JP3269900B2 - Desulfurization of cracked gasoline fraction - Google Patents
Desulfurization of cracked gasoline fractionInfo
- Publication number
- JP3269900B2 JP3269900B2 JP33923893A JP33923893A JP3269900B2 JP 3269900 B2 JP3269900 B2 JP 3269900B2 JP 33923893 A JP33923893 A JP 33923893A JP 33923893 A JP33923893 A JP 33923893A JP 3269900 B2 JP3269900 B2 JP 3269900B2
- Authority
- JP
- Japan
- Prior art keywords
- gasoline fraction
- cracked gasoline
- catalyst
- desulfurization
- hydrodesulfurization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は、硫黄化合物及びオレフ
ィン成分を含有する分解ガソリン留分を、オレフィン成
分含有量を極力低下させずに脱硫処理する方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for desulfurizing a cracked gasoline fraction containing a sulfur compound and an olefin component without reducing the olefin component content as much as possible.
【0002】[0002]
【従来の技術】石油精製の分野においてオレフィン成分
を多量に含有するガソリン材源には、接触分解工程より
得られる接触分解ガソリン留分と、熱分解工程より得ら
れる熱分解ガソリン留分がある。前者は、重質石油留
分、例えば減圧軽油あるいは常圧残油等の原料油を接触
分解し、接触分解生成物を回収、蒸留することによって
得られるガソリン留分で、通常、軽質および重質接触分
解ガソリン留分に分留され、自動車ガソリンの主要な混
合材源の一つとして使われている。また、後者は、重質
石油留分、例えば減圧残油等の原料油を熱分解し、コー
クおよびガスを除く油状の熱分解生成物を回収、蒸留す
ることによって得られるガソリン留分で、通常は軽質お
よび重質熱分解ガソリン留分に分留され、自動車ガソリ
ンの混合材源の一つとして使われている。2. Description of the Related Art In the field of petroleum refining, gasoline sources containing a large amount of olefin components include a catalytic cracking gasoline fraction obtained from a catalytic cracking step and a pyrolysis gasoline fraction obtained from a thermal cracking step. The former is a gasoline fraction obtained by catalytic cracking of a heavy petroleum fraction, for example, a feed oil such as vacuum gas oil or atmospheric residual oil, and recovering and distilling a catalytic cracking product. It is fractionated into a catalytic cracking gasoline fraction and is used as one of the major admixture sources for automotive gasoline. Further, the latter is a gasoline fraction obtained by pyrolyzing a heavy oil fraction, for example, a raw oil such as a vacuum resid and collecting and distilling an oily pyrolysis product excluding coke and gas. Is fractionated into light and heavy pyrolysis gasoline fractions and is used as one of the sources of admixture in automotive gasoline.
【0003】ところが、上記接触分解の原料油および熱
分解の原料油はいずれも、もともと硫黄化合物の含有量
が比較的多く、これをそのまま接触分解処理ないしは熱
分解処理した場合は、当該接触分解生成物ないしは熱分
解生成物の硫黄化合物含有量も多くなってしまう。特
に、重質接触分解ガソリン留分および重質熱分解ガソリ
ン留分は硫黄化合物が濃縮されやすい留分の一つであ
り、これらを自動車ガソリンの混合材源として使用すれ
ば環境への影響が問題になる恐れがある。このため、上
記原料油は、接触分解処理ないしは熱分解処理を行う前
に、予め脱硫処理をすることも少なくない。[0003] However, both the catalytic cracking feedstock and the thermal cracking feedstock originally have a relatively high content of sulfur compounds, and if this is subjected to catalytic cracking or thermal cracking as it is, the catalytic cracking product And the sulfur compound content of the thermal decomposition products also increases. In particular, the heavy catalytic cracking gasoline fraction and the heavy pyrolysis gasoline fraction are one of the fractions in which sulfur compounds are easily concentrated, and if they are used as a mixture source for automobile gasoline, the impact on the environment will be a problem. Might be. For this reason, the raw material oil is often subjected to a desulfurization treatment before the catalytic cracking treatment or the thermal cracking treatment.
【0004】一方、原油を蒸留して得られるナフサ留分
は、一般に接触改質を行い、その少なくとも一部を芳香
族に転化して、オクタン価を高くしているが、改質触媒
は一般に硫黄分に耐えないため、接触改質すべき原料の
ナフサ留分もまた接触改質の前に予め脱硫しなければな
らない。On the other hand, the naphtha fraction obtained by distilling crude oil is generally subjected to catalytic reforming, at least a part of which is converted to aromatic to increase the octane number. The naphtha fraction of the raw material to be catalytically reformed must also be desulfurized before catalytic reforming.
【0005】而して、その脱硫に関し、従来、石油精製
の分野において行われている方法の一つは水素化脱硫処
理であり、これは高温および加圧した水素雰囲気中で、
脱硫すべき原料油を適当な水素化脱硫処理触媒に接触さ
せるものである。接触分解の原料油である減圧軽油ある
いは常圧残油等、あるいは熱分解の原料油である減圧残
油等、重質石油留分の水素化脱硫処理の場合、典型的な
水素化脱硫処理触媒は、VIII族およびVI族元素、例えば
コバルトおよびモリブデンを、適当な基材、例えばアル
ミナ上に組み合わせたものである。また、水素化脱硫処
理の条件としては、一般に、温度約350〜450℃、
水素分圧約100〜200kg/cm2 G 、液空間速度(L
HSV)約0.1〜2 1/hr が採用されている。[0005] With regard to the desulfurization, one of the methods conventionally used in the field of petroleum refining is hydrodesulfurization, which is carried out in a high-temperature and pressurized hydrogen atmosphere.
The feedstock oil to be desulfurized is brought into contact with a suitable hydrodesulfurization treatment catalyst. A typical hydrodesulfurization catalyst for hydrodesulfurization of heavy petroleum fractions, such as vacuum gas oil or atmospheric residual oil, which is the raw material for catalytic cracking, or vacuum residual oil, which is the raw material for thermal cracking Is a combination of Group VIII and VI elements, such as cobalt and molybdenum, on a suitable substrate, such as alumina. The conditions for the hydrodesulfurization treatment are generally as follows: a temperature of about 350 to 450 ° C.
Hydrogen partial pressure about 100-200 kg / cm 2 G, liquid space velocity (L
HSV) of about 0.1 to 21 / hr.
【0006】一方、ナフサ留分の水素化脱硫処理の場合
は、典型的な水素化脱硫処理触媒は、VIII族およびVI族
元素、例えばコバルトおよびモリブデンを、適当な基
材、例えばアルミナ上に組み合わせたものである。ま
た、水素化脱硫処理の条件としては、一般に、温度約2
80〜350℃、水素分圧約15〜40 kg/cm2 G 、液
空間速度(LHSV)約2〜8 1/hr が採用されてい
る。[0006] On the other hand, in the case of the hydrodesulfurization treatment of a naphtha fraction, a typical hydrodesulfurization treatment catalyst is obtained by combining Group VIII and Group VI elements such as cobalt and molybdenum on a suitable base material such as alumina. It is a thing. In general, the conditions for the hydrodesulfurization treatment are as follows.
80-350 ° C., hydrogen partial pressure of about 15-40 kg / cm 2 G, and liquid hourly space velocity (LHSV) of about 2-81 / hr are employed.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、接触分
解の原料油である減圧軽油や常圧残油等、あるいは熱分
解の原料油である減圧残油等、のような重質石油留分の
水素化脱硫処理の場合は、処理条件が上記のとおり高
温、高圧であるため、装置の設計条件が過酷になり、装
置能力の不足に対処するために装置を増設する場合、建
設費が高いという問題がある。However, hydrogen of a heavy petroleum fraction such as vacuum gas oil or atmospheric residual oil which is a raw material for catalytic cracking, or a vacuum residual oil which is a raw material for thermal cracking, etc. In the case of chemical desulfurization, the processing conditions are high temperature and high pressure as described above, so the design conditions of the equipment become severe, and the construction cost is high when additional equipment is installed to cope with the shortage of equipment capacity. There is.
【0008】一方、接触分解ガソリン留分ないしは熱分
解ガソリン留分を上記の処理条件で水素化脱硫処理する
場合は、これら分解ガソリン留分中に含有されるオレフ
ィン成分が水素化され、その含有量が減少するため、分
解ガソリン留分のオクタン価が低下してしまう。このた
め、水素化脱硫処理をした後、接触改質工程あるいは異
性化工程等で高オクタン価材源に改質処理しなければな
らない。すなわち、二段の処理工程を要する。On the other hand, when the catalytically cracked gasoline fraction or the thermally cracked gasoline fraction is subjected to hydrodesulfurization treatment under the above treatment conditions, the olefin component contained in these cracked gasoline fractions is hydrogenated, and the content thereof is reduced. Octane number of the cracked gasoline fraction is reduced. For this reason, after the hydrodesulfurization treatment, the material must be reformed to a high octane number material source in a catalytic reforming step or an isomerization step. That is, two processing steps are required.
【0009】本発明の目的は、高オクタン価成分である
オレフィン成分を含有する分解ガソリン留分を、オレフ
ィン成分の減少を極力抑えながら、水素化脱硫処理する
方法を提供することにある。An object of the present invention is to provide a method for hydrodesulfurizing a cracked gasoline fraction containing an olefin component, which is a high octane component, while minimizing the decrease in the olefin component.
【0010】[0010]
【課題を解決するための手段】本発明者らは前記の課題
を解決するため、オレフィン成分の減少を極力抑えなが
ら、しかも、硫黄化合物の含有量を許容しうるレベルま
で除去するための、水素化処理条件について鋭意研究し
た結果、脱硫率が50%以上で、しかも、オレフィン成
分の減少率を50%以下に止めることのできる、分解ガ
ソリン留分の脱硫処理方法を完成するに至った。Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have tried to reduce the amount of olefin components as much as possible and to remove the sulfur compound content to an acceptable level. As a result of intensive studies on the conditions of the hydrotreating treatment, the inventors have completed a desulfurization treatment method for cracked gasoline fraction, which has a desulfurization rate of 50% or more and a reduction rate of olefin components of 50% or less.
【0011】すなわち、本発明は硫黄化合物及びオレフ
ィン成分を含有する分解ガソリン留分を、脱硫活性金属
を含有し、かつ、表面をカーボンで修飾した水素化脱硫
処理触媒の存在下、温度約200〜300℃、水素分圧
約15〜30 kg/cm2 G 、液空間速度(LHSV)約9
〜20 1/hr の条件、あるいは、温度約300〜400
℃、水素分圧約1〜14 kg/cm2 G 、液空間塔速度(L
HSV)約3〜30 1/hr の条件で水素と接触させるこ
とを特徴とする、分解ガソリン留分の脱硫処理方法であ
る。That is, the present invention provides that a cracked gasoline fraction containing a sulfur compound and an olefin component is treated at a temperature of about 200-200 in the presence of a hydrodesulfurization treatment catalyst containing a desulfurization active metal and having its surface modified with carbon. 300 ° C, hydrogen partial pressure about 15-30 kg / cm 2 G, liquid hourly space velocity (LHSV) about 9
~ 20 1 / hr or temperature about 300 ~ 400
° C, hydrogen partial pressure about 1-14 kg / cm 2 G, liquid space tower speed (L
(HSV) is a method for desulfurizing a cracked gasoline fraction, which is brought into contact with hydrogen under conditions of about 3 to 30 1 / hr.
【0012】本発明は、分解ガソリン留分中のオレフィ
ン成分の減少を極力抑えることで、優れたガソリン材源
であり、高オクタン価ガソリン材源である分解ガソリン
留分の有用性を失うことなく、水素化脱硫処理を、単一
のカーボン修飾した触媒を使用して、一段階で、しかも
比較的温和な処理条件で行うことができる点で特に有用
である。The present invention is an excellent gasoline material source by minimizing the reduction of the olefin component in a cracked gasoline fraction, without losing the usefulness of the cracked gasoline fraction which is a high octane number gasoline material source. The hydrodesulfurization treatment is particularly useful in that it can be performed in a single step using a single carbon-modified catalyst under relatively mild processing conditions.
【0013】本発明で用いる分解ガソリン留分は、重質
石油留分、例えば減圧軽油あるいは常圧残油等を接触分
解して、これの大部分を広範囲の石油留分に転化し、こ
の接触分解生成物を回収、蒸留することによって得られ
る軽質接触分解ガソリン留分、重質接触分解ガソリン留
分および全接触分解ガソリン留分、また、重質石油留
分、例えば減圧残油等を熱分解して、これの大部分を広
範囲の石油留分とコークに転化し、ガスとコーク以外
の、油状の熱分解生成物を回収、蒸留することによって
得られる軽質熱分解ガソリン留分、重質熱分解ガソリン
留分および全熱分解ガソリン留分である。The cracked gasoline fraction used in the present invention is obtained by catalytic cracking of a heavy petroleum fraction, for example, vacuum gas oil or atmospheric residual oil, and most of it is converted into a wide range of petroleum fractions. Thermal cracking of light catalytic cracking gasoline fraction, heavy catalytic cracking gasoline fraction and total catalytic cracking gasoline fraction obtained by recovering and distilling cracked products, and heavy petroleum fractions such as vacuum residue Most of this is converted to a wide range of petroleum fractions and coke, and light pyrolysis gasoline fractions obtained by recovering and distilling oily pyrolysis products other than gas and coke, and heavy heat Cracked gasoline fraction and total pyrolysis gasoline fraction.
【0014】すなわち、分解ガソリン留分が約30℃か
ら約100℃までの沸点範囲の軽質分解ガソリン留分、
好ましくは約30℃から約220℃までの沸点範囲の全
分解ガソリン留分、さらに好ましくは約80℃から約2
20℃までの沸点範囲の重質分解ガソリン留分である。
その理由は、分解ガソリン留分の中でも沸点範囲が比較
的高い留分は記述のとおり硫黄化合物含有量が多く、脱
硫し易いため、脱硫処理の対象として効果的な原料であ
るのに対して、沸点範囲が比較的低い留分は反対に硫黄
化合物含有量が少ないため、脱硫しにくく、場合によっ
ては、脱硫率約50%以上の目標を達成することが困難
なこともありうるからである。その意味で最も好ましい
脱硫対象原料は、減圧軽油等より更に重質の原料油を接
触分解して得られる重質接触分解ガソリン留分である。That is, a light cracked gasoline fraction having a boiling range of about 30 ° C. to about 100 ° C.,
Preferably, a total cracked gasoline cut with a boiling range from about 30 ° C to about 220 ° C, more preferably from about 80 ° C to about 2 ° C.
It is a heavy cracked gasoline fraction with a boiling range up to 20 ° C.
The reason is that, among the cracked gasoline fractions, the fraction having a relatively high boiling point range has a large sulfur compound content as described, and is easy to desulfurize. On the other hand, the fraction having a relatively low boiling point has a low sulfur compound content, so that it is difficult to desulfurize, and in some cases, it may be difficult to achieve a target of a desulfurization rate of about 50% or more. In this sense, the most preferable raw material to be desulfurized is a heavy catalytic cracking gasoline fraction obtained by catalytic cracking of a raw material oil which is heavier than vacuum gas oil or the like.
【0015】本発明の方法に適用する水素化脱硫処理条
件は、温度約200〜300℃、水素分圧約15〜30
kg/cm2 G 、液空間速度(LHSV)約9〜20 1/hr
、あるいは、温度約300〜400℃、水素分圧約1
〜14 kg/cm2 G 、液空間速度(LHSV)約3〜30
1/hr であり、好ましくは温度約200〜300℃、水
素分圧約15〜30 kg/cm2 G 、液空間速度(LHS
V)約10〜20 1/hr 、あるいは、温度約300〜4
00℃、水素分圧約1〜10 kg/cm2 G 、液空間速度
(LHSV)約3〜30 1/hr である。The hydrodesulfurization treatment conditions applied to the method of the present invention include a temperature of about 200 to 300 ° C. and a hydrogen partial pressure of about 15 to 30.
kg / cm 2 G, liquid hourly space velocity (LHSV) about 9 to 201 / hr
Alternatively, a temperature of about 300 to 400 ° C. and a hydrogen partial pressure of about 1
~ 14 kg / cm 2 G, liquid hourly space velocity (LHSV) about 3 ~ 30
1 / hr, preferably at a temperature of about 200 to 300 ° C., a hydrogen partial pressure of about 15 to 30 kg / cm 2 G, and a liquid hourly space velocity (LHS).
V) About 10-201 / hr, or about 300-4
The temperature is 00 ° C., the hydrogen partial pressure is about 1 to 10 kg / cm 2 G, and the liquid hourly space velocity (LHSV) is about 3 to 301 / hr.
【0016】水素化脱硫処温度が約200℃より低い場
合には脱硫率約50%以上の目標を達成することが困難
である。逆に、水素化脱硫処理温度が約400℃を超え
る場合には、オレフィン成分含有量の減少率約50%以
下の目標を達成することが困難であり、さらに、分解ガ
ソリン留分の一部が分解反応でガス成分となり、C5留
分以上の液収量が減少する。When the hydrodesulfurization temperature is lower than about 200 ° C., it is difficult to achieve the target of the desulfurization rate of about 50% or more. Conversely, when the hydrodesulfurization treatment temperature exceeds about 400 ° C., it is difficult to achieve the target of the reduction rate of the olefin component content of about 50% or less. be gas components in the decomposition reaction, C 5 fraction more liquid yields decrease.
【0017】水素化脱硫処理圧力は、約1〜30 kg/cm
2 G 、好ましくは約1〜25 kg/cm2 G の範囲にある。
水素化脱硫処理圧力が約1 kg/cm2 G より低い場合に
は、触媒寿命への悪影響の恐れがある。また、約30 k
g/cm2 G を超える場合には、脱硫率約50%以上の目標
は達成することができるものの、オレフィン成分含有量
の減少率約50%以下の目標を達成することが困難であ
る。水素化脱硫処理の液空間速度(LHSV)は約3〜
301/hr、好ましくは約5〜201/hrの範囲である。水
素/油比は石油の水素化精製で通常使用される約20〜
200Nm3 /m3 、好ましくは約50〜150Nm3 /m3 の
範囲が適用できる。The hydrodesulfurization treatment pressure is about 1 to 30 kg / cm
2 G, preferably in the range of about 1-25 kg / cm 2 G.
If the hydrodesulfurization pressure is lower than about 1 kg / cm 2 G, there is a possibility that the life of the catalyst will be adversely affected. Also, about 30 k
If it exceeds g / cm 2 G, the target of the desulfurization rate of about 50% or more can be achieved, but it is difficult to achieve the target of the olefin component content reduction rate of about 50% or less. The liquid hourly space velocity (LHSV) of hydrodesulfurization treatment is about 3 ~
It is in the range of 301 / hr, preferably about 5 to 201 / hr. The hydrogen / oil ratio is between about 20 and about 20 commonly used in petroleum hydrorefining.
200Nm 3 / m 3, preferably can be applied in the range of about 50~150Nm 3 / m 3.
【0018】触媒に関しては、一般に、多孔性無機酸化
物担体に脱硫活性金属を担持させた、石油精製の分野に
おいて通常用いられている水素化脱硫触媒を、水素化処
理に用いる前に、公知の方法で予備硫化して用いると、
脱硫活性およびオレフィン成分の水素化活性が高い。と
ころが、この触媒は、硫黄化合物およびオレフィン成分
を含有する分解ガソリン留分の脱硫処理に使用した場
合、脱硫率は高いものの、オレフィン成分含有量の減少
率も高くなる。As for the catalyst, generally, a hydrodesulfurization catalyst generally used in the field of petroleum refining, in which a desulfurization active metal is supported on a porous inorganic oxide carrier, is used before a known hydrodesulfurization catalyst is used for hydrotreating. When presulfurized by the method and used,
High desulfurization activity and hydrogenation activity of olefin components. However, when this catalyst is used for the desulfurization treatment of a cracked gasoline fraction containing a sulfur compound and an olefin component, the desulfurization rate is high, but the decrease rate of the olefin component content is also high.
【0019】本発明の方法に使用する触媒には、多孔性
無機酸化物担体に脱硫活性金属を担持させ、かつ、表面
をカーボンで修飾した触媒、すなわち、触媒表面に約2
〜30重量%のカーボンを含有する触媒を用いることが
有効である。これにより、オレフィン成分含有量の減少
率を極力抑え、しかも、硫黄化合物の含有量を許容しう
るレベルまで除去することができることが容易となる。
水素化処理触媒の表面をカーボンで修飾する方法として
は、公知の方法で予備硫化した後、短時間で強制的に修
飾することもできるが、長時間をかけて徐々に修飾する
ことが好ましい。あるいは、石油の水素化精製用として
通常用いられた抜き出し触媒も実際的な方法として有効
に使用することができる。The catalyst used in the method of the present invention is a catalyst in which a desulfurization active metal is supported on a porous inorganic oxide carrier and the surface of the catalyst is modified with carbon.
It is effective to use a catalyst containing up to 30% by weight of carbon. Thereby, it becomes easy to suppress the reduction rate of the olefin component content as much as possible and to remove the sulfur compound content to an acceptable level.
As a method of modifying the surface of the hydrotreating catalyst with carbon, it is possible to forcibly modify the surface in a short time after preliminary sulfurization by a known method, but it is preferable to gradually modify the surface over a long time. Alternatively, an extraction catalyst commonly used for petroleum hydrorefining can be effectively used as a practical method.
【0020】触媒表面に含有されるカーボン量として
は、約2〜30重量%であり、好ましくは約4〜20重
量%である。触媒表面に含有されるカーボン量が約30
重量%を超えると、脱硫活性が極度に低下して、脱硫率
約50%以上の目標を達成することが困難となる。ま
た、カーボン量が約2重量%未満であると、脱硫率約5
0%以上の目標を達成することは容易であるが、オレフ
ィン成分含有量の減少率を約50%以下に抑えることが
困難となる。The amount of carbon contained on the surface of the catalyst is about 2 to 30% by weight, preferably about 4 to 20% by weight. The amount of carbon contained on the catalyst surface is about 30
If the content is more than 10% by weight, the desulfurization activity is extremely reduced, and it is difficult to achieve the target of the desulfurization rate of about 50% or more. If the carbon content is less than about 2% by weight, the desulfurization rate is about 5%.
It is easy to achieve the target of 0% or more, but it is difficult to suppress the reduction rate of the olefin component content to about 50% or less.
【0021】当該触媒の多孔性無機酸化物担体として
は、例えばアルミナ、シリカ、チタニア、マグネシア等
が挙げられ、これらの単独または混合物の形で用いるこ
とができる。好ましくはアルミナ、シリカーアルミナが
選択される。また、脱硫活性金属としては、クロム、モ
リブデン、タングステン、コバルト、ニッケルが挙げら
れ、これらの単独または混合物の形で用いることができ
る。好ましくはコバルトーモリブデンあるいはニッケル
ーコバルトーモリブデンが選択される。これらの金属は
担体上に金属状、酸化物、硫化物またはそれらの混合物
の形態で存在できる。活性金属の担持方法としては含浸
法、共沈法等の公知の方法を用いることができる。Examples of the porous inorganic oxide carrier of the catalyst include alumina, silica, titania, magnesia and the like, and these can be used alone or in the form of a mixture. Preferably, alumina or silica-alumina is selected. Examples of the desulfurization active metal include chromium, molybdenum, tungsten, cobalt, and nickel, and these can be used alone or in the form of a mixture. Preferably, cobalt-molybdenum or nickel-cobalt-molybdenum is selected. These metals can be present on the support in the form of metals, oxides, sulfides or mixtures thereof. A known method such as an impregnation method or a coprecipitation method can be used as a method for supporting the active metal.
【0022】本発明では、アルミナ担体にコバルトーモ
リブデンあるいはニッケルーコバルトーモリブデンの活
性金属を担持した触媒を用いることが好ましい。当該活
性金属の担持量はそれぞれ酸化物として約1〜30重量
%が好ましく、特に約3〜20重量%の範囲が好まし
い。In the present invention, it is preferable to use a catalyst in which an active metal such as cobalt-molybdenum or nickel-cobalt-molybdenum is supported on an alumina carrier. The loading amount of the active metal is preferably about 1 to 30% by weight as an oxide, and particularly preferably about 3 to 20% by weight.
【0023】水素化処理反応塔の形式は、固定床、流動
床、沸騰床のいずれでも良いが、特に固定床が好まし
い。接触分解ガソリン留分と触媒の接触は並流上昇流、
並流下降流、向流のいずれの方式を採用しても良い。こ
れらの個々の操作は石油精製の分野では公知であり、任
意に選択して行うことができる。The type of the hydrotreating reaction tower may be any of a fixed bed, a fluidized bed and a boiling bed, but a fixed bed is particularly preferable. The contact between the catalytic cracking gasoline fraction and the catalyst is co-current upward flow,
Either cocurrent downflow or countercurrent may be employed. These individual operations are known in the field of petroleum refining and can be arbitrarily selected and performed.
【0024】[0024]
【実施例】本発明を実施例によりさらに詳細に説明す
る。 (実施例−1)供給原料である接触分解ガソリン留分と
しては、常圧残油を含む原料油を接触分解して得られる
重質接触分解ガソリン留分を用いた。その性状を表1に
示す。水素化脱硫処理触媒にはアルミナ担体に5重量%
CoOと17重量%MoO3を担持した市販触媒を公知
の方法で予備硫化し、減圧軽油留分あるいは軽油留分を
通常の水素化脱硫処理条件で2年間使用した触媒を用い
た。当該触媒の触媒表面に含有されるカーボン量は7重
量%である。水素化脱硫処理条件は反応温度300℃、
水素分圧5 kg/cm2 G 、液空間速度(LHSV)5 1/h
r 、水素/油比は85Nm3 /m3 とした。その結果、供給
原料の脱硫率は93%、オレフィン成分の減少率は10
%であった。この結果を表2に示す。EXAMPLES The present invention will be described in more detail with reference to Examples. (Example-1) As a catalytic cracking gasoline fraction as a feedstock, a heavy catalytic cracking gasoline fraction obtained by catalytic cracking of a feedstock oil containing normal pressure residual oil was used. The properties are shown in Table 1. 5% by weight of alumina carrier for hydrodesulfurization catalyst
A commercially available catalyst supporting CoO and 17% by weight of MoO 3 was preliminarily sulfurized by a known method, and a catalyst in which a reduced pressure gas oil fraction or a gas oil fraction was used under ordinary hydrodesulfurization treatment conditions for 2 years was used. The amount of carbon contained on the catalyst surface of the catalyst is 7% by weight. Hydrodesulfurization treatment conditions are reaction temperature 300 ° C,
Hydrogen partial pressure 5 kg / cm 2 G, liquid hourly space velocity (LHSV) 51 / h
r, the hydrogen / oil ratio was 85 Nm 3 / m 3 . As a result, the desulfurization rate of the feedstock was 93% and the reduction rate of the olefin component was 10%.
%Met. Table 2 shows the results.
【0025】(実施例−2)実施例−1と同一の供給原
料および同一の水素化脱硫処理触媒を用い、処理条件は
反応温度を350℃とし、それ以外の処理条件は実施例
−1と同一の条件で、水素化脱硫処理実験を行った。そ
の結果、供給原料の脱硫率は98%、オレフィン成分の
減少率は37%であった。この結果を同じく表2に示
す。Example 2 The same feedstock and the same hydrodesulfurization catalyst as in Example 1 were used. The processing conditions were a reaction temperature of 350 ° C., and the other processing conditions were the same as in Example 1. Under the same conditions, a hydrodesulfurization treatment experiment was performed. As a result, the desulfurization rate of the feedstock was 98%, and the reduction rate of the olefin component was 37%. The results are also shown in Table 2.
【0026】(実施例−3)実施例−1と同一の供給原
料および同一の水素化脱硫処理触媒を用い、反応温度3
50℃、水素分圧5 kg/cm2 G 、液空間速度(LHS
V)10 1/hr 、水素/油比85Nm3 /m3 の処理条件条
件で、水素化脱硫処理実験を行った。その結果、供給原
料の脱硫率は89%、オレフィン成分の減少率は11%
であった。この結果を同じく表2に示す。Example 3 Using the same feedstock and the same hydrodesulfurization catalyst as used in Example 1, a reaction temperature of 3
50 ° C, hydrogen partial pressure 5 kg / cm 2 G, liquid hourly space velocity (LHS
V) A hydrodesulfurization experiment was performed under the treatment conditions of 10 1 / hr and a hydrogen / oil ratio of 85 Nm 3 / m 3 . As a result, the desulfurization rate of the feedstock was 89% and the reduction rate of the olefin component was 11%.
Met. The results are also shown in Table 2.
【0027】(実施例−4)実施例−1と同一の供給原
料および同一の水素化脱硫処理触媒を用い、反応温度3
50℃、水素分圧1 kg/cm2 G 、液空間速度(LHS
V)5 1/hr 、水素/油比85Nm3 /m3 の処理条件で、
水素化脱硫処理実験を行った。その結果、供給原料の脱
硫率は78%、オレフィン成分の減少率は5%であっ
た。この結果を同じく表2に示す。Example 4 Using the same feedstock and the same hydrodesulfurization catalyst as used in Example 1, a reaction temperature of 3
50 ° C, hydrogen partial pressure 1 kg / cm 2 G, liquid hourly space velocity (LHS
V) Under the processing conditions of 51 / hr and a hydrogen / oil ratio of 85 Nm 3 / m 3 ,
A hydrodesulfurization treatment experiment was performed. As a result, the desulfurization rate of the feedstock was 78%, and the reduction rate of the olefin component was 5%. The results are also shown in Table 2.
【0028】(実施例−5)実施例−1と同一の供給原
料および同一の水素化脱硫処理触媒を用い、反応温度2
50℃、水素分圧25 kg/cm2 G 、液空間速度(LHS
V)10 1/hr 、水素/油比85Nm3 /m3 の処理条件
で、水素化脱硫処理実験を行った。その結果、供給原料
の脱硫率は62%、オレフィン成分の減少率は11%で
あった。この結果を同じく表2に示す。Example 5 Using the same feedstock and the same hydrodesulfurization catalyst as used in Example 1, a reaction temperature of 2
50 ° C, hydrogen partial pressure 25 kg / cm 2 G, liquid hourly space velocity (LHS
V) A hydrodesulfurization treatment experiment was performed under a treatment condition of 10 1 / hr and a hydrogen / oil ratio of 85 Nm 3 / m 3 . As a result, the desulfurization rate of the feedstock was 62%, and the reduction rate of the olefin component was 11%. The results are also shown in Table 2.
【0029】(比較例−1)実施例−1と同一の供給原
料を用い、また、水素化脱硫処理触媒にはアルミナ担体
に5重量%CoOと17重量%MoO3 を担持した市販
触媒を公知の方法で予備硫化し、カーボン修飾は行って
いないものを用いた。水素化脱硫処理条件は反応温度3
00℃、水素分圧30 kg/cm2 G 、液空間速度(LHS
V)3 1/hr 、水素/油比100Nm3 /m3 とした。その
結果、供給原料の脱硫率は98%、供給原料のオレフィ
ン減少率は89%であった。この結果を表3に示す。(Comparative Example 1) A commercially available catalyst using the same feedstock as in Example 1 and having 5% by weight of CoO and 17% by weight of MoO 3 supported on an alumina carrier was known as a hydrodesulfurization treatment catalyst. Presulfurized by the method described above and used without carbon modification. Hydrodesulfurization conditions are reaction temperature 3
00 ° C, hydrogen partial pressure 30 kg / cm 2 G, liquid hourly space velocity (LHS
V) 31 / hr, hydrogen / oil ratio 100 Nm 3 / m 3 . As a result, the feedstock had a desulfurization rate of 98%, and the feedstock had an olefin reduction rate of 89%. Table 3 shows the results.
【0030】(比較例−2)比較例−1と同一の供給原
料および同一の水素化脱硫処理触媒を用い、処理条件は
反応温度を340℃とし、それ以外は比較例−1と同一
の条件で、水素化脱硫処理実験を行った。その結果、供
給原料の脱硫率は100%、供給原料のオレフィン減少
率は100%であった。この結果を同じく表3に示す。Comparative Example 2 Using the same feedstock and the same hydrodesulfurization treatment catalyst as in Comparative Example 1, the reaction conditions were a reaction temperature of 340 ° C., and otherwise the same conditions as in Comparative Example 1. Then, a hydrodesulfurization treatment experiment was performed. As a result, the feedstock had a desulfurization rate of 100% and the feedstock had an olefin reduction rate of 100%. The results are also shown in Table 3.
【0031】[0031]
【発明の効果】表面をカーボンで修飾した水素化脱硫処
理触媒を使用し、これに適切な水素化脱硫処理条件を組
み合わせた本発明により、一段階処理で、供給原料であ
る分解ガソリン留分のオレフィン成分含有量の減少率を
約50%以下に抑えながら、しかも、脱硫率約50%以
上を達成することができるという、すぐれたた効果を奏
する。また、本発明により、低硫黄で、しかも、改質ガ
ソリンに比べれば芳香族分含有量が少なく、ますます強
まりつつある環境面への配慮という時代の要請に適合す
る、清浄な高オクタン価ガソリン燃料を、容易に製造す
ることができる。According to the present invention using a hydrodesulfurization treatment catalyst whose surface has been modified with carbon and combining this with appropriate hydrodesulfurization treatment conditions, the cracked gasoline fraction as a feedstock can be obtained in a one-stage treatment. An excellent effect is obtained in that the reduction rate of the olefin component content can be suppressed to about 50% or less, and the desulfurization rate can be at least about 50%. Further, according to the present invention, a clean high octane gasoline fuel which is low in sulfur, has a lower aromatic content than reformed gasoline, and meets the demands of an increasingly environmentally friendly era. Can be easily manufactured.
【0032】[0032]
【表1】 [Table 1]
【0033】[0033]
【表2】 [Table 2]
【0034】[0034]
【表3】 [Table 3]
フロントページの続き (56)参考文献 特開 昭55−155090(JP,A) 特開 昭55−47145(JP,A) 特開 昭54−88903(JP,A) 特開 昭54−139607(JP,A) 特開 昭52−107008(JP,A) 特開 昭54−85204(JP,A) (58)調査した分野(Int.Cl.7,DB名) C10G 45/04 B01J 23/85 C10G 45/06 C10G 45/08 C10G 45/12 Continuation of the front page (56) References JP-A-55-155090 (JP, A) JP-A-55-47145 (JP, A) JP-A-54-88903 (JP, A) JP-A-54-139607 (JP, A) JP-A-52-107008 (JP, A) JP-A-54-85204 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C10G 45/04 B01J 23/85 C10G 45/06 C10G 45/08 C10G 45/12
Claims (5)
する分解ガソリン留分を、多孔性担体にクロム、モリブ
デン、タングステン、コバルトおよびニッケルよりなる
群から選ばれる少なくとも1種類以上の脱硫活性金属を
含有し、かつ、表面をカーボンで修飾した水素化脱硫処
理触媒の存在下、温度約200〜300℃、水素分圧約
15〜30 kg/cm2 G 、液空間速度(LHSV) 約9
〜201/hr の条件、あるいは、温度約300〜400
℃、水素分圧約1〜14 kg/cm2 G 、液空間速度(LH
SV)約3〜30 1/hr の条件で水素と接触させること
を特徴とする分解ガソリン留分の脱硫処理方法。1. A cracked gasoline fraction containing a sulfur compound and an olefin component, wherein the porous carrier contains at least one or more types of desulfurizing active metals selected from the group consisting of chromium, molybdenum, tungsten, cobalt and nickel, In addition, in the presence of a hydrodesulfurization treatment catalyst whose surface is modified with carbon, a temperature of about 200 to 300 ° C., a hydrogen partial pressure of about 15 to 30 kg / cm 2 G, and a liquid hourly space velocity (LHSV) of about 9
~ 201 / hr, or about 300 ~ 400
° C, hydrogen partial pressure about 1-14 kg / cm 2 G, liquid space velocity (LH
SV) A method for desulfurizing a cracked gasoline fraction, which is brought into contact with hydrogen under conditions of about 3 to 30 1 / hr.
0℃までの沸点範囲の全分解ガソリン留分を含んでなる
請求項1記載の脱硫処理方法。2. The cracked gasoline fraction is from about 30 ° C. to about 22 ° C.
The desulfurization process according to claim 1, comprising a total cracked gasoline fraction having a boiling point range up to 0 ° C.
0℃までの沸点範囲の重質分解ガソリン留分を含んでな
る請求項1記載の脱硫処理方法。3. The cracked gasoline fraction is from about 80 ° C. to about 22 ° C.
2. The desulfurization treatment method according to claim 1, comprising a heavy cracked gasoline fraction having a boiling point up to 0 ° C.
300℃、水素分圧約15〜30 kg/cm2 G 、液空間速
度(LHSV)約10〜20 1/hr 、あるいは温度約3
00〜400℃、水素分圧約1〜10 kg/cm2 G 、液空
間速度(LHSV)約3〜30 1/hr のいずれかである
請求項1記載の脱硫処理方法。4. The conditions for hydrodesulfurization treatment are as follows:
300 ° C., hydrogen partial pressure about 15-30 kg / cm 2 G, liquid hourly space velocity (LHSV) about 10-201 / hr, or temperature about 3
2. The desulfurization treatment method according to claim 1, wherein the temperature is any one of 00 to 400 ° C., a hydrogen partial pressure of about 1 to 10 kg / cm 2 G, and a liquid hourly space velocity (LHSV) of about 3 to 30 1 / hr.
ム、モリブデン、タングステン、コバルトおよびニッケ
ルよりなる群から選ばれる少なくとも1種類以上を含有
し、かつ、触媒表面に約2〜30重量%のカーボンを含
有してなる請求項1〜請求項4記載の脱硫処理方法。5. The hydrodesulfurization treatment catalyst, wherein the porous carrier contains at least one selected from the group consisting of chromium, molybdenum, tungsten, cobalt and nickel, and about 2 to 30% by weight of the catalyst surface. The desulfurization treatment method according to claim 1, comprising carbon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33923893A JP3269900B2 (en) | 1993-12-06 | 1993-12-06 | Desulfurization of cracked gasoline fraction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33923893A JP3269900B2 (en) | 1993-12-06 | 1993-12-06 | Desulfurization of cracked gasoline fraction |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07157774A JPH07157774A (en) | 1995-06-20 |
JP3269900B2 true JP3269900B2 (en) | 2002-04-02 |
Family
ID=18325562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33923893A Expired - Lifetime JP3269900B2 (en) | 1993-12-06 | 1993-12-06 | Desulfurization of cracked gasoline fraction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3269900B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2840620B1 (en) * | 2002-06-07 | 2004-07-30 | Inst Francais Du Petrole | PROCESS FOR PRODUCING LOW SULFUR AND NITROGEN HYDROCARBONS |
FR2888583B1 (en) * | 2005-07-18 | 2007-09-28 | Inst Francais Du Petrole | NOVEL METHOD OF DESULFURIZING OLEFINIC ESSENCES FOR LIMITING THE MERCAPTAN CONTENT |
JP4931052B2 (en) * | 2006-08-30 | 2012-05-16 | Jx日鉱日石エネルギー株式会社 | Method for producing gasoline base material |
JP5291940B2 (en) * | 2008-01-17 | 2013-09-18 | Jx日鉱日石エネルギー株式会社 | Hydrorefining method for naphtha fraction |
JP5334632B2 (en) * | 2009-03-10 | 2013-11-06 | 日揮触媒化成株式会社 | Hydrocarbon hydrotreating catalyst and hydrotreating method using the same |
US9840672B2 (en) | 2012-03-30 | 2017-12-12 | Jx Nippon Oil & Energy Corporation | ZSM-22 zeolite, hydroisomerization catalyst and method for producing same, and method for producing hydrocarbon |
US9713807B2 (en) | 2012-03-30 | 2017-07-25 | Jx Nippon Oil & Energy Corporation | Method for producing hydroisomerization catalyst and method for producing lubricant base oil |
-
1993
- 1993-12-06 JP JP33923893A patent/JP3269900B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07157774A (en) | 1995-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3387700B2 (en) | Desulfurization method of catalytic cracking gasoline | |
JP2966985B2 (en) | Catalytic hydrotreating method for heavy hydrocarbon oil | |
US4149965A (en) | Method for starting-up a naphtha hydrorefining process | |
US4016067A (en) | Process for demetalation and desulfurization of petroleum oils | |
JP3270545B2 (en) | Hydrocarbon reforming method | |
US4049542A (en) | Reduction of sulfur from hydrocarbon feed stock containing olefinic component | |
JP3378416B2 (en) | Desulfurization method of catalytic cracking gasoline | |
US4485183A (en) | Regeneration and reactivation of deactivated hydrorefining catalyst | |
JP2000109856A (en) | Hydrodesulfurization of gas oil | |
JP4423037B2 (en) | Multistage hydrodesulfurization of cracked naphtha streams with interstage fractionation | |
CA2477605C (en) | Naphtha desulfurization with selectively suppressed hydrogenation | |
JP4961093B2 (en) | Contact stripping to remove mercaptans | |
JP3443474B2 (en) | Desulfurization treatment method for catalytic cracking gasoline | |
JP3291164B2 (en) | Desulfurization method of catalytic cracking gasoline | |
WO2006120898A1 (en) | Process for producing low-sulfur cracked-gasoline base and lead-free gasoline composition | |
JP3859235B2 (en) | Method for hydrogenating thiophene sulfur-containing hydrocarbon feedstock | |
JP3269900B2 (en) | Desulfurization of cracked gasoline fraction | |
WO2006022419A1 (en) | Process for hydrorefining heavy hydrocarbon oil | |
KR101009469B1 (en) | Hydrogenation Method for Removing Mercaptan from Gasoline | |
US6589418B2 (en) | Method for selective cat naphtha hydrodesulfurization | |
JPH0848981A (en) | Hydrorefining treatment method of light oil fraction | |
CN116023994B (en) | A hydrocracking method for producing low aromatic wax oil from heavy distillate oil | |
US7297252B2 (en) | Catalyst activation in the presence of olefinic hydrocarbon for selective naphtha hydrodesulfurization | |
JP3398273B2 (en) | Desulfurization method of catalytic cracking gasoline | |
JPH05112785A (en) | Treatment of heavy hydrocarbon oil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090118 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100118 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120118 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120118 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120118 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130118 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130118 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140118 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |