に分離する役目を持ち、SiO2やAl2O3 な
どの酸化物を蒸着あるいはスパッタ等の真空成膜法によ
り成膜する。これらの下部絶縁層2の上に磁気抵抗素子
部1を蒸着あるいはスパッタ等の真空成膜法により成膜
する。磁気抵抗素子部1は外部磁界に対し抵抗変化を示
す素子であり Fe-Niの合金や Co-Niの合金が使用され、
これらの膜は外部磁気に対し感度を高めるために数十nm
以下の特に薄い膜が用いられる。磁気抵抗素子部1は軟
磁性バイアス膜、非磁性膜、磁気抵抗膜で構成され真空
蒸着法、スパッタ法、イオンビームスパッタ法などの真
空成膜法によって成膜される。この磁気抵抗素子部1に
は素子部に電流を供給しその電圧変化を検知するための
導体層5が磁束検知幅A外の部分で接触している。導体
層5には抵抗値の低い良導体としてAu, Al, Cu,Wある
いはそれらの積層膜などが用いられ、真空蒸着法、スパ
ッタ法、イオンビームスパッタ法、CVD法などの真空
成膜法によって成膜される。A conventional magnetoresistive head using a magnetoresistive element and a method of manufacturing the same will be described below. FIG. 6 is a configuration diagram of the magnetoresistive head as viewed from the magnetic recording medium side. 1 is a magnetoresistive element portion,
It is formed on the lower insulating layer 2 formed on the lower shield 3. The lower insulating layer 2 has a role of magnetically separating the magnetoresistive element portion 1 and the lower shield 3, and is formed by depositing an oxide such as SiO 2 or Al 2 O 3 by a vacuum deposition method such as evaporation or sputtering. The magnetoresistive element 1 is formed on the lower insulating layer 2 by vacuum deposition such as evaporation or sputtering. The magnetoresistive element section 1 is an element that exhibits a change in resistance to an external magnetic field, and is made of an Fe-Ni alloy or a Co-Ni alloy.
These films are tens of nanometers to increase sensitivity to external magnetism.
The following particularly thin films are used: The magnetoresistive element section 1 is composed of a soft magnetic bias film, a nonmagnetic film, and a magnetoresistive film, and is formed by a vacuum film forming method such as a vacuum deposition method, a sputtering method, and an ion beam sputtering method. A conductor layer 5 for supplying a current to the element portion and detecting a change in the voltage is in contact with the magnetoresistive element portion 1 at a portion outside the magnetic flux detection width A. For the conductor layer 5, Au, Al, Cu, W or a laminated film thereof is used as a good conductor having a low resistance value, and is formed by a vacuum film forming method such as a vacuum evaporation method, a sputtering method, an ion beam sputtering method, and a CVD method. Filmed.
【0004】こうして形成された磁気抵抗効果素子にお
いては、供給した電流によって軟磁性バイアス膜が磁化
し、この磁化が磁気抵抗膜の磁化を所定の角度に傾ける
バイアスとなるため、軟磁性バイアス膜と磁気抵抗膜の
飽和磁束密度Bsと膜厚δはバイアスが最適となるよう
に両膜のBs*δの比が決定されている。したがって軟
磁性バイアス膜によって磁気抵抗膜を安定かつ最適にバ
イアスするには、軟磁性バイアス膜を電流による磁界で
飽和させる必要があり、最適バイアスとなる最小電流値
は軟磁性バイアス膜の異方性磁界Hk以上の磁界を発生
する電流値となる。このことは再生出力波形の上下対称
性に現れており、図10に示すようにヘッドのセンス電
流を大きくしていくと出力波形の上下対称性は改善さ
れ、センス電流により発生した磁界が軟磁性バイアス膜
のHk以上に達し飽和した以降は波形の上下比が100
%で安定している。In the magnetoresistive element formed as described above, the soft magnetic bias film is magnetized by the supplied current, and the magnetization becomes a bias for inclining the magnetization of the magnetoresistive film at a predetermined angle. The ratio of Bs * δ between the saturation magnetic flux density Bs and the film thickness δ of the magnetoresistive films is determined so that the bias is optimal. Therefore, in order to bias the magnetoresistive film stably and optimally with the soft magnetic bias film, it is necessary to saturate the soft magnetic bias film with the magnetic field due to the current. A current value that generates a magnetic field equal to or greater than the magnetic field Hk. This is reflected in the vertical symmetry of the reproduced output waveform. As shown in FIG. 10, increasing the sense current of the head improves the vertical symmetry of the output waveform, and the magnetic field generated by the sense current becomes soft magnetic. After the bias film reaches Hk or more and saturates, the vertical ratio of the waveform becomes 100
It is stable at%.
