Nothing Special   »   [go: up one dir, main page]

JP3269535B2 - Exhaust gas purification catalyst for diesel engines - Google Patents

Exhaust gas purification catalyst for diesel engines

Info

Publication number
JP3269535B2
JP3269535B2 JP33853292A JP33853292A JP3269535B2 JP 3269535 B2 JP3269535 B2 JP 3269535B2 JP 33853292 A JP33853292 A JP 33853292A JP 33853292 A JP33853292 A JP 33853292A JP 3269535 B2 JP3269535 B2 JP 3269535B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
flow portion
honeycomb
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33853292A
Other languages
Japanese (ja)
Other versions
JPH06182204A (en
Inventor
あけみ 佐藤
義次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP33853292A priority Critical patent/JP3269535B2/en
Publication of JPH06182204A publication Critical patent/JPH06182204A/en
Application granted granted Critical
Publication of JP3269535B2 publication Critical patent/JP3269535B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ディーゼルエンジン
(以下、DEという)からの排気ガス中に含まれるH
C、CO及びSOF(Soluble Organic Fraction)を燃
焼して浄化するとともに、ディーゼルパティキュレート
の排出量を低減でき、かつサルフェートの排出量も低減
できる触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diesel engine (hereinafter referred to as "DE") containing H
The present invention relates to a catalyst capable of burning and purifying C, CO and SOF (Soluble Organic Fraction), reducing the emission of diesel particulates and reducing the emission of sulfate.

【0002】[0002]

【従来の技術】ガソリンエンジンについては、排気ガス
の厳しい規制とそれに対処できる技術の進歩により、排
気ガス中の有害物質は確実に減少している。しかしDE
については、有害成分が主としてパティキュレートとし
て排出されるという特異な事情から、規制も技術の開発
もガソリンエンジンに比べて遅れており、確実に浄化で
きる排気ガス浄化装置の開発が望まれている。
2. Description of the Related Art Regarding gasoline engines, harmful substances in exhaust gas have been steadily reduced due to strict regulations on exhaust gas and advances in technology capable of coping with it. But DE
With regard to, the regulation and development of technology are behind in comparison with gasoline engines because of the peculiar circumstances that harmful components are mainly emitted as particulates, and there is a need for the development of an exhaust gas purification device that can reliably purify.

【0003】現在までに開発されているDE排気ガス浄
化装置としては、大きく分けてトラップを用いる方法
(触媒無しと触媒付き)と、オープン型SOF分解触媒
とが知られている。このうちトラップを用いる方法は、
ディーゼルパティキュレートをトラップして排出を規制
するものであり、特にドライスーツの比率の高い排気ガ
スに有効である。しかしながら再生処理装置が必要とな
り、再生時の触媒担体の割れ、アッシュによる閉塞ある
いはシステムが複雑になる、さらには圧力損失が大きい
など、実用上多くの課題を残している。
[0003] As a DE exhaust gas purifying apparatus which has been developed to date, a method using a trap (without a catalyst and with a catalyst) and an open type SOF decomposition catalyst are known. Of these, the method using a trap is
It traps diesel particulates and regulates emissions, and is particularly effective for exhaust gas with a high dry suit ratio. However, a regeneration treatment device is required, and many problems remain in practical use, such as cracking of the catalyst carrier during regeneration, blockage by ash, a complicated system, and a large pressure loss.

【0004】一方オープン型SOF分解触媒は、例えば
特開平3−38255号公報に示されるように、活性ア
ルミナなどの触媒担持層にガソリンエンジンと同様に白
金族金属などの酸化触媒を担持した触媒が利用され、C
OやHCとともにディーゼルパティキュレート中のSO
Fを酸化分解して浄化する。このオープン型SOF分解
触媒は、ドライスーツの除去率が低いという欠点がある
が、ドライスーツの量はDEや燃料自体の改良によって
低減することが可能であり、かつ再生処理装置が不要、
圧力損失が小さい、という大きなメリットがあるため、
今後の一段の技術の向上が期待されている。
On the other hand, an open type SOF decomposition catalyst is, for example, a catalyst in which an oxidation catalyst such as a platinum group metal is supported on a catalyst support layer of activated alumina or the like as in a gasoline engine, as shown in JP-A-3-38255. Used, C
SO in diesel particulates with O and HC
F is oxidatively decomposed and purified. This open-type SOF cracking catalyst has a drawback in that the removal rate of the dry suit is low, but the amount of the dry suit can be reduced by improving the DE and the fuel itself, and a reprocessing device is not required.
Because there is a great advantage that pressure loss is small,
Further improvements in technology are expected in the future.

【0005】[0005]

【発明が解決しようとする課題】ところで、DEから排
出される排気ガスには低温域では多くのSOFが含まれ
るが、高温域では含まれるSOFが極めて少なくなるこ
とが知られている。したがってオープン型SOF分解触
媒では、高温域ではSOF分解の効果がほとんど期待で
きない。
By the way, it is known that the exhaust gas discharged from the DE contains a large amount of SOF in a low temperature range, but contains very little SOF in a high temperature range. Therefore, in the open type SOF decomposition catalyst, the effect of SOF decomposition can hardly be expected in a high temperature range.

【0006】また、オープン型SOF分解触媒に形成さ
れている活性アルミナ層は、SO2を吸着する性質を有
している。そのためDEの排気ガス中に含まれるSO2
は活性アルミナ層に吸着されるのであるが、高温域では
吸着されていたSO2 が触媒金属の触媒作用により酸化
されてSO3 となり、サルフェート及びパティキュレー
トとして排出されてしまう。
The active alumina layer formed on the open type SOF decomposition catalyst has a property of adsorbing SO 2 . Therefore, SO 2 contained in exhaust gas of DE
Is adsorbed on the activated alumina layer, but in a high temperature region, the adsorbed SO 2 is oxidized by the catalytic action of the catalytic metal to form SO 3 , which is discharged as sulfate and particulates.

【0007】したがってオープン型SOF分解触媒は、
高温域においてパティキュレート低減効果がほとんど得
られないという問題がある。本発明はこのような事情に
鑑みてなされたものであり、圧力損失を小さく維持する
とともに、低温域から高温域にわたる全域でパティキュ
レートの排出を低減することを目的とする。
Therefore, the open type SOF decomposition catalyst is
There is a problem that a particulate reduction effect is hardly obtained in a high temperature range. The present invention has been made in view of such circumstances, and it is an object of the present invention to maintain a small pressure loss and reduce the emission of particulates in a whole range from a low temperature range to a high temperature range.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する本発
明のディーゼルエンジン用排気ガス浄化触媒は、軸方向
に平行に並んだ多数のハニカム通路をもつハニカム担体
基材に触媒金属を担持したディーゼルエンジン用排気ガ
ス浄化触媒であって、ハニカム担体基材の軸芯部にはハ
ニカム通路の入口側開口と出口側開口がそれぞれ交互に
市松模様状に閉塞されたクロスフロー部をもつととも
に、クロスフロー部の外周にはハニカム通路の入口側開
口と出口側開口がそれぞれ開口するストレートフロー部
をもち、クロスフロー部にはパラジウム触媒が担持さ
れ、ストレートフロー部には白金触媒が担持されている
ことを特徴とする。
An exhaust gas purifying catalyst for a diesel engine according to the present invention, which solves the above-mentioned problems, has a structure in which a catalytic metal is supported on a honeycomb carrier substrate having a large number of honeycomb passages arranged in parallel in an axial direction. An exhaust gas purifying catalyst for an engine, wherein a honeycomb core substrate has a crossflow portion in which a honeycomb passage base member has crossflow portions in which inlet and outlet openings of a honeycomb passage are alternately closed in a checkered pattern. The outer periphery of the portion has a straight flow portion where the inlet side opening and the outlet side opening of the honeycomb passage are respectively opened, the cross flow portion carries a palladium catalyst, and the straight flow portion carries a platinum catalyst. Features.

【0009】クロスフロー部は、ハニカム担体基材の断
面積の10〜40%の範囲に設けるのが望ましい。クロ
スフロー部がこれより少なくなると、高温域におけるパ
ティキュレート低減効果が得にくくなる。また40%を
超えてクロスフロー部を設けると、圧力損失が増大す
る。この範囲とすることにより、圧力損失が小さく低温
域から高温域まで全域でパティキュレート低減効果が得
られる。
It is desirable that the cross-flow portion is provided in a range of 10 to 40% of the cross-sectional area of the honeycomb carrier substrate. If the number of cross-flow portions is smaller than this, the effect of reducing particulates in a high temperature range becomes difficult to obtain. Further, when the cross flow portion is provided in excess of 40%, the pressure loss increases. By setting the pressure in this range, the pressure loss is small, and the effect of reducing particulates can be obtained in all regions from a low temperature region to a high temperature region.

【0010】[0010]

【作用】DEの低速運転時に排出される排気ガスは低温
域にあり、多くのSOFを含んでいる。また、この低温
域の排気ガスは圧力も低い。したがって低温域の排気ガ
スは、クロスフロー部には流れにくく主としてストレー
トフロー部を流れる。このストレートフロー部には、S
OFの低温浄化性能に優れた白金触媒が担持されている
ため、SOFは容易に分解除去されパティキュレートと
して排出されるのが防止されている。
The exhaust gas discharged during the low-speed operation of the DE is in a low temperature range and contains a large amount of SOF. Further, the pressure of the exhaust gas in this low temperature range is low. Therefore, the exhaust gas in the low-temperature region hardly flows into the cross flow portion and mainly flows through the straight flow portion. In this straight flow section, S
Since the platinum catalyst excellent in the low-temperature purification performance of the OF is supported, the SOF is easily decomposed and removed, and is prevented from being discharged as particulates.

【0011】一方、高速運転時には排気ガスも高温域と
なり、含まれるSOFは僅かとなる。この高温域の排気
ガス流は、中心部ほど流速が大きく圧力も高いので、ス
トレートフロー部と同様にクロスフロー部にも流入す
る。すなわちクロスフロー部の入口側端面が閉塞されて
いないハニカム通路に流入し、壁部の細孔を通過して隣
接する出口側端面が閉塞されていないハニカム通路から
排出される。したがってカーボン粒子などのパティキュ
レートはクロスフロー部で捕捉され、排出が防止され
る。
On the other hand, during high-speed operation, the exhaust gas also has a high temperature range, and the contained SOF becomes small. Since the flow rate of the exhaust gas in the high temperature region is higher at the center and higher in the pressure, the exhaust gas flow also flows into the cross flow portion as in the straight flow portion. In other words, the inlet side end face of the cross flow portion flows into the unblocked honeycomb passage, passes through the pores of the wall portion, and is discharged from the adjacent outlet side passage face not closed. Therefore, particulates such as carbon particles are trapped in the cross flow portion, and are prevented from being discharged.

【0012】またこのクロスフロー部には、高温におい
てもSO2 の酸化作用が小さいパラジウム触媒が担持さ
れている。したがって従来の白金触媒のみを担持したオ
ープン型SOF分解触媒に比べてサルフェートの生成が
抑制され、結果として高温域におけるパティキュレート
の排出が低減される。さらに、クロスフロー部のハニカ
ム通路に堆積したカーボン粒子などは、高速走行時など
に酸化作用に優れたパラジウム触媒により燃焼されるた
め、触媒の再生も容易である。
A palladium catalyst having a small oxidizing effect on SO 2 even at a high temperature is supported on the cross flow section. Therefore, the production of sulfate is suppressed as compared with the conventional open-type SOF decomposition catalyst supporting only a platinum catalyst, and as a result, the emission of particulates in a high temperature range is reduced. Furthermore, since carbon particles and the like deposited in the honeycomb passage in the cross flow portion are burned by a palladium catalyst having an excellent oxidizing action during high-speed running, the catalyst can be easily regenerated.

【0013】[0013]

【実施例】以下、実施例により具体的に説明する。 (実施例1)図1に本発明の一実施例の排気ガス浄化触
媒の斜視図を、図2にその概略断面図を、図3に図2の
要部拡大図を示す。この触媒は、コージェライト製のハ
ニカム担体基材1と、ハニカム担体基材1のハニカム通
路壁面に被覆されたアルミナコート層2と、ハニカム担
体基材1の所定部位のアルミナコート層2にそれぞれ担
持されたPt触媒3及びパラジウム触媒4と、から構成
されている。
The present invention will be specifically described below with reference to examples. (Embodiment 1) FIG. 1 is a perspective view of an exhaust gas purifying catalyst according to an embodiment of the present invention, FIG. 2 is a schematic sectional view thereof, and FIG. 3 is an enlarged view of a main part of FIG. This catalyst is supported on a honeycomb carrier substrate 1 made of cordierite, an alumina coat layer 2 covering the honeycomb passage wall surface of the honeycomb carrier substrate 1, and an alumina coat layer 2 on a predetermined portion of the honeycomb carrier substrate 1. And a Pt catalyst 3 and a palladium catalyst 4.

