Nothing Special   »   [go: up one dir, main page]

JP3297125B2 - Shutdown storage method of solid polymer electrolyte fuel cell - Google Patents

Shutdown storage method of solid polymer electrolyte fuel cell

Info

Publication number
JP3297125B2
JP3297125B2 JP03633693A JP3633693A JP3297125B2 JP 3297125 B2 JP3297125 B2 JP 3297125B2 JP 03633693 A JP03633693 A JP 03633693A JP 3633693 A JP3633693 A JP 3633693A JP 3297125 B2 JP3297125 B2 JP 3297125B2
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
solid polymer
polymer electrolyte
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03633693A
Other languages
Japanese (ja)
Other versions
JPH06251788A (en
Inventor
克雄 橋崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP03633693A priority Critical patent/JP3297125B2/en
Publication of JPH06251788A publication Critical patent/JPH06251788A/en
Application granted granted Critical
Publication of JP3297125B2 publication Critical patent/JP3297125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子電解質燃料
電池の運転停止時における保管方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for storing a solid polymer electrolyte fuel cell when operation is stopped.

【0002】[0002]

【従来の技術】固体高分子電解質燃料電池の一般的な発
電原理を図3を参照して以下に説明する。
2. Description of the Related Art The general principle of power generation in a solid polymer electrolyte fuel cell will be described below with reference to FIG.

【0003】固体高分子電解質燃料電池は、図3に示す
ように例えばスルホン酸基を持つフッ素樹脂系イオン交
換膜のような高分子イオン交換膜からなる電解質1と、
前記電解質1の両側にそれぞれ積層して配置された例え
ば白金からなる触媒電極2、3および多孔質カーボン電
極4、5とからなる電池本体6を備えた構造になってい
る。
As shown in FIG. 3, the solid polymer electrolyte fuel cell comprises an electrolyte 1 comprising a polymer ion exchange membrane such as a fluororesin ion exchange membrane having a sulfonic acid group.
The structure has a battery body 6 composed of catalyst electrodes 2, 3 made of, for example, platinum and porous carbon electrodes 4, 5 arranged on both sides of the electrolyte 1.

【0004】このような構造の燃料電池において、アノ
ード極側に供給された燃料中の水素は、下記式(1)に
示すように前記触媒電極(アノード極)2上で水素イオ
ン化され、水素イオンは前記電解質1中の水の介在のも
とH+ ・xH2 Oとしてカソード極3側へ移動する。触
媒電極(カソード極)3上では、下記式(2)に示すよ
うに酸化剤中の酸素および外部回路7を流れてきた電子
と反応して水を生成し、燃料電池外部に排出される。こ
の時、外部回路7を流れる電子の流れを直流の電気エネ
ルギーとして利用する。 (アノード側) H2 →2H+ +2e- …(1) (カソード側) 1/2 O2 +2H+ +2e- →H2 O…(2) (全反応) H2 +1/2 O2 →H2
In the fuel cell having such a structure, hydrogen in the fuel supplied to the anode is hydrogen-ionized on the catalyst electrode (anode) 2 as shown in the following formula (1), Is H + with the presence of water in the electrolyte 1. Move to the cathode 3 side as xH 2 O. On the catalyst electrode (cathode electrode) 3, as shown in the following formula (2), it reacts with oxygen in the oxidizing agent and electrons flowing through the external circuit 7 to generate water, and is discharged to the outside of the fuel cell. At this time, the flow of electrons flowing through the external circuit 7 is used as DC electric energy. (Anode side) H 2 → 2H + + 2e - … (1) (Cathode side) 1/2 O 2 + 2H + + 2e - → H 2 O ... (2) (all reactions) H 2 +1/2 O 2 → H 2 O

【0005】前記電解質1となるイオン交換膜が前述し
たようなイオン透過性を有するためには、その膜を常に
十分に保水状態を維持しておくことが必要である。この
ため、従来、前記燃料電池に燃料または酸化剤は加湿し
て供給される。燃料電池は、運転停止の際、アノード極
側、カソード極側とも乾燥した不活性ガスによるパージ
処理を施し、停止保管されるため、イオン交換膜は一旦
乾燥状態に戻る。したがって、燃料電池は再起動の際、
加湿された不活性ガス等により再度保水状態にイオン交
換膜を戻し、その後燃料および酸化剤を供給し、再発電
を開始する手法を採用していた。
In order for the ion-exchange membrane serving as the electrolyte 1 to have the above-described ion permeability, it is necessary that the membrane be constantly maintained in a sufficiently water-retaining state. Therefore, conventionally, the fuel or the oxidant is supplied to the fuel cell after being humidified. When the operation of the fuel cell is stopped, the anode electrode side and the cathode electrode side are subjected to a purging process using a dry inert gas, and are stopped and stored. Therefore, the ion exchange membrane temporarily returns to a dry state. Therefore, when the fuel cell restarts,
The method of returning the ion exchange membrane to the water-retaining state again by the humidified inert gas or the like, then supplying the fuel and the oxidant, and starting the re-generation is adopted.

【0006】[0006]

【発明が解決しようとする課題】従来の固体高分子電解
質燃料電池の停止、保管方法では、一旦、イオン交換膜
が乾燥した状態に戻るため、(1)再起動時に加湿され
た不活性ガス等により再度、イオン交換膜を保水状態に
戻までに時間が費やされる、(2)再起動時に加湿され
た不活性ガス等を送気するため、その分使用する不活性
ガス量が増加する、という問題があった。
In the conventional method of stopping and storing the solid polymer electrolyte fuel cell, the ion exchange membrane is once returned to a dry state. Therefore, (1) humidified inert gas or the like upon restarting Therefore, it takes time to return the ion exchange membrane to the water retention state again. (2) Since the humidified inert gas or the like is supplied at the time of restart, the amount of the inert gas used increases accordingly. There was a problem.

【0007】本発明の目的は、再起動時に燃料および酸
化剤を導入することで速やかに発電を開始することが可
能で、不活性ガス使用量を減少させることが可能な固体
高分子電解質燃料電池の停止保管方法を提供しようとす
るものである。
An object of the present invention is to provide a solid polymer electrolyte fuel cell capable of promptly starting power generation by introducing a fuel and an oxidizing agent at the time of restart and reducing the amount of inert gas used. To provide a suspension storage method.

【0008】[0008]

【課題を解決するための手段】本発明は、固体高分子電
解質燃料電池の停止保管方法において、電池本体の燃料
ガス流路または酸化剤ガス流路に加湿された不活性ガス
を封入した状態で運転を停止し、保管することを特徴と
する固体高分子電解質燃料電池の停止保管方法である。
According to the present invention, there is provided a method for stopping and storing a solid polymer electrolyte fuel cell, wherein a humidified inert gas is sealed in a fuel gas passage or an oxidizing gas passage of a cell body. A method for stopping and storing a solid polymer electrolyte fuel cell, comprising stopping operation and storing.

【0009】[0009]

【作用】本発明によれば、固体高分子電解質燃料電池の
電解質であるイオン交換膜を運転停止するに際し、加湿
された不活性ガスを燃料ガス流路または酸化剤ガス流路
に流通させることによって、前記イオン交換膜を保水状
態のままで電池をパージすることが可能になる。また、
加湿された不活性ガスをそのまま封入することによっ
て、再起動時まで前記イオン交換膜を保水状態にしたま
ま保管することができる。したがって、再起動時、燃料
および酸化剤を導入することにより速やかに発電を開始
することができる。
According to the present invention, when shutting down the operation of the ion exchange membrane which is the electrolyte of the solid polymer electrolyte fuel cell, the humidified inert gas is caused to flow through the fuel gas flow path or the oxidizing gas flow path. In addition, it becomes possible to purge the battery while keeping the ion exchange membrane in a water-retaining state. Also,
By enclosing the humidified inert gas as it is, it is possible to store the ion exchange membrane in a water-retaining state until restarting. Therefore, at the time of restart, power generation can be promptly started by introducing the fuel and the oxidant.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。 実施例1
Embodiments of the present invention will be described below in detail with reference to the drawings. Example 1

【0011】図1は、実施例1に用いられる固体高分子
電解質燃料電池のシステムを示す概略図である。燃料供
給装置11は、燃料側加湿器12を通してアノード極1
3に連結されている。酸化剤供給装置14は、酸化剤側
加湿器15を通してカソード極16に連結されている。
イオン交換膜からなる電解質17は、前記アノード極1
3およびカソード極16の間に介在されている。不活性
ガス供給装置18は、前記燃料供給装置11と前記燃料
側加湿器12の間、前記酸化剤供給装置14と前記酸化
剤側加湿器15の間の配管にそれぞれ配管を介して連結
されている。
FIG. 1 is a schematic diagram showing a solid polymer electrolyte fuel cell system used in the first embodiment. The fuel supply device 11 is connected to the anode 1 through the fuel-side humidifier 12.
3 is connected. The oxidant supply device 14 is connected to the cathode 16 through an oxidant-side humidifier 15.
The electrolyte 17 composed of an ion-exchange membrane is
3 and the cathode 16. The inert gas supply device 18 is connected to the pipe between the fuel supply device 11 and the fuel-side humidifier 12 and the pipe between the oxidant supply device 14 and the oxidant-side humidifier 15 via a pipe. I have.

【0012】2つの第1仕切弁19a、19bは、前記
燃料供給装置11および前記酸化剤供給装置14の下流
側の配管にそれぞれ介装されている。2つの第2仕切弁
20a、20bは、前記燃料側加湿器12および酸化剤
側加湿器15の下流側の配管にそれぞれ介装されてい
る。2つの第3仕切弁21a、21bは、前記アノード
極13および前記カソード極16の下流側の配管にそれ
ぞれ介装されている。2つの第4仕切弁22a、22b
は、前記不活性ガス供給装置18近傍の前記配管にそれ
ぞれ介装されている。次に、前述した図1のシステムを
参照して実施例1の固体高分子電解質燃料電池の停止保
管方法を説明する。
The two first gate valves 19a and 19b are interposed in piping downstream of the fuel supply device 11 and the oxidant supply device 14, respectively. The two second gate valves 20a and 20b are interposed in piping downstream of the fuel-side humidifier 12 and the oxidant-side humidifier 15, respectively. The two third gate valves 21 a and 21 b are interposed in piping downstream of the anode 13 and the cathode 16, respectively. Two fourth gate valves 22a, 22b
Are interposed in the pipes near the inert gas supply device 18, respectively. Next, a method for stopping and storing the solid polymer electrolyte fuel cell according to the first embodiment will be described with reference to the system shown in FIG.

【0013】まず、第4の仕切弁22a、22bを閉
じ、燃料を燃料供給装置11から燃料側加湿器12を通
して前記アノード極13に、酸化剤を酸化剤供給装置1
4から酸化剤側加湿器15を通してカソード極16にそ
れぞれ供給することにより発電を行う。
First, the fourth gate valves 22a and 22b are closed, and the fuel is supplied from the fuel supply device 11 to the anode 13 through the fuel-side humidifier 12, and the oxidant is supplied to the oxidant supply device 1.
4 to the cathode 16 via the oxidant-side humidifier 15 to generate power.

【0014】燃料電池の運転停止時においては、前記燃
料供給装置11からの燃料の供給を停止し、代わりに前
記第4の仕切弁22aを開けて不活性ガスを不活性ガス
供給装置18から燃料側加湿器12を供給し、ここで加
湿された不活性ガスを前記アノード極13に供給して前
記アノード極13の残存燃料をパージしながら不活性ガ
スに置換する。置換を終了した後、燃料配管側の第2、
第3の仕切弁20a、21aを閉じるか、または第1、
第3の仕切弁19a、21aを閉じることにより加湿さ
れた不活性ガスの封入を完了する。
When the operation of the fuel cell is stopped, the supply of fuel from the fuel supply device 11 is stopped, and instead, the fourth gate valve 22a is opened and inert gas is supplied from the inert gas supply device 18 to the fuel cell. The side humidifier 12 is supplied, and the humidified inert gas is supplied to the anode 13 to purge the fuel remaining in the anode 13 and replace the inert gas with the inert gas. After completing the replacement, the second on the fuel pipe side,
Closing the third gate valve 20a, 21a or the first,
The closing of the humidified inert gas is completed by closing the third gate valves 19a and 21a.

【0015】また、前記酸化剤供給装置14からの酸化
剤の供給を停止し、代わりに前記第4の仕切弁22bを
開けて不活性ガスを不活性ガス供給装置18から酸化剤
側加湿器15を供給し、ここで加湿された不活性ガスを
前記カソード極16に供給して前記カソード極16の残
存酸化剤をパージしながら不活性ガスに置換する。置換
を終了した後、酸化剤配管側の第2、第3の仕切弁20
b、21bを閉じるか、または第1、第3の仕切弁19
b、21bを閉じることにより加湿された不活性ガスの
封入を完了する。
Further, the supply of the oxidizing agent from the oxidizing agent supply device 14 is stopped, and instead, the fourth gate valve 22b is opened and the inert gas is supplied from the inert gas supplying device 18 to the oxidizing agent humidifier 15. The humidified inert gas is supplied to the cathode 16 to replace the inert gas while purging the oxidant remaining in the cathode 16. After completion of the replacement, the second and third gate valves 20 on the oxidant piping side
b, 21b is closed or the first and third gate valves 19 are closed.
By closing b and 21b, the filling of the humidified inert gas is completed.

【0016】このような実施例1によれば、燃料ガス流
路または酸化剤ガス流路に加湿された不活性ガスを封入
した状態で運転を停止し、保管することによって前記電
解質17のイオン交換膜を乾燥させずに保水状態を維持
できるため、再起動時、前記燃料供給装置11および前
記酸化剤供給装置14からそれぞれ燃料および酸化剤を
導入することにより速やかに発電を開始することができ
た。実施例2
According to the first embodiment, the operation is stopped and stored in a state where the humidified inert gas is sealed in the fuel gas flow path or the oxidizing gas flow path, whereby the ion exchange of the electrolyte 17 is performed. Since the water retention state can be maintained without drying the membrane, at the time of restart, power generation can be started immediately by introducing fuel and oxidant from the fuel supply device 11 and the oxidant supply device 14, respectively. . Example 2

【0017】参照例1 図2は、参照例1に用いられる固体高分子電解質燃料電
池のシステムを示す概略図である。燃料供給装置31
は、燃料側加湿器32を通してアノード極33に連結さ
れている。酸化剤供給装置34は、酸化剤側加湿器35
を通してカソード極36に連結されている。イオン交換
膜からなる電解質37は、前記アノード極33およびカ
ソード極36の間に介在されている。水供給装置38
は、前記燃料側加湿器32と前記アノード極33の間、
および前記酸化剤側加湿器35と前記カソード極36の
間の配管にそれぞれ配管を介して連結されている。
Reference Example 1 FIG. 2 is a schematic diagram showing a solid polymer electrolyte fuel cell system used in Reference Example 1 . Fuel supply device 31
Is connected to the anode 33 through the fuel-side humidifier 32. The oxidizer supply device 34 includes an oxidizer-side humidifier 35.
Through to the cathode 36. An electrolyte 37 made of an ion exchange membrane is interposed between the anode 33 and the cathode 36. Water supply device 38
Is between the fuel humidifier 32 and the anode 33,
And it is connected to the pipe between the oxidant-side humidifier 35 and the cathode 36 via a pipe.

【0018】2つの第1仕切弁39a、39bは、前記
燃料供給装置31および前記酸化剤供給装置34の下流
側の配管にそれぞれ介装されている。2つの第2仕切弁
40a、40bは、前記燃料側加湿器32および前記酸
化剤側加湿器35の下流側の配管にそれぞれ介装されて
いる。2つの第3仕切弁41a、41bは、前記アノー
ド極33および前記カソード極36の上流側の配管にそ
れぞれ介装されている。なお、前記水供給装置38に繋
がる2つの配管は前記第2の仕切弁40a、40bと第
3の仕切弁41a、41bの間の配管にそれぞれ連結さ
れることになる。2つの第4仕切弁42a、42bは、
前記アノード極33および前記カソード極36の下流側
の配管にそれぞれ介装されている。2つの第5仕切弁4
3a、43bは、前記水供給装置31近傍の前記配管に
それぞれ介装されている。次に、前述した図2のシステ
ムを参照して参照例1の固体高分子電解質燃料電池の停
止保管方法を説明する。
The two first gate valves 39a and 39b are interposed in pipes downstream of the fuel supply device 31 and the oxidant supply device 34, respectively. The two second gate valves 40a and 40b are interposed in piping downstream of the fuel-side humidifier 32 and the oxidant-side humidifier 35, respectively. The two third gate valves 41a and 41b are interposed in pipes on the upstream side of the anode 33 and the cathode 36, respectively. The two pipes connected to the water supply device 38 are connected to pipes between the second gate valves 40a, 40b and the third gate valves 41a, 41b, respectively. The two fourth gate valves 42a and 42b are
The anode electrode 33 and the cathode electrode 36 are interposed in downstream pipes, respectively. Two fifth gate valves 4
3a and 43b are interposed in the pipe near the water supply device 31, respectively. Next, a method for stopping and storing the solid polymer electrolyte fuel cell of Reference Example 1 will be described with reference to the above-described system of FIG.

【0019】まず、第5の仕切弁43a、43bを閉
じ、燃料を燃料供給装置31から燃料側加湿器32を通
して前記アノード極33に、酸化剤を酸化剤供給装置3
4から酸化剤側加湿器35を通してカソード極36にそ
れぞれ供給することにより発電を行う。
First, the fifth gate valves 43a and 43b are closed, and the fuel is supplied from the fuel supply device 31 to the anode 33 through the fuel side humidifier 32, and the oxidant is supplied to the oxidant supply device 3.
4 to the cathode 36 through the oxidant-side humidifier 35 to generate power.

【0020】燃料電池の運転停止時においては、前記燃
料供給装置31からの燃料の供給を停止し、代わりに第
2の仕切弁40aを閉じ、前記第5の仕切弁43aを開
けて水を水供給装置38から前記アノード極33に供給
して前記アノード極33の残存燃料をパージしながら水
に置換する。置換を終了した後、燃料配管側の第3、第
4の仕切弁41a、42aを閉じることにより水の封入
を完了する。
When the operation of the fuel cell is stopped, the supply of fuel from the fuel supply device 31 is stopped, and instead, the second gate valve 40a is closed, and the fifth gate valve 43a is opened to discharge water. The fuel is supplied from the supply device 38 to the anode 33, and the fuel remaining in the anode 33 is purged and replaced with water. After the replacement is completed, the third and fourth gate valves 41a and 42a on the fuel pipe side are closed to complete the filling of the water.

【0021】また、前記酸化剤供給装置34からの酸化
剤の供給を停止し、代わりに第2の仕切弁40bを閉
じ、第5の仕切弁43bを開けて水を水供給装置38か
ら前記カソード極36に供給して前記カソード極6の
残存酸化剤をパージしながら水に置換する。置換を終了
した後、酸化剤配管側の第3、第4の仕切弁41b、4
2bを閉じることにより水の封入を完了する。
Further, the supply of the oxidizing agent from the oxidizing agent supply unit 34 is stopped, and instead, the second gate valve 40b is closed, and the fifth gate valve 43b is opened to supply water from the water supply unit 38 to the cathode. replacing the water while purging residual oxidizing agent of the cathode electrode 3 6 is supplied to the electrode 36. After completion of the replacement, the third and fourth gate valves 41b and 4
The closing of water is completed by closing 2b.

【0022】[0022]

【0023】[0023]

【0024】[0024]

【発明の効果】以上詳述したように、本発明に係わる固
体高分子電解質燃料電池の停止保管方法よれば固体高分
子電解質燃料電池の電解質であるイオン交換膜を運転停
止、保管時も常に保水状態に維持することができるた
め、(1)燃料電池の再起動時に燃料および酸化剤を導
入することで速やかに発電を開始することができる、
As described in detail above, according to the method for stopping and storing the solid polymer electrolyte fuel cell according to the present invention, the operation of the ion exchange membrane, which is the electrolyte of the solid polymer electrolyte fuel cell, is stopped, and water is always retained during storage. (1) Power generation can be started promptly by introducing fuel and oxidant when the fuel cell is restarted.

【0025】(2)再起動時、加湿された不活性ガス等
を用いて前記イオン交換膜を保水状態に戻す操作を省く
ことができ、不活性ガスの使用量を減少させることがで
きる、等顕著な効果を奏する。
(2) It is possible to omit the operation of returning the ion exchange membrane to a water-retaining state by using a humidified inert gas or the like at the time of restart, and to reduce the amount of the inert gas used. Has a remarkable effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における固体高分子電解質燃
料電池のシステムを示す概略図。
FIG. 1 is a schematic diagram showing a solid polymer electrolyte fuel cell system according to a first embodiment of the present invention.

【図2】参照例1における固体高分子電解質燃料電池の
システムを示す概略図。
FIG. 2 is a schematic diagram showing a system of a solid polymer electrolyte fuel cell in Reference Example 1 .

【図3】固体高分子電解質燃料電池の発電原理を示す概
略図。
FIG. 3 is a schematic view showing the principle of power generation of a solid polymer electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

11…燃料供給装置、12、15…加湿器、13…アノ
ード極、14…酸化剤供給装置、16…カソード極、1
7…電解質、18…不活性ガス供給装置。
11: fuel supply device, 12, 15: humidifier, 13: anode electrode, 14: oxidant supply device, 16: cathode electrode, 1
7 ... electrolyte, 18 ... inert gas supply device.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 固体高分子電解質燃料電池の停止保管方
法において、電池本体の燃料ガス流路または酸化剤ガス
流路に加湿された不活性ガスを封入した状態で運転を停
止し、保管することを特徴とする固体高分子電解質燃料
電池の停止保管方法。
In a method for stopping and storing a solid polymer electrolyte fuel cell, the operation is stopped and stored with a humidified inert gas sealed in a fuel gas flow path or an oxidizing gas flow path of a cell body. A method for stopping and storing a solid polymer electrolyte fuel cell.
JP03633693A 1993-02-25 1993-02-25 Shutdown storage method of solid polymer electrolyte fuel cell Expired - Lifetime JP3297125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03633693A JP3297125B2 (en) 1993-02-25 1993-02-25 Shutdown storage method of solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03633693A JP3297125B2 (en) 1993-02-25 1993-02-25 Shutdown storage method of solid polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH06251788A JPH06251788A (en) 1994-09-09
JP3297125B2 true JP3297125B2 (en) 2002-07-02

Family

ID=12466993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03633693A Expired - Lifetime JP3297125B2 (en) 1993-02-25 1993-02-25 Shutdown storage method of solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3297125B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943261B2 (en) 2002-10-31 2011-05-17 Panasonic Corporation Method of operating fuel cell system and fuel cell system

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3571167B2 (en) * 1997-03-26 2004-09-29 三洋電機株式会社 Solid polymer electrolyte fuel cell, cell unit, and fuel supply method
CA2341140A1 (en) * 2000-03-24 2001-09-24 Ballard Power Systems Inc. Method for activating solid polymer electrolyte fuel cells
JP2002216823A (en) * 2001-01-12 2002-08-02 Sanyo Electric Co Ltd Fuel cell
US6896982B2 (en) 2002-05-30 2005-05-24 Ballard Power Systems Inc. Conditioning method for fuel cells
JP2004172106A (en) * 2002-10-31 2004-06-17 Matsushita Electric Ind Co Ltd Operation method of fuel cell system and fuel cell system
US8765314B2 (en) 2003-08-25 2014-07-01 Panasonic Corporation Fuel cell system and method for stopping operation of fuel cell system
CN100440598C (en) 2003-08-25 2008-12-03 松下电器产业株式会社 Fuel cell system and method for starting operation of fuel cell system
WO2005020359A1 (en) 2003-08-25 2005-03-03 Matsushita Electric Industrial Co., Ltd. Fuel cell system and method for stopping operation of fuel cell system
JP2005123004A (en) * 2003-10-16 2005-05-12 Nisshin Steel Co Ltd Polymer electrolyte fuel cell system
US7691510B2 (en) 2004-01-21 2010-04-06 Panasonic Corporation Fuel cell system with differential pressure control
JP4661055B2 (en) * 2004-02-03 2011-03-30 パナソニック株式会社 Fuel cell system and operation method
JP4814493B2 (en) * 2004-03-02 2011-11-16 本田技研工業株式会社 Fuel cell system
US7364815B2 (en) 2004-03-09 2008-04-29 Matsushita Electric Industrial Co., Ltd. Method of preserving fuel cell membrane electrode assembly
JP4543708B2 (en) * 2004-03-09 2010-09-15 パナソニック株式会社 Membrane electrode assembly of polymer electrolyte fuel cell
CN100440600C (en) * 2004-06-14 2008-12-03 松下电器产业株式会社 Preservation method of polyelectrolyte type fuel cell stack and preservation treatment object of polyelectrolyte type fuel cell stack
US8003239B2 (en) * 2004-06-14 2011-08-23 Panasonic Corporation Method of preserving polymer electrolyte fuel cell stack and preservation assembly of polymer electrolyte fuel cell stack
JP5252812B2 (en) * 2004-06-14 2013-07-31 パナソニック株式会社 Preservation method of polymer electrolyte fuel cell stack
US7976972B2 (en) 2004-06-14 2011-07-12 Panasonic Corporation Method of preserving polymer electrolyte fuel cell stack and preservation assembly of polymer electrolyte fuel cell stack
US7883817B2 (en) 2004-07-06 2011-02-08 Panasonic Corporation Method for producing gas diffusion electrode and method for producing polymer electrolyte fuel cell, and gas diffusion electrode and polymer electrolyte fuel cell
JP4633403B2 (en) * 2004-08-23 2011-02-16 東芝燃料電池システム株式会社 Fuel cell system and start / stop method thereof
CN100407491C (en) * 2004-10-05 2008-07-30 松下电器产业株式会社 Storing method for polyelectrolyte membrane electrode joint body
US20080038599A1 (en) * 2004-11-08 2008-02-14 Masataka Ozeki Fuel Cell System
US8394545B2 (en) * 2005-10-19 2013-03-12 Panasonic Corporation Fuel cell system and operating method thereof
WO2007094264A1 (en) 2006-02-15 2007-08-23 Matsushita Electric Industrial Co., Ltd. Fuel cell system
EP2131435B1 (en) 2007-03-22 2017-03-08 Panasonic Intellectual Property Management Co., Ltd. Method for operating fuel cell system, and fuel cell system
WO2008132783A1 (en) 2007-04-18 2008-11-06 Panasonic Corporation Fuel battery system and its operating method
CN101569043B (en) * 2007-09-21 2012-02-29 松下电器产业株式会社 Fuel cell system
JP2009129879A (en) * 2007-11-28 2009-06-11 Toyota Motor Corp Fuel cell system and control method for fuel cell system
DE102007058717A1 (en) 2007-12-06 2008-06-12 Daimler Ag Fuel cell system for motor vehicle, has fuel cell stack, whose fuel cells are connected with air inlet pipe and with air outlet pipe by end plate, where locking units prevent air supply through air inlet and air outlet pipes
US8304138B2 (en) 2010-05-26 2012-11-06 Ford Global Technologies, Llc Fuel cell system and method of use
US20180151901A1 (en) 2010-10-06 2018-05-31 Ford Global Technologies, Llc Method of operating a fuel cell during a soak time period
JP7208289B2 (en) 2021-03-26 2023-01-18 本田技研工業株式会社 Fuel cell aging method and aging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943261B2 (en) 2002-10-31 2011-05-17 Panasonic Corporation Method of operating fuel cell system and fuel cell system

Also Published As

Publication number Publication date
JPH06251788A (en) 1994-09-09

Similar Documents

Publication Publication Date Title
JP3297125B2 (en) Shutdown storage method of solid polymer electrolyte fuel cell
JP4656947B2 (en) Startup system and method for a fuel cell power plant using cathode electrode fuel purge
JP2924009B2 (en) How to stop fuel cell power generation
JP2003115317A (en) Stopping method of power generation of fuel cell
JP2001332281A (en) Solid polyelectrolyte fuel cell power generation system and its operation method
JPH1126003A (en) Power generation stopping method for fuel cell power generating system
US9437886B2 (en) Fuel cell system and method for stopping power generation in fuel cell system
JP2006351270A (en) Fuel cell
JPS5832903B2 (en) How to stop a fuel cell
KR20090070838A (en) Fuel cell system having hydrogen recycling apparatus
JP2009016118A (en) Fuel cell power generating device
JP4687039B2 (en) Polymer electrolyte fuel cell system
JP2010086853A (en) Fuel cell system and its operation stop method
JP2002050372A (en) Fuel cell purge device
JP4665353B2 (en) Solid polymer electrolyte fuel cell power generator and its operation method
JP5166907B2 (en) Method of operating polymer electrolyte fuel cell and fuel cell aging system
JP2010176993A (en) Shutdown method of solid polymer fuel cell system and solid polymer fuel cell system
JP5485930B2 (en) Control method of fuel cell system
JPH0945351A (en) Fuel cell power generation device and its stopping method
JPH08190929A (en) Fuel cell power generating plant
JP2004152600A (en) Shutdown method and shutdown device for fuel cell
JPH07169494A (en) Phosphoric acid type fuel cell power plant
JP2000021431A (en) Method of stopping reforming equipment for fuel cell
KR101734625B1 (en) Method for activating fuel cell stack without using electric load
JP2001332282A (en) Regeneration method for solid polyelectrolyte fuel cell

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

EXPY Cancellation because of completion of term