【0005】こうして形成されたこれらの磁気抵抗素子
部1の上には磁気抵抗素子保護用の絶縁層4および導体
層5の上に上部絶縁層6をSiO2やAl2O3 などの酸化物を
蒸着あるいはスパッタ等の真空蒸着法により成膜する。
その後、これら上部絶縁層6の上に上部シールド7とし
て少なくとも磁気抵抗素子の磁束検知幅A以上の幅を持
つパーマロイ、センダスト等の軟磁性材料を蒸着あるい
はスパッタ等の真空蒸着法あるいはメッキ法により成膜
する。[0005] On the magnetoresistive element portion 1 thus formed, on the insulating layer 4 for protecting the magnetoresistive element and on the conductor layer 5, an upper insulating layer 6 is formed by an oxide such as SiO 2 or Al 2 O 3 . Is formed by vacuum evaporation such as evaporation or sputtering.
Thereafter, a soft magnetic material such as permalloy, sendust or the like having a width equal to or greater than the magnetic flux detection width A of the magnetoresistive element is formed as an upper shield 7 on the upper insulating layer 6 by a vacuum evaporation method such as evaporation or sputtering or a plating method. Film.
【0006】これらの上部シールド7の上面に記録ギャ
ップ8をSiO2やAl2O3 などの酸化物を蒸着あるいはスパ
ッタ等の真空蒸着法により成膜する。この記録ギャップ
8の上に記録コア9をパーマロイ、センダスト等の軟磁
性材料を蒸着あるいはスパッタ等の真空蒸着法あるいは
メッキ法により成膜し、所定の形状に物理的あるいは化
学的方法によって食刻される。図6において、再生を行
う磁気抵抗素子部1の磁束検知幅はAで示される幅であ
り、記録を行う記録コア幅Bであり、記録はこの記録コ
ア9と上部シールド7間のCで示される領域で行われ
る。この構造では磁気抵抗素子部1および導体層5の厚
みによって発生する段差によって磁気抵抗素子の磁束検
知幅Aにおいて周波数特性を左右する下部シールド3と
上部シールド7とのシールド間距離がDの場合とEの場
合が混在することになる。A recording gap 8 is formed on the upper surface of the upper shield 7 by vacuum deposition such as evaporation or sputtering of an oxide such as SiO 2 or Al 2 O 3 . On the recording gap 8, a recording core 9 is formed by depositing a soft magnetic material such as permalloy or sendust by a vacuum deposition method such as evaporation or sputtering or a plating method, and is etched into a predetermined shape by a physical or chemical method. You. In FIG. 6, the magnetic flux detection width of the magnetoresistive element portion 1 for reproducing is the width indicated by A, the recording core width B for recording, and the recording is indicated by C between the recording core 9 and the upper shield 7. Is performed in the area where In this structure, the distance between the lower shield 3 and the upper shield 7 which affects the frequency characteristics in the magnetic flux detection width A of the magnetoresistive element due to the step generated by the thickness of the magnetoresistive element portion 1 and the conductor layer 5 is D. The case of E is mixed.
【0007】さらに記録はC領域の記録コア幅Bの領域
で行うが、図中に示されるように記録ギャップ8は一直
線になっていない。これらの素子部の斜視図を図7に示
す。Further, recording is performed in the area of the recording core width B in the area C, but the recording gap 8 is not straight as shown in the figure. FIG. 7 shows a perspective view of these element portions.
【0008】これらの素子の製造方法は図8(a)〜
(d)、図9(a)〜(c)に示す通りである。図8
(a)に示される様に下部シールド3の上に下部絶縁層
2を設けその上に磁気抵抗素子部1を形成し、次に図8
(b)に示される様に磁気抵抗素子保護用の絶縁層4を
設け、導体層5を成膜する(図8(c))。その後上部
絶縁層6を設け(図8(d))、上部シールド7を成膜
する(図9(a))。その上に記録ギャップ8を成膜し
(図9(b))、記録コア9をその上に形成する(図9
(c))。この磁気抵抗効果型磁気ヘッドにより記録再
生を行い出力波形の上下比のセンス電流依存性を測定し
た結果を図10のaに、また出力の線記録密度依存性を
測定した結果を図11のbに示す。FIGS. 8A to 8C show a method of manufacturing these elements.
(D), as shown in FIGS. 9 (a) to 9 (c). FIG.
8A, a lower insulating layer 2 is provided on a lower shield 3 and a magnetoresistive element 1 is formed thereon.
As shown in (b), an insulating layer 4 for protecting the magnetoresistive element is provided, and a conductor layer 5 is formed (FIG. 8C). Thereafter, an upper insulating layer 6 is provided (FIG. 8D), and an upper shield 7 is formed (FIG. 9A). A recording gap 8 is formed thereon (FIG. 9B), and a recording core 9 is formed thereon (FIG. 9).