【0014】ハニカム担体基材1は直径90mm、長さ
130mmの円柱形状をなし、ハニカム通路の数は20
0セル/in2 、セル壁の厚さ0.3mm、セル壁の平
均細孔径は30μm、細孔容積は0.3cm3 /gであ
る。このハニカム担体基材1は、中心軸から直径45m
m(断面積換算で25%)の円柱状の部分に、入口側開
口と出口側開口が交互にそれぞれ市松状に閉塞されたク
ロスフロー部10が形成されている。そしてクロスフロ
ー部10を除く外周部に、入口側開口及び出口側開口が
共に閉塞されないストレートフロー部11が形成されて
いる。
The honeycomb carrier substrate 1 has a cylindrical shape with a diameter of 90 mm and a length of 130 mm, and the number of honeycomb passages is 20.
0 cells / in 2 , the thickness of the cell wall is 0.3 mm, the average pore diameter of the cell wall is 30 μm, and the pore volume is 0.3 cm 3 / g. This honeycomb carrier substrate 1 has a diameter of 45 m from the central axis.
A cross-flow portion 10 in which inlet-side openings and outlet-side openings are alternately closed in a checkered pattern is formed in a columnar portion of m (25% in terms of cross-sectional area). A straight flow portion 11 is formed in the outer peripheral portion excluding the cross flow portion 10 so that both the inlet side opening and the outlet side opening are not closed.

【0015】以下、この排気ガス浄化触媒を製造した方
法を説明しながら、その構成をさらに詳細に説明する。
平均粒径10μmの市販のアルミナ粉末と、アルミナゾ
ル、蒸留水及び界面活性剤を混合してアルミナスラリー
を調製し、上記したハニカム担体基材1を浸漬した。そ
して引き上げて余分なスラリーを吹き払った後、120
℃で2時間乾燥し、次いで700℃で2時間焼成してア
ルミナコート層2を形成した。このアルミナコート層2
は、ハニカム担体基材1リットルあたりに換算して12
0g形成されている。
Hereinafter, the structure of the exhaust gas purifying catalyst will be described in more detail while describing a method of manufacturing the exhaust gas purifying catalyst.
A commercially available alumina powder having an average particle size of 10 μm, alumina sol, distilled water and a surfactant were mixed to prepare an alumina slurry, and the above-mentioned honeycomb carrier substrate 1 was immersed. Then, after lifting and blowing off the excess slurry, 120
C. for 2 hours, and then calcined at 700.degree. C. for 2 hours to form an alumina coat layer 2. This alumina coat layer 2
Is calculated as 12 per liter of the honeycomb carrier substrate.
0 g is formed.

【0016】次に、軸芯から直径45mmの部分の入口
側開口を、市松模様状に交互に充填剤(「アロンセラミ
ック」東亜合成化学社製)で閉塞した。また軸芯から直
径45mmの部分で入口側開口が閉塞されていないハニ
カム通路の出口側開口を、同様に市松模様状に閉塞し
た。これにより全断面積の25%がクロスフロー型のガ
ス流れをもつクロスフロー部10となり、75%がスト
レートフロー型の流れをもつストレートフロー部11と
なったハニカム構造体が得られた。
Next, the inlet-side opening of a portion having a diameter of 45 mm from the axis was alternately closed with a filler ("Aron Ceramic" manufactured by Toa Gosei Chemical Co., Ltd.) in a checkered pattern. The outlet opening of the honeycomb passage whose inlet opening was not closed at a portion having a diameter of 45 mm from the axis was similarly closed in a checkered pattern. As a result, a honeycomb structure was obtained in which 25% of the total cross-sectional area was a cross flow portion 10 having a cross flow type gas flow, and 75% was a straight flow portion 11 having a straight flow type flow.

【0017】次にクロスフロー部10の両端面をマスキ
ングして白金ジニトロジアンミン水溶液中に浸漬し、引
き上げた後余分な水滴を吹き払い常法で乾燥・焼成し
て、ストレートフロー部11に容積1リットルあたり
1.5gのPtを担持させた。次にクロスフロー部10
のマスキングを除去するとともにストレートフロー部1
1の両端面をマスキングし、硝酸パラジウム水溶液を用
いて同様にしてクロスフロー部10に触媒容積1リット
ルあたり1.8gのPdを担持させた。 (実施例2)白金ジニトロジアンミン水溶液とメタバナ
ジン酸アンモニウム水溶液を用い、ストレートフロー部
11に触媒容積1リットルあたり1.5gのPtと0.
3molのVが担持されていること以外は実施例1と同
様の構成である。 (比較例1)クロスフロー部10に触媒容積1リットル
あたり1.5gのPtが担持され、ストレートフロー部
11に触媒容積1リットルあたり1.8gのPdが担持
されていること以外は、実施例1と同様の構成である。 (比較例2)全てストレートフロー部11のみで構成さ
れ、全体に触媒容積1リットルあたり1.5gのPtが
担持されていること以外は実施例1と同様の構成であ
る。 (比較例3)Ptを担持したストレートフロー部11を
軸芯側に75%設け、Pdを担持したクロスフロー部1
0を外周側に25%設けたこと以外は実施例1と同様の
構成である。 (参考例1〜5)クロスフロー部10とストレートフロ
ー部11の構成割合を変化させ、触媒金属を担持してい
ないこと以外は実施例1と同様の構成である。
Next, both end faces of the cross flow section 10 are masked, immersed in an aqueous solution of platinum dinitrodiammine, lifted up, and then sprayed with excess water droplets, dried and fired by a conventional method, and the volume 1 1.5 g of Pt was loaded per liter. Next, the cross flow section 10
Masking and straight flow section 1
Both ends were masked, and 1.8 g of Pd per liter of catalyst volume was supported on the cross flow section 10 in the same manner using an aqueous palladium nitrate solution. (Example 2) Using an aqueous solution of platinum dinitrodiammine and an aqueous solution of ammonium metavanadate, 1.5 g of Pt and 0.1 g of Pt per liter of catalyst volume were placed in the straight flow section 11.
The configuration is the same as that of Example 1 except that 3 mol of V is carried. (Comparative Example 1) The example was performed except that 1.5 g of Pt was supported per liter of catalyst volume in the cross flow section 10 and 1.8 g of Pd was supported in 1 liter of catalyst volume in the straight flow section 11. This is the same configuration as in FIG. (Comparative Example 2) The configuration is the same as that of Example 1 except that all are constituted only by the straight flow portion 11, and that 1.5 g of Pt is supported per liter of catalyst volume as a whole. (Comparative Example 3) Cross flow portion 1 carrying Pd, provided with 75% of straight flow portion 11 carrying Pt on the axis side
The configuration is the same as that of the first embodiment except that 25% is provided on the outer peripheral side. (Reference Examples 1 to 5) The configuration is the same as that of Example 1 except that the composition ratio of the cross flow portion 10 and the straight flow portion 11 is changed and no catalyst metal is supported.

【0018】上記実施例、比較例及び参考例の構成を一
覧表にして表1に示す。
Table 1 shows the configurations of the above Examples, Comparative Examples and Reference Examples.

【0019】[0019]

【表1】 (試験例及び評価)先ず、参考例1〜5のハニカム構造
体を、それぞれ排気量2.4リットルの渦流室式DEの
排気系に取り付け、入ガス温度が200〜500℃の条
件で運転したときのパティキュレート低減率をそれぞれ
測定した。結果を図3に示す。なお、パティキュレート
低減率は、直接サンプリング法で触媒上流部及び下流部
のパティキュレートを採取し、重量法にて求めた。
[Table 1] (Test Examples and Evaluations) First, the honeycomb structures of Reference Examples 1 to 5 were attached to an exhaust system of a vortex chamber type DE with a displacement of 2.4 liters, respectively, and operated under conditions of an inlet gas temperature of 200 to 500 ° C. The particulate reduction rate at that time was measured. The results are shown in FIG. The particulate reduction rate was determined by a gravimetric method by collecting particulates upstream and downstream of the catalyst by a direct sampling method.

【0020】参考例1〜5のハニカム構造体では、触媒
金属の担持がなくSOFの酸化が生じないので、主とし
て吸着によるパティキュレートの低減が観察される。そ
して図3より、クロスフロー部10をもたない参考例1
では、排気ガス温度の上昇に伴ってパティキュレートの
低減率が低下し、400℃以上では負の低減率となっ
た。これは、排気ガス温度の上昇に伴ってSOFの比率
が低下すること、流速の上昇によりカーボン粒子などの
吸着も殆ど生じないこと、などの理由によるものであ
る。なお、吸着率が負になる理由は不明であるが、吸着
した物質が高温で脱離したことによるものと推察され
る。
In the honeycomb structures of Reference Examples 1 to 5, since the catalyst metal is not supported and the SOF is not oxidized, the reduction of the particulates mainly due to the adsorption is observed. FIG. 3 shows that Reference Example 1 does not have the cross-flow unit 10.
In Table 1, the rate of reduction of particulates decreased as the exhaust gas temperature rose, and became a negative rate above 400 ° C. This is because the ratio of SOF decreases as the exhaust gas temperature increases, and almost no adsorption of carbon particles or the like occurs due to the increase in the flow velocity. Although the reason why the adsorption rate becomes negative is unknown, it is assumed that the adsorption substance is desorbed at a high temperature.

【0021】一方、参考例2〜5では、クロスフロー部
10を設けたことによる低減率の増大が観察され、低減
率はクロスフロー部10が多いほど高いことがわかる。
また、低温域ではクロスフロー部10の割合による低減
率の差は小さいが、高温域ほど低減率の差が拡がってい
る。これは、低温域では排気ガスは圧力損失の小さいス
トレートフロー部11を流れ、高温域ではクロスフロー
部10も流れて濾過捕集が行われていることを示してい
る。
On the other hand, in Reference Examples 2 to 5, an increase in the reduction rate due to the provision of the crossflow portion 10 is observed, and it is understood that the reduction ratio increases as the number of the crossflow portions 10 increases.
In the low temperature range, the difference in the reduction rate depending on the ratio of the crossflow portion 10 is small, but in the high temperature range, the difference in the reduction rate increases. This indicates that the exhaust gas flows through the straight flow section 11 having a small pressure loss in the low temperature range, and also flows through the cross flow section 10 in the high temperature range to perform filtration and collection.

【0022】また、図5に排気ガス温度が500℃のと
きの圧力損失を、各参考例について示す。図5より、ク
ロスフロー部10の割合が高くなると、圧力損失が急激
に上昇していることがわかる。したがって図4及び図5
から、パティキュレートの低減効果があり、かつ圧力損
失が少ないものは参考例2〜4の範囲、すなわちクロス
フロー部10の割合が10〜40%の範囲が好ましいこ
とがわかる。
FIG. 5 shows the pressure loss when the exhaust gas temperature is 500 ° C. for each reference example. From FIG. 5, it can be seen that when the ratio of the cross flow portion 10 increases, the pressure loss sharply increases. 4 and 5
From the results, it is understood that those having an effect of reducing particulates and having a small pressure loss are preferably in the range of Reference Examples 2 to 4, that is, in the range of the cross-flow portion 10 having a ratio of 10 to 40%.

【0023】図6に、実施例及び比較例の排気ガス浄化
触媒のパティキュレート低減率を示す。クロスフロー部
10をもたず全体にPtが担持された比較例2の触媒で
は、低減率が大幅に負となり、入ガスより出ガスの方が
パティキュレートが大幅に増大していることがわかる。
これは、排気ガス温度400℃以上でSO2 の酸化反応
が生じ、生成したSO3 がパティキュレートとしてカウ
ントされたことによるものである。
FIG. 6 shows the particulate reduction rates of the exhaust gas purifying catalysts of the embodiment and the comparative example. In the catalyst of Comparative Example 2 in which Pt was supported entirely without the cross flow portion 10, the reduction rate was significantly negative, and it was found that the outgassing gas had a greater increase in particulates than the incoming gas. .
This is because the SO 2 oxidation reaction occurred at an exhaust gas temperature of 400 ° C. or higher, and the generated SO 3 was counted as particulates.

【0024】またPtをクロスフロー部10に担持し、
Pdをストレートフロー部11に担持した比較例1の触
媒では、比較例2に比べれば改善されているものの、実
施例1及び実施例2には及ばない。さらに、軸芯部にP
tを担持したストレートフロー部11をもち、外周部に
Pdを担持したクロスフロー部10をもつ比較例3の触
媒では、低温域でのパティキュレート低減率は優れてい
るものの、高温域における低減率が実施例よりも低くな
っている。これは圧力の高い高温の排気ガスが軸芯部を
多く流れたために、パティキュレートの捕捉効率が悪く
なったためである。なお、この場合クロスフロー部10
の割合を増すことも考えられるが、特に低温域での圧力
損失が大きくなるため好ましくない。
Further, Pt is carried on the cross flow section 10,
The catalyst of Comparative Example 1 in which Pd is supported on the straight flow portion 11 is improved as compared with Comparative Example 2, but is inferior to Examples 1 and 2. Furthermore, P
In the catalyst of Comparative Example 3 having the straight flow portion 11 carrying t and the cross flow portion 10 carrying Pd on the outer periphery, the particulate matter reduction rate in the low temperature range is excellent, but the reduction rate in the high temperature range is excellent. Is lower than that of the embodiment. This is because the high-pressure, high-temperature exhaust gas flowed through the shaft core, and the efficiency of capturing particulates deteriorated. In this case, the cross flow unit 10
It is conceivable to increase the ratio, but it is not preferable because the pressure loss particularly in a low temperature range increases.

【0025】一方実施例1〜2の触媒では、全ガス温度
でパティキュレート低減率に優れ、高温域における低減
率の低下も僅かである。これは、低温域では主としてス
トレートフロー部11でSOFの低温浄化能に優れたP
tを有効に働かせ、高温域ではクロスフロー部10でカ
ーボン粒子を捕捉するとともに、Pdの担持によりSO
2 の酸化反応が抑制されたことに起因している。
On the other hand, the catalysts of Examples 1 and 2 are excellent in the particulate reduction rate at all gas temperatures, and the reduction in the reduction rate in the high temperature range is slight. This is because, in the low temperature region, P which is excellent in the low temperature purification capability of SOF mainly in the straight flow section 11 is used.
In the high temperature region, the carbon particles are captured by the cross flow section 10 and the Pd is loaded to reduce the SO.
This is because the oxidation reaction of 2 was suppressed.

【0026】[0026]

【発明の効果】すなわち本発明の排気ガス浄化触媒によ
れば、圧力損失が小さく維持されるとともに、低温域か
ら高温域まで全領域でパティキュレートの排出を低減す
ることができる。またクロスフロー部に堆積したカーボ
ン粒子などは、Pd触媒の存在により高温時に酸化燃焼
されるため、排気ガス浄化触媒は自然に再生され、再生
処理装置などが不要である。
According to the exhaust gas purifying catalyst of the present invention, the pressure loss can be kept small, and the emission of particulates can be reduced in all regions from a low temperature region to a high temperature region. In addition, since carbon particles and the like deposited in the cross flow portion are oxidized and burned at a high temperature due to the presence of the Pd catalyst, the exhaust gas purifying catalyst is naturally regenerated and does not require a regenerator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の排気ガス浄化触媒の斜視図
である。
FIG. 1 is a perspective view of an exhaust gas purifying catalyst according to one embodiment of the present invention.

【図2】本発明の一実施例の排気ガス浄化触媒の断面図
である。
FIG. 2 is a cross-sectional view of an exhaust gas purifying catalyst according to one embodiment of the present invention.

【図3】図2の要部拡大断面図である。FIG. 3 is an enlarged sectional view of a main part of FIG. 2;

【図4】参考例のハニカム構造体の入ガス温度とパティ
キュレート低減率の関係を示すグラフである。
FIG. 4 is a graph showing a relationship between an incoming gas temperature and a particulate reduction rate of a honeycomb structure of a reference example.

【図5】参考例のハニカム構造体の閉塞率と圧力損失の
関係を示すグラフである。
FIG. 5 is a graph showing a relationship between a closing rate and a pressure loss of a honeycomb structure of a reference example.

【図6】実施例及び比較例のハニカム構造体の入ガス温
度とパティキュレート低減率の関係を示すグラフであ
る。
FIG. 6 is a graph showing the relationship between the gas inlet temperature and the particulate reduction rate of the honeycomb structures of Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1:ハニカム担体基材 2:アルミナコート層
3:Pt触媒 4:Pd触媒 10:クロスフロー部 11:
ストレートフロー部
1: Honeycomb carrier substrate 2: Alumina coat layer
3: Pt catalyst 4: Pd catalyst 10: Cross flow section 11:
Straight flow section

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F01N 3/02 ZAB B01D 53/36 104Z (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 B01D 53/94 F01N 3/02 ──────────────────────────────────────────────────続 き Continuation of front page (51) Int.Cl. 7 identification code FI F01N 3/02 ZAB B01D 53/36 104Z (58) Field surveyed (Int.Cl. 7 , DB name) B01J 21/00-38 / 74 B01D 53/94 F01N 3/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 軸方向に平行に並んだ多数のハニカム通
路をもつハニカム担体基材に触媒金属を担持したディー
ゼルエンジン用排気ガス浄化触媒であって、 該ハニカム担体基材の軸芯部には該ハニカム通路の入口
側開口と出口側開口がそれぞれ交互に市松模様状に閉塞
されたクロスフロー部をもつとともに、該クロスフロー
部の外周には該ハニカム通路の入口側開口と出口側開口
がそれぞれ開口するストレートフロー部をもち、該クロ
スフロー部にはパラジウム触媒が担持され、該ストレー
トフロー部には白金触媒が担持されていることを特徴と
するディーゼルエンジン用排気ガス浄化触媒。
An exhaust gas purifying catalyst for a diesel engine comprising a honeycomb carrier substrate having a plurality of honeycomb passages arranged in parallel in an axial direction and carrying a catalytic metal on the honeycomb carrier substrate. The honeycomb passage has an inlet opening and an outlet opening each having a cross-flow portion which is alternately closed in a checkered pattern, and the outer periphery of the cross-flow portion has an inlet opening and an outlet opening of the honeycomb passage, respectively. An exhaust gas purifying catalyst for a diesel engine, comprising a straight flow portion that opens, a palladium catalyst supported on the cross flow portion, and a platinum catalyst supported on the straight flow portion.
JP33853292A 1992-12-18 1992-12-18 Exhaust gas purification catalyst for diesel engines Expired - Fee Related JP3269535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33853292A JP3269535B2 (en) 1992-12-18 1992-12-18 Exhaust gas purification catalyst for diesel engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33853292A JP3269535B2 (en) 1992-12-18 1992-12-18 Exhaust gas purification catalyst for diesel engines

Publications (2)

Publication Number Publication Date
JPH06182204A JPH06182204A (en) 1994-07-05
JP3269535B2 true JP3269535B2 (en) 2002-03-25

Family

ID=18319057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33853292A Expired - Fee Related JP3269535B2 (en) 1992-12-18 1992-12-18 Exhaust gas purification catalyst for diesel engines

Country Status (1)

Country Link
JP (1) JP3269535B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19946548A1 (en) * 1999-09-29 2001-05-17 Bosch Gmbh Robert Method and device for selecting different functions for implementation on a connection of a control unit
CN1630556B (en) * 2002-02-15 2012-10-03 株式会社Ict Catalyst for clarifying exhaust emission from internal combustion engine, method for preparation thereof and method for clarifying exhaust emission from internal combustion engine
JP4807129B2 (en) * 2005-08-23 2011-11-02 マツダ株式会社 Diesel particulate filter
JP2007289926A (en) * 2006-03-31 2007-11-08 Ngk Insulators Ltd Honeycomb structure and honeycomb catalytic body
JP2009000647A (en) * 2007-06-22 2009-01-08 Tokyo Yogyo Co Ltd Exhaust gas cleaning filter
JP5390438B2 (en) * 2010-03-11 2014-01-15 日本碍子株式会社 Honeycomb catalyst body
JP5580236B2 (en) * 2011-03-29 2014-08-27 日本碍子株式会社 Ceramic filter
JP5916416B2 (en) * 2012-02-10 2016-05-11 日本碍子株式会社 Plugged honeycomb structure and honeycomb catalyst body using the same
JP2014211123A (en) * 2013-04-19 2014-11-13 スズキ株式会社 Internal combustion engine diesel particulate filter
JP6386474B2 (en) * 2013-12-02 2018-09-05 株式会社キャタラー Exhaust gas purification device and particulate filter
JP6389472B2 (en) 2013-12-02 2018-09-12 株式会社キャタラー Exhaust gas purification device and particulate filter
JP6702823B2 (en) * 2015-09-18 2020-06-03 日本碍子株式会社 Exhaust gas purification device
GB2557625A (en) * 2016-12-12 2018-06-27 Gm Global Tech Operations Llc Partially plugged gasoline particulate filter

Also Published As

Publication number Publication date
JPH06182204A (en) 1994-07-05

Similar Documents

Publication Publication Date Title
RU2392456C2 (en) Method and device for cleaning of exhaust gas
EP1919613B1 (en) Diesel exhaust article and catalyst compositions therefor
US7517826B2 (en) Engine exhaust catalysts containing zeolite and zeolite mixtures
KR950002223B1 (en) Catalyst for purification of exhausted gas from diesel engine
US6916450B2 (en) Exhaust gas purifying system and method
RU2660737C2 (en) Catalysed filter for treating exhaust gas
JP2019113069A (en) Catalyzed filter for treating exhaust gas
JP3269535B2 (en) Exhaust gas purification catalyst for diesel engines
JPH02207845A (en) Catalyst for purification of exhaust gas from diesel engine
JP2004084666A (en) Removal of soot fine particles from exhaust gas of diesel engine
JP6453233B2 (en) Exhaust gas purification device
JP2010269205A (en) Catalyst for cleaning exhaust gas
JP3900421B2 (en) Wall flow type diesel exhaust gas purification filter type catalyst and diesel exhaust gas purification device
JP4006645B2 (en) Exhaust gas purification device
JP4174976B2 (en) Exhaust purification device and method for manufacturing the same
JP3874246B2 (en) Filter type catalyst for diesel exhaust gas purification
CN114080493A (en) Particulate filter
JPH04358539A (en) Catalyst for purifying exhaust gas of diesel engine
KR101011758B1 (en) After-treatment apparatus for treating exhaust gases from diesel engines
JP3316879B2 (en) Exhaust gas purification catalyst for diesel engines
JP2004243189A (en) Purifying apparatus for exhaust gas of internal combustion engine
KR101933917B1 (en) Method for coating catalyst on surface inside channels of diesel particulate filter
JP3433885B2 (en) Diesel exhaust gas purification catalyst
JP2005007259A (en) Manufacturing method for oxidation catalyst carrying diesel particulate filter
JPH0621540B2 (en) Diesel particulate collection device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees