Nothing Special   »   [go: up one dir, main page]

JP3295574B2 - Two-layer metal plated diamond fine particles and method for producing the same - Google Patents

Two-layer metal plated diamond fine particles and method for producing the same

Info

Publication number
JP3295574B2
JP3295574B2 JP04129695A JP4129695A JP3295574B2 JP 3295574 B2 JP3295574 B2 JP 3295574B2 JP 04129695 A JP04129695 A JP 04129695A JP 4129695 A JP4129695 A JP 4129695A JP 3295574 B2 JP3295574 B2 JP 3295574B2
Authority
JP
Japan
Prior art keywords
plating
diamond
fine particles
diamond fine
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04129695A
Other languages
Japanese (ja)
Other versions
JPH08209360A (en
Inventor
薫 兒島
鋭機 竹島
安 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP04129695A priority Critical patent/JP3295574B2/en
Publication of JPH08209360A publication Critical patent/JPH08209360A/en
Application granted granted Critical
Publication of JP3295574B2 publication Critical patent/JP3295574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、WおよびNi−P合金
をそれぞれ下層および上層に施した2層金属めっきダイ
ヤモンド微粒子およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-layer metal-plated diamond fine particle in which W and a Ni--P alloy are applied to a lower layer and an upper layer, respectively, and a method for producing the same.

【0002】[0002]

【従来技術】ダイヤモンド粒子は、硬度の高いことを利
用して、種々のダイヤモンド工具、例えば、切削工具、
掘削工具、ドレッサ−等の素材に使用されている。この
ダイヤモンド工具を製造するには、ダイヤモンド粒子を
結合させることにより成型する必要があるが、この結合
はレジンボンド法、メタルボンド法、電着法、ビトリフ
ァイド法などにより行われている。
2. Description of the Related Art Diamond particles are used for various diamond tools such as cutting tools,
It is used for materials such as drilling tools and dressers. In order to manufacture this diamond tool, it is necessary to mold by bonding diamond particles. This bonding is performed by a resin bond method, a metal bond method, an electrodeposition method, a vitrified method, or the like.

【0003】しかし、製造したままのダイヤモンドをこ
れらの方法で結合剤を介して単に成型したのでは、ダイ
ヤモンド粒子が変質したり、剥離し易いという欠点があ
る。例えば、メタルボンド法で結合剤にNi粉末を用い
てダイヤモンドホイ−ル砥石を製造する場合、ダイヤモ
ンド粒子とNi粉末を混合して、ホイ−ル砥石に成型し
た後、約1,100℃で焼結する必要があるが、ダイヤ
モンド粒子は600℃以上に加熱されると、黒鉛化し易
く、また、ダイヤモンドとNiとでは熱膨張差があるた
め、接合界面に熱応力が発生して、ダイヤモンド粒子が
結合剤から剥離し易くなり、砥石の切削性能を低下させ
る。
[0003] However, simply forming the as-produced diamond with a binder through these methods has a disadvantage that the diamond particles are easily deteriorated or peeled off. For example, when manufacturing a diamond wheel using a Ni powder as a binder by a metal bond method, diamond particles and Ni powder are mixed, molded into a wheel, and then fired at about 1,100 ° C. However, if the diamond particles are heated to 600 ° C. or higher, they tend to be graphitized, and there is a difference in thermal expansion between diamond and Ni. It is easy to peel off from the binder and reduces the cutting performance of the grindstone.

【0004】そこで、これらの欠点を改善するため、従
来より種々の表面処理方法が提案されている。例えば、
ダイヤモンド粒子表面に無電解めっき法でCu、Cr、
Mn、Ta、Ni−P等の金属もしくは合金の単層めっ
きを施したり(特開昭49−59388号公報、同63
−190756号公報)、Au、Ag、Cu等の金属の
単層めっきを施して(特開昭49−49286号公
報)、ダイヤモンド粒子表面を隠蔽することにより黒鉛
化や熱応力を抑制する方法である。
[0004] Therefore, in order to improve these disadvantages, various surface treatment methods have been conventionally proposed. For example,
Cu, Cr,
Single-layer plating of metal or alloy such as Mn, Ta, Ni-P or the like (JP-A-49-59388, JP-A-63-59388)
JP-A-190756), and a method of suppressing the graphitization and thermal stress by concealing the surface of diamond particles by applying a single-layer plating of a metal such as Au, Ag, Cu or the like (JP-A-49-49286). is there.

【0005】しかし、これらの方法でダイヤモンド粒子
表面を金属や合金で隠蔽しても、ダイヤモンド粒子の黒
鉛化や熱応力の抑制は不十分であった。これは、無電解
めっき法によるめっきではダイヤモンド粒子の表面全体
が必ずしも完全にめっきされず、しかも、めっき層とダ
イヤモンド粒子との密着性は必ずしも強固でないため、
焼結時に雰囲気ガスがめっき層とダイヤモンド粒子との
界面に侵入するためと推定される。
[0005] However, even if the surface of the diamond particles is concealed with a metal or an alloy by these methods, the graphitization of the diamond particles and suppression of thermal stress have been insufficient. This is because the entire surface of the diamond particles is not always completely plated by electroless plating, and the adhesion between the plating layer and the diamond particles is not always strong.
It is presumed that the atmosphere gas entered the interface between the plating layer and the diamond particles during sintering.

【0006】また、他の原因として、無電解めっき法で
形成しためっき層には、めっき液成分の一部が吸着され
ているため、焼結時にそれが分解し、その成分がダイヤ
モンド粒子の表面にまで到達し、また、焼結時には雰囲
気ガスのめっき層中への拡散やダイヤモンド粒子炭素の
めっき層中への拡散が起こり、ダイヤモンド粒子の黒鉛
化や熱応力を生じさせるためと考えられる。
Another cause is that a part of the plating solution component is adsorbed on the plating layer formed by the electroless plating method, so that it decomposes at the time of sintering, and the component is removed from the surface of the diamond particles. It is considered that the diffusion of the atmospheric gas into the plating layer and the diffusion of diamond particle carbon into the plating layer occur during sintering, thereby causing the graphitization of the diamond particles and thermal stress.

【0007】このような無電解めっき法による被覆の問
題を解決する方法として、CVD法による被覆を適用す
ることも考えられるが、CVD法でダイヤモンド粒子を
金属や合金で被覆するにはダイヤモンド粒子を塊状にし
なければならないので、ダイヤモンド粒子個々の表面に
均一なめっき層を形成することは困難である。また、C
VD法でめっき層の密着性を確保するには、ダイヤモン
ド粒子を蒸着中600〜1.000℃と高温に保たねば
ならないので、反応中にダイヤモンド粒子の黒鉛化や熱
分解が起こる恐れがある。
As a method of solving the problem of the coating by the electroless plating method, it is conceivable to apply the coating by the CVD method. However, in order to coat the diamond particles with a metal or an alloy by the CVD method, the diamond particles must be coated. Since it is necessary to form a lump, it is difficult to form a uniform plating layer on the surface of each diamond particle. Also, C
In order to secure the adhesion of the plating layer by the VD method, the diamond particles must be kept at a high temperature of 600 to 1.000 ° C. during vapor deposition, so that the diamond particles may be graphitized or thermally decomposed during the reaction. .

【0008】また、ダイヤモンド工具は、近年、高度の
精密加工用のものが要求され、それに伴ってダイヤモン
ド粒子も粒径が0.1〜10μmと微粒子のものが要求
されているが、ダイヤモンド微粒子は極めて凝集し易
く、一粒ずつ単分散状にできないことから、無電解めっ
き法やCVD法でこのような微粒子の個々を均一で密着
性の良いめっきを施すことは不可能であった。特に、無
電解めっき法の場合、ダイヤモンド微粒子の個々に感受
性処理や活性化処理等の前処理を必要とするが、このよ
うな前処理を各微粒子に均一に施すのは技術的に極めて
難しいものであった。
In recent years, diamond tools for high-precision machining are required, and accordingly, diamond particles are required to be fine particles having a particle size of 0.1 to 10 μm. Since it is extremely easy to agglomerate and cannot be monodispersed one by one, it has not been possible to apply uniform and good adhesion to each of such fine particles by electroless plating or CVD. In particular, in the case of the electroless plating method, a pretreatment such as a sensitivity treatment or an activation treatment is individually required for the diamond fine particles, but it is technically extremely difficult to uniformly apply such a pretreatment to each fine particle. Met.

【0009】[0009]

【発明が解決しようとする課題】本発明は、以上の点に
鑑み、耐黒鉛化および耐熱応力性に優れた金属めっきダ
イヤモンド微粒子および熱分解を伴わない製造方法を提
供するものである。
SUMMARY OF THE INVENTION In view of the above, the present invention provides a metal-plated diamond fine particle excellent in graphitization resistance and heat stress resistance, and a production method without thermal decomposition.

【0010】[0010]

【課題を解決するための手段】本発明は、金属めっきダ
イヤモンド微粒子を、粒径が0.1〜10μmのダイヤ
モンド微粒子の表面に第1層としてスパッタリング法に
よりめっき後重量の1〜10mass%のWめっきを施した
後、第2層として無電解めっき法によりめっき後重量の
20〜50mass%のNi−P合金めっきを第1層の上に
施したものにするとともに、その製造を、密閉された回
転ドラム中にダイヤモンド微粒子を収容して、回転ドラ
ムの回転によりダイヤモンド微粒子を流動させながらス
パッタリング法によりダイヤモンド微粒子にWめっきを
施した後、水溶液中で無電解めっき法によりNi−P合
金めっきを施すことにより行うようにした。
According to the present invention, a metal-plated diamond fine particle is formed as a first layer on the surface of a diamond fine particle having a particle size of 0.1 to 10 μm by a sputtering method. After the plating, the Ni-P alloy plating having a weight of 20 to 50 mass% after plating was applied on the first layer as a second layer by an electroless plating method, and the production was sealed. The diamond fine particles are accommodated in a rotating drum, W-plating is applied to the diamond fine particles by a sputtering method while flowing the diamond fine particles by rotation of the rotating drum, and then Ni-P alloy plating is performed by an electroless plating method in an aqueous solution. It was done by doing.

【0011】[0011]

【作用】本発明者らは、金属や合金を表面にめっきした
金属めっきダイヤモンド微粒子の耐黒鉛化および耐熱応
力性を改善すべく種々検討を進めた結果、スパッタリン
グ法によりWめっきを施した後、無電解めっき法でNi
−P合金めっきを施すと、耐黒鉛化および耐熱応力性が
向上すること、ダイヤモンド微粒子は雰囲気を真空状態
にすると、凝集し難くなり、このため、回転ドラム中で
ダイヤモンド微粒子を流動させながらスパッタリング法
でWめっきを行えば、微粒子でも個々の粒子に密着性の
良好なめっきを均一に施すことができることを見いだ
し、本発明を完成したのである。
The present inventors have conducted various studies to improve the graphite resistance and the thermal stress resistance of metal-plated diamond fine particles obtained by plating a metal or alloy on the surface. As a result, after performing W plating by the sputtering method, Ni by electroless plating
-P alloy plating improves graphite resistance and heat stress resistance, and diamond particles hardly aggregate when the atmosphere is evacuated. Therefore, the sputtering method is used while flowing the diamond particles in a rotating drum. It has been found that if W plating is performed, even fine particles can be uniformly plated with good adhesion to individual particles, and the present invention has been completed.

【0012】本発明で金属めっきを施すダイヤモンド微
粒子は、天然、人造いずれのダイヤモンドでもよく、ま
た、形状は特に問題にならないが、粒径は0.1〜10
μmのものである。粒径が0.1μm以下のものは現在
のところ市販されておらず、入手困難である。
The fine diamond particles to be metal-plated in the present invention may be any of natural and artificial diamonds.
μm. Particles having a particle size of 0.1 μm or less are not commercially available at present and are difficult to obtain.

【0013】ダイヤモンド微粒子のめっき層は、第1層
(下層)としてWめっきを施し、その上に第2層(上
層)としてNi−P合金めっきを施した2層構造のもの
にするのであるが、第1層をWめっきにしたのは金属の
中で最も熱膨張率が小さく、ダイヤモンドに近い特性を
示し、熱履歴を受けても、熱応力がダイヤモンドとめっ
き層との界面に生じないこと、Wは耐熱性にすぐれ、ダ
イヤモンド微粒子の表面全体を連続した薄いめっき層で
覆うことができるので、ダイヤモンド工具作製時の焼結
のような熱処理や工具で素材切削時に発生する摩擦熱に
よるダイヤモンド微粒子の黒鉛化や酸化消耗を防止でき
ること、およびダイヤモンドと熱膨張率が著しく異なる
Ni−P合金めっき層に対して加熱時の剥離防止に極め
て有効であることによる。また、Wめっきをスパッタリ
ング法で行うのは、常温〜300℃と比較的低い温度で
めっきでき、しかも、ダイヤモンドとの界面にWCを形
成し、ダイヤモンド微粒子と強固に密着することによ
る。
The plating layer of diamond fine particles has a two-layer structure in which W plating is applied as a first layer (lower layer) and Ni-P alloy plating is applied thereon as a second layer (upper layer). The first layer is W-plated because it has the lowest coefficient of thermal expansion among metals and exhibits characteristics close to that of diamond, and does not generate thermal stress at the interface between diamond and the plating layer even when subjected to thermal history. , W is excellent in heat resistance and can cover the entire surface of diamond fine particles with a continuous thin plating layer. Therefore, diamond fine particles due to heat treatment such as sintering when producing diamond tools and frictional heat generated when cutting materials with tools. To be graphitized and oxidatively depleted, and to be extremely effective in preventing exfoliation during heating of a Ni-P alloy plating layer whose coefficient of thermal expansion is significantly different from that of diamond. That. The reason why the W plating is performed by the sputtering method is that the plating can be performed at a relatively low temperature of room temperature to 300 ° C., and that WC is formed at the interface with diamond and adheres firmly to diamond fine particles.

【0014】Wめっきの付着量は、めっき後重量の1〜
10mass%、すなわち、[(Wめっき重量)/(ダイヤ
モンド重量+Wめっき重量)]を1〜10mass%にす
る。これは1mass%より少ない場合、ダイヤモンド微粒
子の表面全体を連続した薄いめっき層で覆うことができ
ないからである。一方、Wめっきは10mass%以下で十
分連続しためっき層でダイヤモンド粒子の表面全体を覆
うことができるので、10mass%より多くする必要がな
い。
[0014] The amount of W plating is 1 to 1% of the weight after plating.
10 mass%, that is, [(W plating weight) / (diamond weight + W plating weight)] is 1 to 10 mass%. This is because if the amount is less than 1 mass%, the entire surface of the diamond fine particles cannot be covered with a continuous thin plating layer. On the other hand, W plating can cover the entire surface of the diamond particles with a sufficiently continuous plating layer of 10 mass% or less, so that it is not necessary to make the content larger than 10 mass%.

【0015】Ni−P合金めっきは、付着量をめっき後
重量の20〜50mass%、すなわち、[(Ni−P合金
めっき重量)/(ダイヤモンド重量+Wめっき重量+N
i−P合金めっき重量)]を20〜50mass%にする。
これは20mass%より少ない場合、ダイヤモンド微粒子
の表面全体を連続した薄いめっき層で覆うことが難し
く、50mass%より多くしても、50mass%以下で十分
連続しためっき層でダイヤモンド粒子の表面全体を覆う
ことができ、それより多くする必要がないためである。
In the case of Ni-P alloy plating, the adhesion amount is 20 to 50 mass% of the weight after plating, that is, [(Ni-P alloy plating weight) / (diamond weight + W plating weight + N
i-P alloy plating weight)] is set to 20 to 50 mass%.
If this is less than 20 mass%, it is difficult to cover the entire surface of the diamond fine particles with a continuous thin plating layer, and if it is more than 50 mass%, the entire surface of the diamond particles is covered with a sufficiently continuous plating layer of 50 mass% or less. Because it doesn't need to be more.

【0016】スパッタリング法によるWめっきは、めっ
き費が高いので、できるだけ少なくするのが望ましく、
また、WめっきとNi−P合金めっきの合計はNi−P
めっき後重量の50mass%以下にするのが望ましい。
[0016] Since W plating by the sputtering method is expensive in plating, it is desirable to minimize the cost.
The sum of W plating and Ni-P alloy plating is Ni-P
It is desirable that the weight after plating be 50 mass% or less.

【0017】第1層のWめっきをスパッタリング法によ
り個々のダイヤモンド微粒子全体に施すには、回転ドラ
ム中にダイヤモンド微粒子を入れて、密封した後、回転
ドラムの回転によりダイヤモンド微粒子を流動させなが
らWをスパッタリングする。Wのスパッタリングはダイ
ヤモンド微粒子の温度が常温〜300℃の範囲であれ
ば、実施できるので、スパッタリング時にダイヤモンド
微粒子を変質させることがない。回転ドラム中でダイヤ
モンド微粒子を流動させながらWめっきを施すには、従
来より種々の装置が開発されているので、それを使用す
ればよい。例えば、本発明者らが開発した微粒子のスパ
ッタリング装置で、特開平2−153068号公報に示
すように、回転容器でダイヤモンド微粒子の流動層を形
成して、Wをスパッタリングする形式のものや特開昭6
2−250172号公報に示すように、回転容器でダイ
ヤモンド微粒子の落下流を形成して、Wをスパッタリン
グする形式のものなどである。
In order to apply the first layer W plating to the entire diamond fine particles by sputtering, the diamond fine particles are put in a rotary drum, sealed, and then, while the diamond fine particles are rotated by rotating the rotary drum, W is removed. Sputter. Sputtering of W can be performed as long as the temperature of the diamond fine particles is in the range of room temperature to 300 ° C., so that the diamond fine particles are not deteriorated during sputtering. In order to apply W plating while flowing diamond fine particles in a rotating drum, various apparatuses have been developed so far, which may be used. For example, with a fine particle sputtering apparatus developed by the present inventors, as shown in JP-A-2-153068, a type in which a fluidized bed of diamond fine particles is formed in a rotating container and W is sputtered, Showa 6
As disclosed in Japanese Patent Application Laid-Open No. 2-250172, there is a method in which a falling flow of diamond fine particles is formed in a rotating container and W is sputtered.

【0018】第2層のNi−P合金めっきは、前処理に
より活性化した後、無電解めっき法によりNi−P合金
めっきを施す方法によればよい。前処理はまずWめっき
ダイヤモンド微粒子を塩化第一スズ水溶液で処理して、
塩化第一スズを表面に付着させ、次に、塩化パラジウム
水溶液で処理して、付着塩化第一スズによる塩化パラジ
ウムの還元で無電解Ni−P合金めっきの触媒である金
属パラジウムを表面に析出させ、活性化させる。
The Ni-P alloy plating of the second layer may be activated by pretreatment, and then Ni-P alloy plating may be performed by electroless plating. In the pretreatment, first, the W-plated diamond particles are treated with an aqueous solution of stannous chloride,
Stannous chloride is deposited on the surface, and then treated with an aqueous solution of palladium chloride to deposit palladium metal, which is a catalyst for electroless Ni-P alloy plating, on the reduction of palladium chloride with the deposited stannous chloride. Activate.

【0019】無電解Ni−P合金めっきは、Ni塩と次
亜リン酸塩との混合水溶液に上記のように前処理を施し
たダイヤモンド微粒子を浸漬して、所定時間保持すれば
よい。ここで、Ni塩としては塩化ニッケル、硫酸ニッ
ケルなどを、次亜リン酸塩としては次亜リン酸ナトリウ
ムを用いればよい。無電解めっき法によるNi−P合金
めっきは浴の温度、pH、濃度などのめっき条件により
P含有量が異なり、硬度、延性などの機械的性質が変化
するので、ダイヤモンド微粒子の用途に応じて、めっき
条件を選択する。
In the electroless Ni-P alloy plating, the diamond fine particles pretreated as described above may be immersed in a mixed aqueous solution of a Ni salt and a hypophosphite and held for a predetermined time. Here, nickel chloride, nickel sulfate or the like may be used as the Ni salt, and sodium hypophosphite may be used as the hypophosphite. Ni-P alloy plating by electroless plating varies the P content depending on the plating conditions such as bath temperature, pH, concentration, etc., and changes mechanical properties such as hardness and ductility. Select plating conditions.

【0020】例えば、P含有量を3〜5mass%にしたい
場合にはアンモニアアルカリ性浴を用い、6〜12mass
%にしたい場合には酸性浴を、10〜15mass%にした
い場合にはカセイアルカリ性浴を用いればよい。Ni−
P合金は一般にP含有量の増加に伴い硬くなり、引張強
度が増大して、アンモニアアルカリ性浴によるめっき層
の場合、350kg/mm2、酸性浴よりのめっき層の
場合、500kg/mm2になる。しかし、ダイヤモン
ド微粒子のめっき層の場合、ある程度の延性を必要と
し、かつ、P含有量が7mass%前後から機械的性質が急
変するので、5〜6mass%が適している。なお、Ni−
P合金めっき後は必要に応じて熱処理を施し、めっき層
の硬度や密着性等を高めてもよい。
For example, when the P content is desired to be 3 to 5 mass%, an ammonia alkaline bath is used, and the P content is 6 to 12 mass%.
%, An acidic bath may be used, and if it is desired to be 10-15 mass%, a caustic alkaline bath may be used. Ni-
In general, a P alloy becomes harder with an increase in the P content, and its tensile strength increases, and becomes 350 kg / mm 2 in the case of a plating layer using an ammonia alkaline bath, and 500 kg / mm 2 in the case of a plating layer from an acidic bath. . However, in the case of a plated layer of diamond fine particles, a certain degree of ductility is required, and the mechanical properties change suddenly from a P content of about 7 mass%, so that 5 to 6 mass% is suitable. In addition, Ni-
After the P alloy plating, heat treatment may be performed as necessary to increase the hardness, adhesion, and the like of the plating layer.

【0021】[0021]

【実施例】【Example】

(1)Wのスパッタリングめっき 図1に示す公知の粉末スパッタリング装置を用いて人造
ダイヤモンド微粒子[東名ダイヤモンド工業(株)製、
商品名:IRM 0/3、粒度分布:0.1〜10μ
m、平均粒径:1.5μm]の表面にWめっきを施し
た。図1の装置は、回転ドラム1(内径200mm、軸
方向長さ200mm)を2本のロ−ル2で支持して、そ
の一方のロ−ル2をモ−タ−3で回転させるようになっ
ている。回転ドラム1の内部には2個のWスパッタリン
グ源4(周波数が13.56MHzで、出力が1.5KW
のマグネトロン型、タ−ゲットは99.9mass%のW
板)が配置されていて、投入したダイヤモンド微粒子5
にWをめっきできるようになっている。
(1) Sputtering plating of W Artificial diamond fine particles [manufactured by Tomei Diamond Industry Co., Ltd.
Trade name: IRM 0/3, particle size distribution: 0.1 to 10μ
m, average particle size: 1.5 μm]. In the apparatus shown in FIG. 1, a rotating drum 1 (inner diameter 200 mm, axial length 200 mm) is supported by two rolls 2, and one of the rolls 2 is rotated by a motor 3. Has become. Inside the rotating drum 1, two W sputtering sources 4 (frequency: 13.56 MHz, output: 1.5 KW
Magnetron type, the target is 99.9 mass% W
Plate) is placed, and the charged diamond fine particles 5
Can be plated with W.

【0022】回転ドラム1の上方には、外周に加熱コイ
ル6を有する減圧処理室7が配置され、その底部はバル
ブ8を有する供給管9で回転ドラム1に接続されてい
る。この供給管9のバルブ8より下側の部分にはArガ
ス導入管10が内部に挿入され、二重管になっていて、
回転ドラム1の側面から内部に挿入され、先端は回転ド
ラム1の底部に伸長している。また、供給管9のバルブ
8より下側には分岐管11が設けられ、その先端は流体
ジェットミル12に接続されている。さらに、流体ジェ
ットミル12の出側は循環管13より減圧処理室7の上
部に接続されている。分岐管11、循環管13にはバル
ブ14、15が挿入してあり、また、循環管13には真
空計16を接続してある。
Above the rotary drum 1, a decompression processing chamber 7 having a heating coil 6 on the outer periphery is arranged, and the bottom is connected to the rotary drum 1 by a supply pipe 9 having a valve 8. An Ar gas introduction pipe 10 is inserted into a portion of the supply pipe 9 below the valve 8 to form a double pipe.
The rotating drum 1 is inserted into the inside of the rotating drum 1 from the side, and the tip extends to the bottom of the rotating drum 1. A branch pipe 11 is provided below the valve 8 of the supply pipe 9, and the tip of the branch pipe 11 is connected to a fluid jet mill 12. Further, the outlet side of the fluid jet mill 12 is connected to the upper part of the decompression processing chamber 7 through the circulation pipe 13. Valves 14 and 15 are inserted in the branch pipe 11 and the circulation pipe 13, and a vacuum gauge 16 is connected to the circulation pipe 13.

【0023】この装置で、回転ドラム1にダイヤモンド
微粒子5を100g投入して、減圧処理室7を3.0×
10-3Paに減圧した後、Arガス導入管10よりAr
ガスを導入して、ダイヤモンド微粒子5を分岐管11、
流体ジェットミル12および循環管13経由で減圧処理
室7に吸引移送した。そして、減圧処理室7で200℃
に30分加熱して、乾燥、脱ガスした。次に、回転ドラ
ム1の雰囲気をArガスで完全に置換した後、減圧処理
室7のダイヤモンド微粒子を供給管9から回転ドラム1
に落下させて、回転ドラム1を5rpmの回転速度で回
転させながら、3.0×10-1Paの減圧下でスパッタ
リング源4によりスパッタリングを行った。
In this apparatus, 100 g of the diamond fine particles 5 were put into the rotating drum 1 and the decompression processing chamber 7 was set to 3.0 ×
After reducing the pressure to 10 −3 Pa, Ar gas was introduced through the Ar gas introduction pipe 10.
By introducing gas, the diamond fine particles 5 are split into branch pipes 11,
The liquid was suction-transferred to the decompression processing chamber 7 via the fluid jet mill 12 and the circulation pipe 13. Then, at 200 ° C.
For 30 minutes, dried and degassed. Next, after completely replacing the atmosphere of the rotating drum 1 with Ar gas, the diamond fine particles in the decompression processing chamber 7 are supplied from the supply pipe 9 to the rotating drum 1.
The sputtering was performed by the sputtering source 4 under a reduced pressure of 3.0 × 10 −1 Pa while rotating the rotary drum 1 at a rotation speed of 5 rpm.

【0024】10分後にスパッタリングを中止して、減
圧処理室7を減圧にするとともに、Arガス導入管10
からArガスを導入して、ダイヤモンド微粒子5を流体
ジェットミル12経由で減圧処理室7に吸引返送し、ス
パッタリング中塊状になったダイヤモンド微粒子5を粒
状にほぐした。減圧処理室7に返送されたダイヤモンド
微粒子にはめっき後重量の0.1mass%のWめっきが施
されていた。この操作を5回繰り返したところ、Wめっ
きは0.5mass%になった。そこで、操作を10回、5
0回、100回繰り返すことにより1mass%、5mass%
および10mass%のWめっきを行った。
After 10 minutes, the sputtering is stopped, the pressure in the vacuum processing chamber 7 is reduced, and the Ar gas introducing pipe 10 is removed.
, And the diamond fine particles 5 were sucked and returned to the decompression processing chamber 7 via the fluid jet mill 12 to loosen the diamond fine particles 5 which had become a lump during sputtering. The diamond fine particles returned to the reduced pressure processing chamber 7 had been subjected to W plating of 0.1 mass% of the weight after plating. When this operation was repeated five times, the W plating became 0.5 mass%. Therefore, the operation is performed 10 times, 5
1 mass%, 5 mass% by repeating 0 times and 100 times
And 10 mass% W plating.

【0025】(2)無電解Ni−P合金めっき ポリエチレン製ビ−カ−(容量20L)に加熱ヒ−タ−
と撹拌機を配置した無電解めっき装置を用いて、前記W
めっき後のダイヤモンド微粒子にまず前処理を施し、次
にNi−P合金の無電解めっきを施した。 (A)前処理 ビ−カ−に塩化第一スズ10g、塩酸40ml、蒸留水
1Lの割合で混合した塩酸第一スズ溶液を調整して、そ
の中にダイヤモンド微粒子100gを投入した後、室温
で10分間撹拌し、感受性処理を施した。次に、ダイヤ
モンド微粒子を濾過、洗浄して、ビ−カ−の塩化第一ス
ズ溶液を他の容器に移し、内部を洗浄した後、ビ−カ−
の中に塩化パラジウム1g、塩酸10ml、蒸留水1L
の割合で混合した塩酸パラジウム溶液を調整して、その
中にダイヤモンド微粒子を投入し、撹拌しながら室温で
10分間活性化処理を行った。処理後ダイヤモンド微粒
子は濾過して、十分洗浄した。また、ビ−カ−は塩化パ
ラジウム溶液を他の容器に移し、内部を洗浄した。
(2) Electroless Ni-P alloy plating A polyethylene heater (capacity: 20 L) was heated by a heating heater.
Using an electroless plating apparatus provided with a stirrer and
First, pretreatment was applied to the plated diamond fine particles, and then electroless plating of a Ni-P alloy was applied. (A) Pretreatment A stannous hydrochloride solution prepared by mixing 10 g of stannous chloride, 40 ml of hydrochloric acid, and 1 L of distilled water in a beaker was added, and 100 g of diamond fine particles were added thereto. The mixture was stirred for 10 minutes and subjected to a sensitivity treatment. Next, the diamond fine particles are filtered and washed, the stannous chloride solution of the beaker is transferred to another container, and the inside of the beaker is washed.
In palladium chloride 1g, hydrochloric acid 10ml, distilled water 1L
, A fine palladium hydrochloride solution was prepared, diamond fine particles were charged therein, and an activation treatment was performed at room temperature for 10 minutes while stirring. After the treatment, the diamond fine particles were filtered and sufficiently washed. For the beaker, the palladium chloride solution was transferred to another container, and the inside was washed.

【0026】(B)Ni−P合金めっき ビ−カ−に硫酸ニッケル60g、酢酸ナトリウム30g
の割合で混合した無電解めっき液1.5Lを入れて、前
処理済みダイヤモンド微粒子100gを投入した後、撹
拌しながら90℃に保持して、希アンモニア水添加によ
りpHを5〜6の範囲に調整した状態で、次亜リン酸ナ
トリウム10gを溶解した還元溶液1.5Lを少量ずつ
2時間かけて添加した。この作業によりめっき後重量の
20mass%のNi−P合金をめっきできた。同様にし
て、無電解めっき液の使用量を0.8L、2.3L、3.
0Lおよび3.8Lに変更することによりそれぞれめっ
き後重量の10mass%、30mass%、40mass%および
50mass%のNi−P合金めっき層を形成した。
(B) Ni-P alloy plating Beaker: 60 g of nickel sulfate and 30 g of sodium acetate
1.5 L of the electroless plating solution mixed at a ratio of 0.1%, and 100 g of pretreated diamond fine particles were charged. The mixture was maintained at 90 ° C. while stirring, and the pH was adjusted to 5 to 6 by adding dilute aqueous ammonia. In the adjusted state, 1.5 L of a reducing solution in which 10 g of sodium hypophosphite was dissolved was added little by little over 2 hours. By this operation, a Ni-P alloy having a weight of 20 mass% after plating could be plated. Similarly, the used amount of the electroless plating solution was 0.8 L, 2.3 L, and 3.L.
By changing to 0 L and 3.8 L, Ni-P alloy plating layers of 10 mass%, 30 mass%, 40 mass% and 50 mass% of the weight after plating were formed, respectively.

【0027】(3)ダイヤモンドホイ−ル砥石の作製 以上のようにして製造したNi−P合金めっきダイヤモ
ンド微粒子とカ−ボニルニッケル粉[INCO(株)
製、粒径約20μm]とをダイヤモンド微粒子の集中度
が100となるように混合して、プレ−ンカップ型の形
状(直径:125〜132mm、厚さ:10mm)にプ
レス成型した。これを常圧、還元雰囲気下で1100℃
に60分間保持して焼結した。
(3) Preparation of Diamond Wheel Grinding Wheel The Ni-P alloy-plated diamond fine particles and carbonyl nickel powder [INCO Co., Ltd.]
And a particle size of about 20 μm] were mixed so that the concentration of the diamond fine particles became 100, and press-formed into a plane cup type shape (diameter: 125 to 132 mm, thickness: 10 mm). This is 1100 ° C under normal pressure and reducing atmosphere
And sintered for 60 minutes.

【0028】(4)砥石の研削試験 上記砥石を用いてWC−Co合金を乾式により砥石の周
速度1000m/min、テ−ブル速度2m/min、切り込
み3/100mmで研削し、各砥石の研削比(被研削材
の研削量/砥石の摩耗量)を求めた。
(4) Grinding Test of Grinding Stone Grinding of WC-Co alloy with the above grindstone by dry method at a peripheral speed of the grindstone of 1000 m / min, a table speed of 2 m / min and a cutting depth of 3/100 mm. The ratio (the amount of grinding of the material to be ground / the amount of wear of the grindstone) was determined.

【0029】表1は、Wめっき、Ni−P合金めっき、
砥石の黒鉛化状態および研削比を示したものであるが、
Wめっきは付着量がめっき後重量の1mass%以上であれ
ば、ダイヤモンド微粒子の表面をほぼ連続的に覆ってい
た。また、Wめっき付着量が1mass%以上で、Ni−P
合金めっき付着量がそのめっき後重量の20〜50mass
%であるダイヤモンド微粒子を使用した砥石はダイヤモ
ンド微粒子とWめっき層の界面にほとんど黒鉛化現象が
認められず、研削比も大きかった。
Table 1 shows W plating, Ni-P alloy plating,
It shows the graphitization state and grinding ratio of the grinding wheel,
In the case of W plating, the surface of diamond fine particles was covered almost continuously if the amount of adhesion was 1 mass% or more of the weight after plating. When the W plating adhesion amount is 1 mass% or more, Ni-P
Alloy plating weight is 20-50 mass of the weight after plating
%, The graphitization phenomenon was hardly observed at the interface between the diamond fine particles and the W plating layer, and the grinding ratio was large.

【0030】[0030]

【表1】 (注1)Wめっき、Ni−P合金めっきの付着量は各金
属めっき後の重量に対してで、mass%である。 (注2)Ni−P合金めっきのP含有量はmass%であ
る。 (注3)Wめっき被覆状態はダイヤモンド微粒子表面を
SEMにより5万倍で観察した結果である。
[Table 1] (Note 1) The adhesion amount of W plating and Ni-P alloy plating is mass% based on the weight after each metal plating. (Note 2) The P content of Ni-P alloy plating is mass%. (Note 3) The state of W plating coating is the result of observing the surface of diamond fine particles at 50,000 times by SEM.

【0031】[0031]

【発明の効果】以上のように、本発明法によれば、粒径
が0.1〜10μmのダイヤモンド微粒子に金属めっき
を施すことができる。また、金属めっきは下層がWめっ
き、上層がNi−P合金めっきにすると、ダイヤモンド
工具に作製の際に加熱処理を施しても、ダイヤモンド微
粒子の黒鉛化や熱分解が生じない。このため、本発明に
より製造した金属めっきダイヤモンド微粒子を使用すれ
ば、ダイヤモンド工具の耐久性を高めることができる。
As described above, according to the method of the present invention, metal plating can be applied to diamond fine particles having a particle size of 0.1 to 10 μm. Further, in the case of metal plating, if the lower layer is W-plated and the upper layer is Ni-P alloy-plated, even if the diamond tool is subjected to a heat treatment at the time of fabrication, no graphitization or thermal decomposition of the diamond fine particles occurs. For this reason, the durability of the diamond tool can be enhanced by using the metal-plated diamond fine particles produced according to the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は実施例においてダイヤモンド微粒子へのWめ
っきに使用したスパッタリング装置である。
FIG. 1 is a sputtering apparatus used for W plating on diamond fine particles in Examples.

【符号の説明】[Explanation of symbols]

1…回転ドラム、2…ロ−ル、3…モ−タ−、4…スパ
ッタリング源、5…ダイヤモンド微粒子、6…加熱コイ
ル、7…減圧処理室、8…バルブ、9…供給管、10…
Arガス導入管、11…分岐管、12…流体ジェットミ
ル、13…循環管、14…バルブ、15…バルブ、16
…真空計、
DESCRIPTION OF SYMBOLS 1 ... Rotary drum, 2 ... Roll, 3 ... Motor, 4 ... Sputtering source, 5 ... Diamond fine particles, 6 ... Heating coil, 7 ... Decompression processing chamber, 8 ... Valve, 9 ... Supply pipe, 10 ...
Ar gas introduction pipe, 11 branch pipe, 12 fluid jet mill, 13 circulation pipe, 14 valve, 15 valve, 16
…Vacuum gauge,

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−120774(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 28/02 C23C 14/14 C23C 18/50 C23C 28/00 ────────────────────────────────────────────────── (5) References JP-A-58-120774 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C23C 28/02 C23C 14/14 C23C 18 / 50 C23C 28/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粒径が0.1〜10μmのダイヤモン
ド微粒子の表面に第1層としてスパッタリング法により
めっき後重量の1〜10mass%のWめっきを施した後、
第2層として無電解めっき法によりめっき後重量の20
〜50mass%のNi−P合金めっきを第1層の上に施し
たことを特徴とする2層金属めっきダイヤモンド微粒
子。
1. After W-plating of 1 to 10 mass% of the weight of a diamond fine particle having a particle size of 0.1 to 10 μm as a first layer by a sputtering method on a surface thereof,
The second layer has a weight of 20% after plating by electroless plating.
A two-layer metal-plated diamond fine particle obtained by applying a Ni-P alloy plating of -50 mass% on the first layer.
【請求項2】 密閉された回転ドラム中にダイヤモン
ド微粒子を収容して、回転ドラムの回転によりダイヤモ
ンド微粒子を流動させながらスパッタリング法によりダ
イヤモンド微粒子にWめっきを施した後、水溶液中で無
電解めっき法によりNi−P合金めっきを施すことを特
徴とする2層金属めっきダイヤモンド微粒子の製造方
法。
2. A method in which diamond fine particles are accommodated in a sealed rotating drum, W-plating is applied to the diamond fine particles by a sputtering method while flowing the diamond fine particles by rotation of the rotating drum, and then electroless plating is performed in an aqueous solution. A method for producing two-layer metal-plated diamond fine particles, wherein Ni-P alloy plating is performed by the method described above.
JP04129695A 1995-02-06 1995-02-06 Two-layer metal plated diamond fine particles and method for producing the same Expired - Fee Related JP3295574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04129695A JP3295574B2 (en) 1995-02-06 1995-02-06 Two-layer metal plated diamond fine particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04129695A JP3295574B2 (en) 1995-02-06 1995-02-06 Two-layer metal plated diamond fine particles and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08209360A JPH08209360A (en) 1996-08-13
JP3295574B2 true JP3295574B2 (en) 2002-06-24

Family

ID=12604502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04129695A Expired - Fee Related JP3295574B2 (en) 1995-02-06 1995-02-06 Two-layer metal plated diamond fine particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP3295574B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7319542B2 (en) 2019-09-30 2023-08-02 ダイキン工業株式会社 Evaluation device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8927101B2 (en) 2008-09-16 2015-01-06 Diamond Innovations, Inc Abrasive particles having a unique morphology

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7319542B2 (en) 2019-09-30 2023-08-02 ダイキン工業株式会社 Evaluation device

Also Published As

Publication number Publication date
JPH08209360A (en) 1996-08-13

Similar Documents

Publication Publication Date Title
JP2716885B2 (en) Diamond having multilayer coating and method for producing the same
CN1296518C (en) Composite material and method for prodn. thereof
JP3299139B2 (en) Method for producing a diamond-coated composite
KR20030077041A (en) Metal-infiltrated polycrystalline diamond composite tool formed from coated diamond particles
WO1993019137A1 (en) Multi-layer metal coated diamond abrasives with an electrolessly deposited metal layer
CN109894610B (en) Metal-coated spherical cast tungsten carbide powder and preparation method thereof
JP4330859B2 (en) Coated cemented carbide and method for producing the same
JPH0784661B2 (en) Highly erosion resistant and highly abrasive wear resistant composite coating system and its manufacturing method
JP4295830B2 (en) Coating of cemented carbide substrate or carbide containing cermet substrate with hard material
JPH0892742A (en) Matrix composite and method of performing surface preparation thereof
Wei et al. Facile electroless copper plating on diamond particles without conventional sensitization and activation
CN111455346A (en) Preparation method of diamond coating on surface of cobalt-free hard alloy material
JP3295574B2 (en) Two-layer metal plated diamond fine particles and method for producing the same
EP2507406A2 (en) Electroless ni-composite plated substrate and method
CN101027425A (en) Thin diamond film coating method and cemented carbide member coated with diamond thin film
JP4653922B2 (en) Method of attaching a coating to a substrate composed of diamond or a diamond-containing material
JP3295575B2 (en) Cubic BN fine particles with two-layer metal plating and method for producing the same
CN110387534A (en) A kind of preparation method of nano diamond coating cemented carbide material
KR100550265B1 (en) Diamond coating tool and anti-wearing parts of which basic material is hardening material of the WC-Co party
JPS6058307B2 (en) Dice manufacturing method
CN109996852A (en) The metal mixed emery wheel of filler particles with cladding
TW415971B (en) Improvement of performance on ceramic hard coated tool steel
CN1051691A (en) Chemically combined super hard abrasive
JPH08225875A (en) Diamond sintered compact having high strength and high wear resistance and its production
JP2011051890A (en) Adhesive composite coating film for diamond and for diamond-containing material, and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020326

LAPS Cancellation because of no payment of annual fees