(C)). FIG. 10A shows the result of measuring the sense current dependency of the upper / lower ratio of the output waveform by performing recording / reproduction with this magnetoresistive head, and FIG. 11B shows the result of measuring the linear recording density dependency of the output. Shown in
【0009】[0009]
【発明が解決しようとする課題】しかしながら上記従来
の構成では、良好な再生波形の上下対称性が実現される
最適センス電流値が大きいという問題と、磁束検知領域
において導体層5の段差Fにより、図6にDおよびEで
示される2種類のシールド間距離が存在し、この構造に
おいて再生される波形は2種類の再生波形の重畳により
得られるため、高記録密度において波形干渉のため出力
が著しく減少し、また磁気抵抗素子部1の段差により発
生する段差F(図6)は記録コア9が幅広くなり段差部
にかかると磁束検知幅A上の段差Fと共に記録ギャップ
8の直線性を阻害し、やはり高記録密度において波形干
渉のため出力が著しく減少するという問題点を有してい
た。However, in the above-mentioned conventional configuration, the problem that the optimum sense current value for realizing the good vertical symmetry of the reproduced waveform is large and the step F of the conductor layer 5 in the magnetic flux detection region are caused by the following problems. In FIG. 6, there are two types of shield distances indicated by D and E, and the waveform reproduced in this structure is obtained by superposition of two types of reproduced waveforms, so that the output is remarkable due to waveform interference at a high recording density. The step F (FIG. 6) caused by the step of the magnetoresistive element 1 is widened and the recording core 9 is widened, and if the step F is applied to the step, the linearity of the recording gap 8 is impaired together with the step F on the magnetic flux detection width A. Also, there is a problem that the output is significantly reduced due to waveform interference at a high recording density.
【0010】本発明は前記従来の課題を解決するもの
で、最適センス電流値を小さくしかつ高記録密度におい
ても高分解能を得ることができる磁気抵抗効果型磁気ヘ
ッドおよびその製造方法を提供することを目的とする。An object of the present invention is to provide a magnetoresistive magnetic head capable of reducing an optimum sense current value and obtaining high resolution even at a high recording density, and a method of manufacturing the same. With the goal.
【0011】[0011]
【課題を解決するための手段】この目的を達成するため
に本発明の磁気抵抗効果型磁気ヘッドは、下部シールド
層上に第1の絶縁層を介して磁気抵抗効果膜を積層し、
前記磁気抵抗効果膜に非磁性絶縁層を介して軟磁性バイ
アス膜を設けた磁気抵抗効果型磁気ヘッドであって、前
記軟磁性バイアス膜の媒体対向面における長さを前記磁
気抵抗効果膜の長さより短くするとともに、前記軟磁性
バイアス膜上に設けた第2の絶縁層と、前記磁気抵抗効
果膜上に形成された導体層とを有し、前記第2の絶縁層
と前記導体層を同じ高さにし、前記第2の絶縁層と前記
導体層上に第3の絶縁層を介して上部シールド層を設
け、前記上部シールド層と前記下部シールド層との間の
間隔を均一とした。 In order to achieve this object, a magnetoresistive head according to the present invention comprises a lower shield.
Laminating a magnetoresistive film on the layer via a first insulating layer,
A soft magnetic bias is applied to the magnetoresistive film via a non-magnetic insulating layer.
A magneto-resistance effect type magnetic head provided with an ass film, wherein a length of the soft magnetic bias film on the medium facing surface is shorter than a length of the magneto-resistance effect film, and a second magnetic head is provided on the soft magnetic bias film . 2 and a conductor layer formed on the magnetoresistive film, wherein the second insulation layer and the conductor layer have the same height, and the second insulation layer and the second insulation layer have the same height.
An upper shield layer is provided on the conductor layer via a third insulating layer.
Between the upper shield layer and the lower shield layer.
The intervals were uniform.
【0012】[0012]
【作用】本発明は上記の構成により、磁気抵抗素子部の
軟磁性バイアス膜の異方性磁界を小さくしかつ磁束検知
領域における磁気シールド間隔を一定に保つことが出
来、しかもその上部に形成する記録ギャップを直線的に
形成でき、これにより最適センス電流値を小さくでき、
高記録密度において高い分解能を得ることができる。According to the present invention, the anisotropic magnetic field of the soft magnetic bias film of the magnetoresistive element portion can be reduced and the magnetic shield interval in the magnetic flux detecting region can be kept constant. The recording gap can be formed linearly, thereby reducing the optimal sense current value.
High resolution can be obtained at a high recording density.
【0013】[0013]
【実施例】以下、本発明の実施例を図面を参照しながら
説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0014】図1は磁気記録媒体側からみた磁気抵抗効
果型磁気ヘッドの構成図である。下部シールド3は少な
くとも磁気抵抗素子の磁束検知幅A以上の幅を持ちパー
マロイ、センダスト等の軟磁性材料を真空成膜法あるい
はメッキ法により成膜したものか、フェライト等の軟磁
性材料が用いられる。下部シールド3上は下部絶縁層2
であり磁気抵抗素子部1と下部シールド3を磁気的に分
離する役目を持ち、SiO2やAl2O3 などの酸化物を蒸着あ
るいはスパッタ等の真空蒸着法により成膜される。FIG. 1 is a configuration diagram of a magneto-resistance effect type magnetic head viewed from a magnetic recording medium side. The lower shield 3 has a width at least equal to the magnetic flux detection width A of the magnetoresistive element, and is formed of a soft magnetic material such as permalloy or sendust by a vacuum film forming method or a plating method, or a soft magnetic material such as ferrite. . Lower insulating layer 2 on lower shield 3
And has a role of magnetically separating the magnetoresistive element portion 1 and the lower shield 3, and is formed by depositing an oxide such as SiO 2 or Al 2 O 3 by vacuum deposition such as evaporation or sputtering.
【0015】これらの下部絶縁層2の上に磁気抵抗素子
部1を蒸着あるいはスパッタ等の真空蒸着法により磁気
抵抗膜12、非磁性膜13、軟磁性バイアス膜14の順
に成膜する。磁気抵抗素子部1は外部磁界に対し抵抗変
化を示す素子であり磁性材としてFe-Ni 系の合金やCo-N
i 系の合金等が使用され、これらの膜は外部磁界に対し
感度を高めるため数十nm以下の特に薄い膜が用いられ、
真空蒸着法、スパッタ法、イオンビームスパッタ法など
の真空成膜法によって成膜される。その上に磁気抵抗素
子部1に電流を供給しその電圧変化を検知するための導
体層5が磁気抵抗素子の検知幅を除いて形成される。導
体層5には抵抗値の低い良導体としてAu, Al, Cu,Wあ
るいはそれらの積層膜などが用いられ、真空蒸着法、ス
パッタ法、イオンビームスパッタ法、CVD法などの真
空成膜法によって成膜される。On the lower insulating layer 2, the magnetoresistive element portion 1 is formed in the order of a magnetoresistive film 12, a nonmagnetic film 13, and a soft magnetic bias film 14 by vacuum evaporation such as evaporation or sputtering. The magnetoresistive element 1 is an element that exhibits a change in resistance to an external magnetic field.
i-based alloys and the like are used, and these films are particularly thin films of several tens nm or less in order to increase sensitivity to an external magnetic field.
The film is formed by a vacuum film forming method such as a vacuum evaporation method, a sputtering method, and an ion beam sputtering method. A conductor layer 5 for supplying a current to the magnetoresistive element section 1 and detecting a change in the voltage is formed thereon except for the detection width of the magnetoresistive element. For the conductor layer 5, Au, Al, Cu, W or a laminated film thereof is used as a good conductor having a low resistance value, and is formed by a vacuum film forming method such as a vacuum evaporation method, a sputtering method, an ion beam sputtering method, and a CVD method. Filmed.
【0016】これら磁気抵抗素子部1および導体層5の
上に上部絶縁層6としてSiO2やAl2O 3 などの酸化物を蒸
着あるいはスパッタ等の真空蒸着法により形成する。そ
の後、これら上部絶縁層6の上に上部シールド7として
少なくとも磁気抵抗素子の磁束検知幅A以上の幅を持ち
パーマロイ、センダスト等の軟磁性材料を蒸着あるいは
スパッタ等の真空蒸着法あるいはメッキ法により成膜す
る。これらの上部シールド7の上面に記録ギャップ8を
SiO2やAl2O3 などの酸化物を蒸着あるいはスパッタ等の
真空蒸着法により成膜する。次にこの記録ギャップ8の
上に記録コア9をパーマロイ、センダスト等の軟磁性材
料を蒸着あるいはスパッタ等の真空蒸着法あるいはメッ
キ法により成膜し、所定の形状に物理的あるいは化学的
方法によって食刻される。The magnetoresistive element portion 1 and the conductor layer 5
SiO as upper insulating layer 6TwoAnd AlTwoO ThreeSteam oxides
It is formed by vacuum deposition such as deposition or sputtering. So
Then, as an upper shield 7 on these upper insulating layers 6
It has a width at least equal to the magnetic flux detection width A of the magnetoresistive element.
Vapor deposition of soft magnetic materials such as permalloy and sendust
Film formation by vacuum deposition method such as sputtering or plating method
You. A recording gap 8 is formed on the upper surface of these upper shields 7.
SiOTwoAnd AlTwoOThreeSuch as evaporation or sputtering of oxides
The film is formed by a vacuum deposition method. Next, the recording gap 8
The recording core 9 is made of a soft magnetic material such as permalloy or sendust.
Vacuum deposition method such as evaporation or sputtering
Films are formed by the key method and physically or chemically formed into a predetermined shape.
Engraved by the method.
【0017】図1において、再生を行う磁気抵抗素子部
1の磁束検知幅はAで示される幅であり、記録を行う記
録コア幅はBであり、記録はこの記録コア幅Bと上部シ
ールド7の間のCで示される領域で行われる。この構造
では磁気抵抗素子部1および導体層5の厚みによって発
生する段差によっておよび磁気抵抗素子の磁束検知幅A
において周波数特性を左右するシールド間距離がDの均
一な距離となる。さらに記録は記録コア幅BのCの領域
で行うが、図中に示されるように記録ギャップ8は一直
線である。これらの素子部の斜視図を図2に示す。In FIG. 1, the magnetic flux detection width of the magnetoresistive element portion 1 for performing reproduction is a width indicated by A, the recording core width for performing recording is B, and recording is performed between the recording core width B and the upper shield 7. Is performed in the area indicated by C between In this structure, a step generated by the thickness of the magnetoresistive element portion 1 and the conductor layer 5 and a magnetic flux detection width A of the magnetoresistive element
In this case, the distance between the shields that affects the frequency characteristics is a uniform distance of D. Further, recording is performed in the area of C having the recording core width B, and the recording gap 8 is straight as shown in the figure. FIG. 2 shows a perspective view of these element portions.
【0018】これらの素子の製造方法は図3(a)〜
(e)および図4(a)〜(e)に示す通りである。図
3(a)に示される様に下部シールド3の上に下部絶縁
層2を設け、その上に磁気抵抗素子部1を磁気抵抗素子
膜、非磁性膜13、軟磁性バイアス膜14の順に形成
し、次に全体に酸化物の絶縁層4を蒸着あるいはスパッ
タ等の真空成膜法により所定の厚さに形成し、食刻によ
り所定の形状に加工する。次に図3(b)に示すように
導体層5との接点となる部分を除いて食刻阻止材10を
形成後、接点部の絶縁層4を食刻により除去し、更に図
3(c)に示すように食刻阻止材10を除去する。この
食刻阻止材10には一般的に写真製版技術に使用される
感光性樹脂が用いられる。The method of manufacturing these devices is shown in FIGS.
4 (e) and FIGS. 4 (a) to 4 (e). As shown in FIG. 3A, a lower insulating layer 2 is provided on a lower shield 3, and a magnetoresistive element portion 1 is formed thereon in the order of a magnetoresistive element film, a nonmagnetic film 13, and a soft magnetic bias film 14. Next, an oxide insulating layer 4 is entirely formed to a predetermined thickness by a vacuum film forming method such as vapor deposition or sputtering, and is processed into a predetermined shape by etching. Next, as shown in FIG. 3 (b), after the etching prevention material 10 is formed except for the portion which becomes the contact with the conductor layer 5, the insulating layer 4 at the contact portion is removed by etching. The etching stopper 10 is removed as shown in FIG. A photosensitive resin generally used in photolithography is used for the etching stopper 10.
【0019】その後、図3(d)に示すように磁気抵抗
素子部1の導体層5との接点部分の軟磁性バイアス膜1
4と非磁性膜13を除去するために全体を食刻するが、
この時酸化物である絶縁層4と金属である磁気抵抗素子
部1の食刻速度比は1:2程度であるので、絶縁層4が
この食刻により磁気抵抗膜12と等しい厚さで残るよう
に決定する。また、この食刻速度比は食刻条件によって
変化するので磁気抵抗素子膜の厚さによって絶縁層厚さ
とともに各種選択可能である。Thereafter, as shown in FIG. 3D, the soft magnetic bias film 1 at a contact portion with the conductor layer 5 of the magnetoresistive element portion 1 is formed.
4 and the entire surface is etched to remove the non-magnetic film 13,
At this time, since the etching speed ratio of the oxide insulating layer 4 and the metal magnetoresistive element 1 is about 1: 2, the insulating layer 4 remains at the same thickness as the magnetoresistive film 12 by this etching. To be determined. Since the etching speed ratio changes depending on the etching conditions, various selections can be made together with the thickness of the insulating layer depending on the thickness of the magnetoresistive element film.
【0020】その後、導体層5を絶縁層4と等しい高さ
まで成膜し(図3(e))、その上に食刻阻止材11を
磁気抵抗素子の導電体の所定の形状に形成する(図4
(a))。更に、食刻により導体層5の不要な部分を除
去し食刻阻止材11を除去することによって、図4
(b)に示すような段差の無い平坦面が得られる。Thereafter, the conductor layer 5 is formed to a height equal to that of the insulating layer 4 (FIG. 3E), and an etching stopper 11 is formed thereon in a predetermined shape of the conductor of the magnetoresistive element (FIG. 3E). FIG.
(A)). Further, by removing unnecessary portions of the conductor layer 5 by etching and removing the etching preventing material 11, FIG.
A flat surface without a step as shown in FIG.
【0021】図5は本実施例と従来例の磁気抵抗素子を
示している。従来構成であれば、図5(b)の様に磁気
抵抗素子は、磁気抵抗膜12、非磁性膜13、軟磁性バ
イアス膜14の順に積層され、磁気抵抗素子の検知幅の
絶縁層4を形成後、導体層5を形成するため磁気抵抗膜
12と軟磁性バイアス膜14の形状が等しくなって膜の
縦横比が略10:1であり、かつその上に絶縁層4を形
成する面に凹凸を生じていたのに対して、本実施例の構
成では、図5(a)に示すように磁気抵抗膜12、非磁
性膜13、軟磁性バイアス膜14の順に積層し、磁気抵
抗素子の検知幅の絶縁層4を形成後に導体層5の接点部
分の軟磁性バイアス膜14と非磁性膜13を食刻により
除去し、更に絶縁層4と同等の厚さの導体層5を形成
し、その不用部分を食刻により取り除くため、軟磁性バ
イアス膜14の導体層5との接点部分が除去できるので
膜の縦横比略1:1であり、かつその上の絶縁層4を形
成する面が平坦になっている。そのため従来は軟磁性バ
イアス膜14の異方性磁界Hkが膜形状の影響により大
きくなっていたのに対し、本実施例では膜形状に起因す
る形状異方性の影響が無いので異方性磁界Hkの小さい
軟磁性バイアス膜14が得られる。FIG. 5 shows a magnetoresistive element of this embodiment and a conventional example. In the conventional configuration, as shown in FIG. 5B, the magnetoresistive element is laminated in the order of the magnetoresistive film 12, the non-magnetic film 13, and the soft magnetic bias film 14, and the insulating layer 4 having the detection width of the magnetoresistive element is formed. After the formation, in order to form the conductor layer 5, the shapes of the magnetoresistive film 12 and the soft magnetic bias film 14 become equal, the aspect ratio of the film is approximately 10: 1, and the surface on which the insulating layer 4 is formed is formed. On the contrary, in the configuration of the present embodiment, the magnetoresistive film 12, the nonmagnetic film 13, and the soft magnetic bias film 14 are stacked in this order, as shown in FIG. After forming the insulating layer 4 having the detection width, the soft magnetic bias film 14 and the nonmagnetic film 13 at the contact portion of the conductive layer 5 are removed by etching, and the conductive layer 5 having the same thickness as the insulating layer 4 is formed. In order to remove the unnecessary portion by etching, a contact between the soft magnetic bias film 14 and the conductor layer 5 is formed. Since minute can be removed film aspect ratio approximately 1: 1 and the surface forming an insulating layer 4 thereon is flat. For this reason, the anisotropic magnetic field Hk of the soft magnetic bias film 14 has conventionally been increased by the influence of the film shape, but in the present embodiment, there is no influence of the shape anisotropy caused by the film shape. A soft magnetic bias film 14 having a small Hk is obtained.
【0022】その後上部絶縁層6を設け(図4
(c))、上部シールド7を成膜する(図4(d))。
更にその上に記録ギャップ8を成膜し、記録コア9をそ
の上に形成する(図4(e))。この様な工法をとるこ
とにより磁気抵抗素子の磁束検知幅Aにおいてシールド
間間隔が均一な構造が得られ、さらにその上方に形成さ
れる記録ギャップ8を直線状に形成出来るようになる。Thereafter, an upper insulating layer 6 is provided (FIG. 4).
(C)), the upper shield 7 is formed (FIG. 4D).
Further, a recording gap 8 is formed thereon, and a recording core 9 is formed thereon (FIG. 4E). By adopting such a method, a structure in which the gap between the shields is uniform in the magnetic flux detection width A of the magnetoresistive element can be obtained, and the recording gap 8 formed thereabove can be formed linearly.
【0023】この磁気抵抗効果型磁気ヘッドにより記録
再生を行い、再生波形の上下比のセンス電流依存性を測
定した結果を図10のcに、また出力の線記録密度特性
を測定した結果を図11のdに示す。本実施例によって
作成した磁気抵抗効果型磁気ヘッドは、図10により軟
磁性バイアス膜14の形状が略1:1になり形状異方性
の影響が無いので膜の異方性磁界Hkが小さくなったた
め最適センス電流値が小さくなり、更に図11により磁
気抵抗素子の検知領域が平坦でかつ記録ギャップ8も平
坦であるので波形干渉による出力低下が減少したため高
記録密度での高分解能が得られたことがわかる。FIG. 10C shows the result of measuring the sense current dependency of the up / down ratio of the reproduced waveform, and FIG. 10C shows the result of measuring the linear recording density characteristic of the output. This is shown in 11d. In the magnetoresistive head of this embodiment, the shape of the soft magnetic bias film 14 is approximately 1: 1 as shown in FIG. 10 and there is no influence of the shape anisotropy. Therefore, the optimum sense current value was reduced, and furthermore, the detection area of the magnetoresistive element was flat and the recording gap 8 was flat as shown in FIG. 11, so that the output reduction due to waveform interference was reduced, and high resolution at high recording density was obtained. You can see that.
【0024】[0024]
【発明の効果】本発明によれば、磁気抵抗素子部の軟磁
性バイアス膜の形状異方性に起因する異方性磁界が小さ
く、磁束検知領域が平坦であり、その上に形成される記
録ギャップも平坦であるような磁気抵抗効果型磁気ヘッ
ドを得ることができる。それにより低電流で良好な再生
波形の上下比が得られ、そのため消費電力が小さく発熱
が少なくなり、更に高記録密度において高い分解能を得
ることができる磁気抵抗効果型磁気ヘッドを実現でき
る。According to the present invention, the anisotropic magnetic field caused by the shape anisotropy of the soft magnetic bias film in the magnetoresistive element portion is small, the magnetic flux detecting region is flat, and the recording formed thereon is performed. A magnetoresistive head having a flat gap can be obtained. As a result, an excellent vertical ratio of the reproduced waveform can be obtained at a low current, and therefore, a magnetoresistive head capable of obtaining high resolution at a high recording density with low power consumption and small heat generation can be realized.
【図1】本発明の一実施例における磁気抵抗効果型磁気
ヘッドの磁気抵抗素子部の構成図FIG. 1 is a configuration diagram of a magnetoresistive element portion of a magnetoresistive magnetic head according to an embodiment of the present invention.
【図2】本発明の一実施例における磁気抵抗効果型磁気
ヘッドの斜視図FIG. 2 is a perspective view of a magnetoresistive head according to an embodiment of the present invention.
【図3】(a)本発明の一実施例における磁気抵抗効果
型磁気ヘッドの製造工程図 (b)本発明の一実施例における磁気抵抗効果型磁気ヘ
ッドの製造工程図 (c)本発明の一実施例における磁気抵抗効果型磁気ヘ
ッドの製造工程図 (d)本発明の一実施例における磁気抵抗効果型磁気ヘ
ッドの製造工程図 (e)本発明の一実施例における磁気抵抗効果型磁気ヘ
ッドの製造工程図3A is a view showing a manufacturing process of a magnetoresistive head according to an embodiment of the present invention; FIG. 3B is a diagram showing a manufacturing process of a magnetoresistive head according to an embodiment of the present invention; Manufacturing process diagram of a magnetoresistive magnetic head according to one embodiment. (D) Manufacturing process diagram of a magnetoresistive magnetic head according to an embodiment of the present invention. (E) Magnetoresistive magnetic head according to an embodiment of the present invention. Manufacturing process diagram
【図4】(a)本発明の一実施例における磁気抵抗効果
型磁気ヘッドの製造工程図 (b)本発明の一実施例における磁気抵抗効果型磁気ヘ
ッドの製造工程図 (c)本発明の一実施例における磁気抵抗効果型磁気ヘ
ッドの製造工程図 (d)本発明の一実施例における磁気抵抗効果型磁気ヘ
ッドの製造工程図 (e)本発明の一実施例における磁気抵抗効果型磁気ヘ
ッドの製造工程図4A is a view showing a manufacturing process of a magnetoresistive head according to an embodiment of the present invention; FIG. 4B is a diagram showing a manufacturing process of a magnetoresistive head according to an embodiment of the present invention; Manufacturing process diagram of a magnetoresistive magnetic head according to one embodiment. (D) Manufacturing process diagram of a magnetoresistive magnetic head according to an embodiment of the present invention. (E) Magnetoresistive magnetic head according to an embodiment of the present invention. Manufacturing process diagram
【図5】(a)本発明の一実施例における磁気抵抗素子
の構造図 (b)従来の磁気抵抗素子の構造図5A is a structural view of a magnetoresistive element according to an embodiment of the present invention. FIG. 5B is a structural view of a conventional magnetoresistive element.
【図6】従来の磁気抵抗効果型磁気ヘッドの構成図FIG. 6 is a configuration diagram of a conventional magnetoresistance effect type magnetic head.
【図7】従来の磁気抵抗効果型磁気ヘッドの斜視図FIG. 7 is a perspective view of a conventional magnetoresistive head.
【図8】(a)従来の磁気抵抗効果型磁気ヘッドの製造
工程図 (b)従来の磁気抵抗効果型磁気ヘッドの製造工程図 (c)従来の磁気抵抗効果型磁気ヘッドの製造工程図 (d)従来の磁気抵抗効果型磁気ヘッドの製造工程図8A is a manufacturing process diagram of a conventional magnetoresistive magnetic head. FIG. 8B is a manufacturing process diagram of a conventional magnetoresistive magnetic head. FIG. 8C is a manufacturing process diagram of a conventional magnetoresistive magnetic head. d) Manufacturing process diagram of conventional magnetoresistive head
【図9】(a)従来の磁気抵抗効果型磁気ヘッドの製造
工程図 (b)従来の磁気抵抗効果型磁気ヘッドの製造工程図 (c)従来の磁気抵抗効果型磁気ヘッドの製造工程図9A is a manufacturing process diagram of a conventional magnetoresistive magnetic head, FIG. 9B is a manufacturing process diagram of a conventional magnetoresistive magnetic head, and FIG. 9C is a manufacturing process diagram of a conventional magnetoresistive magnetic head.
【図10】本発明の一実施例と従来例における再生波形
の上下比のセンス電流依存性を示す図FIG. 10 is a diagram showing the dependence of the upper / lower ratio of the reproduced waveform on the sense current in one embodiment of the present invention and a conventional example
【図11】本発明の一実施例と従来例における出力の線
記録密度依存性を示す図FIG. 11 is a diagram showing linear recording density dependence of output in one embodiment of the present invention and a conventional example.
1 磁気抵抗素子部 4 絶縁層 5 導体層 9 記録コア 12 磁気抵抗膜 13 非磁性膜 14 軟磁性バイアス膜 DESCRIPTION OF SYMBOLS 1 Magnetoresistance element part 4 Insulating layer 5 Conductive layer 9 Recording core 12 Magnetoresistance film 13 Nonmagnetic film 14 Soft magnetic bias film
Claims (1)
磁気抵抗効果膜を積層し、前記磁気抵抗効果膜に非磁性
絶縁層を介して軟磁性バイアス膜を設けた磁気抵抗効果
型磁気ヘッドであって、前記軟磁性バイアス膜の媒体対
向面における長さを前記磁気抵抗効果膜の長さより短く
するとともに、前記軟磁性バイアス膜上に設けた第2の
絶縁層と、前記磁気抵抗効果膜上に形成された導体層と
を有し、前記第2の絶縁層と前記導体層を同じ高さに
し、前記第2の絶縁層と前記導体層上に第3の絶縁層を
介して上部シールド層を設け、前記上部シールド層と前
記下部シールド層との間の間隔を均一としたことを特徴
とする磁気抵抗効果型磁気ヘッド。1. A magnetoresistive effect type wherein a magnetoresistive film is laminated on a lower shield layer via a first insulating layer, and a soft magnetic bias film is provided on the magnetoresistive effect film via a nonmagnetic insulating layer. A magnetic head, wherein a length of the soft magnetic bias film on the medium facing surface is shorter than a length of the magnetoresistive effect film, and a second insulating layer provided on the soft magnetic bias film; A conductor layer formed on an effect film, the second insulating layer and the conductor layer being at the same height, and a third insulating layer interposed on the second insulating layer and the conductor layer. A magnetoresistive head according to claim 1, wherein an upper shield layer is provided, and a distance between the upper shield layer and the lower shield layer is made uniform.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14050093A JP3210139B2 (en) | 1993-06-11 | 1993-06-11 | Magnetoresistive magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14050093A JP3210139B2 (en) | 1993-06-11 | 1993-06-11 | Magnetoresistive magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06349029A JPH06349029A (en) | 1994-12-22 |
JP3210139B2 true JP3210139B2 (en) | 2001-09-17 |
Family
ID=15270085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14050093A Expired - Lifetime JP3210139B2 (en) | 1993-06-11 | 1993-06-11 | Magnetoresistive magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3210139B2 (en) |
-
1993
- 1993-06-11 JP JP14050093A patent/JP3210139B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06349029A (en) | 1994-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001176028A (en) | Thin film magnetic head and method of producing the same | |
JP2001155313A (en) | Thin film magnetic head and its manufacturing method | |
US5671105A (en) | Magneto-resistive effect thin-film magnetic head | |
US5959809A (en) | Magnetoresistive head and method of manufacturing the same and magnetic recording apparatus | |
JP3210139B2 (en) | Magnetoresistive magnetic head | |
JPH08235542A (en) | Magnetic reluctance effect element | |
JP3475868B2 (en) | Magnetoresistive thin-film magnetic head | |
JPS63224016A (en) | Thin film magnetic head and production thereof | |
JP3678434B2 (en) | Manufacturing method of magnetoresistive head | |
JP3089886B2 (en) | Method of manufacturing magnetoresistive head | |
EP0756270B1 (en) | Thin-film magnetic head | |
JP2001250205A (en) | Thin film magnetic head and of its manufacturing method | |
JPS62114113A (en) | Thin film magnetic head | |
JPH11232616A (en) | Magnetoresistive effect type head and manufacture thereof | |
JPH0719343B2 (en) | Method of manufacturing magnetoresistive type magnetic head | |
JPS63138515A (en) | Thin film magnetic head and its reproduction system | |
JP3082003B2 (en) | Method of manufacturing magnetoresistive head | |
JPS63138512A (en) | Thin film magnetic head and its production | |
JP3070495B2 (en) | Magnetoresistance effect type thin film transducer | |
JPS5853695Y2 (en) | magnetic head | |
JPH03108112A (en) | Production of magneto-resistance effect head | |
JPH10275310A (en) | Thin film magnetic head and its production | |
JPH06274836A (en) | Magneto-resistance effect type magnetic head and its production | |
JPH07307502A (en) | Magnetic sensor and magnetic recording and reproducing head by using it and magnetic recording and reproducing device | |
JPH05189725A (en) | Thin-film magnetic head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070713 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080713 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090713 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090713 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100713 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110713 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110713 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120713 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120713 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130713 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |