Nothing Special   »   [go: up one dir, main page]

JP3257872B2 - Electrode substrate for electrolysis and method for producing the same - Google Patents

Electrode substrate for electrolysis and method for producing the same

Info

Publication number
JP3257872B2
JP3257872B2 JP21816993A JP21816993A JP3257872B2 JP 3257872 B2 JP3257872 B2 JP 3257872B2 JP 21816993 A JP21816993 A JP 21816993A JP 21816993 A JP21816993 A JP 21816993A JP 3257872 B2 JP3257872 B2 JP 3257872B2
Authority
JP
Japan
Prior art keywords
titanium
oxide
electrolysis
electrode
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21816993A
Other languages
Japanese (ja)
Other versions
JPH0754182A (en
Inventor
孝之 島宗
保夫 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP21816993A priority Critical patent/JP3257872B2/en
Publication of JPH0754182A publication Critical patent/JPH0754182A/en
Application granted granted Critical
Publication of JP3257872B2 publication Critical patent/JP3257872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、本発明は、耐久性を有
する電解用電極基体及びその製造方法に関し、より詳細
には高電流密度で主として酸素発生反応に使用する耐久
性と耐フッ素性を有しかつ電流逆転に対する耐性を有す
る電解用電極基体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a durable electrode substrate for electrolysis and a method for producing the same, and more particularly to a durable and fluorine-resistant electrode used at a high current density and mainly used for an oxygen generation reaction. The present invention relates to an electrode substrate for electrolysis having resistance to current reversal and a method for producing the same.

【0002】[0002]

【従来技術とその問題点】工業電解特に無機酸を主体と
する電解は金属の電解製錬、電気めっき、有機物及び無
機物の電解合成等極めて広い範囲で行われている。これ
らの電解用電極特に陽極として鉛又は鉛合金電極、白金
めっきチタン電極、カーボン電極等が提案されているが
いずれの電極も欠点があり、幅広い用途の電解には使用
されていない。例えば鉛電極は表面に比較的安定で良導
電性である二酸化鉛が形成されるが、この二酸化鉛も通
常の電解条件で数mg/AHの溶解があり、しかも過電
圧が大きいという欠点がある。又白金めっきチタン電極
は高価なわりに寿命が短く、更にカーボン電極は陽極反
応が酸素発生反応であると該カーボン電極が発生酸素と
反応して二酸化炭素として自身を消耗させかつ導電性が
悪いという欠点がある。これらの各電極の欠点を解消す
るために寸法安定性電極(DSE)が提案され幅広く使
用されている。
2. Description of the Related Art Industrial electrolysis, particularly electrolysis mainly using inorganic acids, is performed in a very wide range such as electrolytic smelting of metals, electroplating, and electrolytic synthesis of organic and inorganic substances. These electrodes for electrolysis, particularly lead or lead alloy electrodes, platinum-plated titanium electrodes, carbon electrodes, etc., have been proposed as anodes, but all of these electrodes have drawbacks and are not used for electrolysis in a wide range of applications. For example, a lead electrode is formed on its surface with lead dioxide, which is relatively stable and has good conductivity. However, this lead dioxide also has the drawback that several mg / AH is dissolved under ordinary electrolysis conditions, and the overvoltage is large. Platinum-plated titanium electrodes are expensive and have a short life, and if the anodic reaction is an oxygen generating reaction, the carbon electrode reacts with the generated oxygen to consume itself as carbon dioxide and has poor conductivity. There is. Dimensionally stable electrodes (DSE) have been proposed and widely used to overcome the disadvantages of each of these electrodes.

【0003】このDSEはチタンに代表される弁金属を
基体とし陽極として使用される限りは、表面が不働態化
し、化学的に極めて安定な長寿命電極として機能する。
しかし該DSEも陰極として使用され陰分極を受ける
と、発生する水素と反応して水素化物となり基体自体が
脆弱化したり腐食により表面の被覆が剥離したりして電
極寿命を著しく縮めることになり、特に正負が反転する
つまり電流方向が反転する電解にDSEを使用する際の
大きな欠点となっている。更にフッ素やフッ化物等ある
種のハロゲンイオンが存在し又はアルコールやアルデヒ
ド類などの有機物が存在する液中で電解を行うと、それ
らの量が微量でも基体の異常腐食が起こったり活性溶解
を起こして表面に形成された電極物質を剥離させ、短期
間で通電不能になるという問題があった。
[0003] As long as this DSE is used as an anode with a valve metal represented by titanium as a base, the surface is passivated and functions as a chemically extremely stable long-life electrode.
However, when the DSE is also used as a cathode and is subjected to negative polarization, it reacts with the generated hydrogen to become hydride, which weakens the substrate itself or peels off the surface coating due to corrosion, thereby significantly shortening the electrode life. In particular, this is a major drawback when using DSE for electrolysis where the polarity is reversed, that is, the current direction is reversed. Furthermore, when electrolysis is performed in a solution in which certain halogen ions such as fluorine and fluoride are present, or in the presence of organic substances such as alcohols and aldehydes, abnormal corrosion of the base or active dissolution occurs even in a small amount thereof. Therefore, there is a problem that the electrode material formed on the surface is peeled off, and it becomes impossible to conduct electricity in a short time.

【0004】又10〜20KA/m2 という極めて大きな電
流密度で使用すると電極物質と基体間の界面が不働態化
してしまい、最終的に通電不能になるという問題点があ
り、この問題点を解決するために本発明者らは基体表面
に酸素障壁層として、白金の薄層を設けたり、予め基体
表面を半導性の酸化物になるように改質してたとえ不働
態化しても通電が可能になる構造としたり、酸化スズの
ような酸化状態で極めて安定であると共に導電性を失わ
ない中間層を有したりする電極を提案した。
When used at an extremely large current density of 10 to 20 KA / m 2 , the interface between the electrode material and the substrate becomes inactive, and there is a problem that the current cannot be supplied finally, and this problem is solved. In order to achieve this, the present inventors provided a thin layer of platinum as an oxygen barrier layer on the surface of the substrate, or modified the surface of the substrate so that it became a semiconductive oxide in advance, even if it was passivated. We have proposed an electrode that has a structure that makes it possible or that has an intermediate layer that is extremely stable in an oxidized state such as tin oxide and does not lose conductivity.

【0005】これらの電極は極めて有効であり、中間層
又は基体を改質しない電極と比較して2〜10倍又はそれ
以上の電極寿命を有することが確認されている。しかし
ながらこのような大電流密度下では改質層や中間層を有
していてもそれらを通して基体側に不働態層を数μmの
厚さで形成し電極物質が活性を維持しているにもかかわ
らず、通電不能に陥る場合がしばしば認められ、より長
寿命で電極物質をより有効に使用するためのより効果的
な表面改質法や中間層形成法が要請されていた。又電解
条件によっては、必然的に逆電流が生ずることがあり、
その場合は例えば酸化スズは瞬間的に還元されて脱離
し、改質層も比較的容易に電極物質を脱落させるという
問題点を有していた。
It has been confirmed that these electrodes are extremely effective and have an electrode life 2 to 10 times or more as long as electrodes which do not modify the intermediate layer or the substrate. However, under such a large current density, even though the modified layer and the intermediate layer are provided, the passivation layer is formed on the substrate side with a thickness of several μm through them to maintain the activity of the electrode material. In some cases, it is often impossible to conduct electricity, and there has been a demand for a more effective surface modification method and an intermediate layer forming method for a longer life and more effective use of the electrode material. Also, depending on the electrolysis conditions, a reverse current may inevitably occur,
In this case, for example, tin oxide is instantaneously reduced and desorbed, and the modified layer also has a problem that the electrode material is easily dropped off.

【0006】更にこれらの中間層や改質層は、前述の有
機物やある種の腐食性のハロゲン化物に対して耐性を有
するものの決して十分でなく、前記中間層や改質層が薄
いため、基体自体の耐食性に頼ってしまうという問題点
があった。前述の従来技術の欠点、特に中間層の不働態
化を防止するためにタンタルの線材を溶射して中間層を
形成する方法が提案されている(特開平5−156480
号)。このタンタル溶射では金属タンタルと酸化タンタ
ルの混合した部分酸化物からなる中間層が形成されると
報告されている。しかしタンタルは酸化されやすくつま
り他の金属より不働態化が進行しやすく、特に過酷な条
件下での使用では長寿命を期待できず、更に高価である
ため用途が限定されてしまうという欠点を有している。
Further, these intermediate layers and modified layers have resistance to the above-mentioned organic substances and certain corrosive halides, but are not sufficient. There was a problem in that it relied on its own corrosion resistance. In order to prevent the above-mentioned disadvantages of the prior art, in particular, passivation of the intermediate layer, there has been proposed a method of forming an intermediate layer by spraying a tantalum wire (Japanese Patent Laid-Open No. 5-156480).
issue). It is reported that this tantalum spraying forms an intermediate layer composed of a partial oxide in which metal tantalum and tantalum oxide are mixed. However, tantalum is liable to be oxidized, that is, passivation is more likely to occur than other metals, and it cannot be expected to have a long life especially under severe conditions. are doing.

【0007】[0007]

【発明の目的】本発明は、従来の電極基体特にDSE等
の基体に関する前述の問題点を解消し、高電流密度下で
の十分な耐久性と化学的な安定性並びに正負反転を伴う
電解等における陰分極下での使用に対して安定で長期間
使用できる電解用電極基体及びその製造方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems associated with the conventional electrode substrate, particularly a substrate such as DSE, and provides sufficient durability and chemical stability under a high current density and electrolysis with positive / negative reversal. An object of the present invention is to provide an electrode substrate for electrolysis which is stable for use under negative polarization and can be used for a long period of time, and a method for producing the same.

【0008】[0008]

【問題点を解決するための手段】本発明は、予め粗面化
した導電性金属基材上に、金属チタン及び酸化チタンと
を含む部分酸化物である厚さ50から200 μmの溶射層を
形成したことを特徴とする電解用電極基体及びその製造
方法である。
According to the present invention, a sprayed layer having a thickness of 50 to 200 μm, which is a partial oxide containing metal titanium and titanium oxide, is formed on a conductive metal substrate which has been roughened in advance. An electrode substrate for electrolysis characterized by being formed and a method for producing the same.

【0009】以下本発明を詳細に説明する。本発明によ
り金属チタンと酸化チタンを含む溶射層を金属基材上に
形成すると、該溶射層がアーク溶射やプラズマ溶射独自
の緻密で実質表面積が大きく、電解での使用時に実質的
な電流密度を下げることができ、更に金属による良好な
導電性及び溶射層と基材金属との強固な付着性を確保で
き、かつ多量に存在する金属に起因する部分酸化物の酸
素不足による導電性酸化物形成により生ずる良好なフッ
素を含む耐ハロゲン性及び逆電流耐性を有する電解用電
極基体が得られ、更にチタンの有する通常の電解条件に
おける耐酸化性のため不働態化の進行が抑制され、長期
間の使用が可能になる。
Hereinafter, the present invention will be described in detail. When a sprayed layer containing titanium metal and titanium oxide is formed on a metal substrate according to the present invention, the sprayed layer has a dense and substantial surface area unique to arc spraying or plasma spraying, and has a substantial current density when used in electrolysis. The conductive oxide formed due to the lack of oxygen in the partial oxide caused by a large amount of metal can be secured, and the good conductivity of the metal and the strong adhesion between the sprayed layer and the base metal can be secured. Thus, an electrode base for electrolysis having good halogen resistance and reverse current resistance including fluorine produced by the method is obtained, and furthermore, progress of passivation is suppressed due to oxidation resistance under normal electrolysis conditions of titanium, and the Can be used.

【0010】本発明で使用する導電性金属基材は、電極
としての使用時に表面に形成される溶射層により隔離さ
れるため導電性であれば通常は特に制約されないが、溶
射層の厚さが最大でも200 μm程度で時としてピンホー
ルの存在の可能性もあり例えば強酸中で陽極として使用
される場合は比較的耐食性の高いチタンで代表される弁
金属を使用することが望ましく、特に加工性が良好で、
比較的価格の安いチタンやチタン合金の使用が望まし
い。勿論他の電解ではニッケルやステンレス又は商品名
ハステロイ等の耐食合金も目的に応じて使用できること
はいうまでもない。
The conductive metal substrate used in the present invention is not particularly limited as long as it is conductive because it is isolated by a sprayed layer formed on the surface when used as an electrode. There is a possibility that pinholes sometimes exist at a maximum of about 200 μm.For example, when used as an anode in a strong acid, it is desirable to use a valve metal represented by titanium having relatively high corrosion resistance. Is good,
It is desirable to use relatively inexpensive titanium or titanium alloy. Of course, in other electrolysis, a corrosion-resistant alloy such as nickel, stainless steel, or trade name Hastelloy can be used according to the purpose.

【0011】この金属基材上に溶射層を形成するに先立
って、該基材表面の粗面化を行う。前記溶射層は表面層
としては厚い50〜200 μmの厚さを有するため該溶射層
を保持しより強固な付着性を得るためのアンカー効果及
び前記基材と該溶射層との強い化学結合を得るために前
記粗面化を行う。代表的な粗面化法として物理的方法と
化学的方法とがある。この粗面化は粗面化後の基材表面
に不純物が残らないこと及び化学的に不安定な加工層が
残らないよう注意して行う。粗面化の程度は特に限定さ
れないが、JISRa =10〜20μm、JISRmax =50
〜200 μm程度が望ましい。
Prior to forming a thermal spray layer on the metal substrate, the surface of the substrate is roughened. Since the thermal spray layer has a thickness of 50 to 200 μm as a surface layer, it has an anchor effect for holding the thermal spray layer and obtaining stronger adhesion and a strong chemical bond between the base material and the thermal spray layer. The surface is roughened in order to obtain. Typical surface roughening methods include a physical method and a chemical method. This roughening is performed with care so that no impurities remain on the surface of the substrate after the roughening and a chemically unstable processed layer does not remain. Although the degree of surface roughening is not particularly limited, JISR a = 10 to 20 μm, JISR max = 50
About 200 μm is desirable.

【0012】前述の粗面化の物理的方法としては、例え
ばブラストによる粗面化があり、アルミナ等のセラミク
スサンドにより基材表面を研磨して凹凸を形成する。こ
のブラスト法の場合には、最終的に生成する電極の基材
表面まで電解液が浸透する可能性を考慮してブラスト粉
として酸やアルカリに耐性のあるアルミナやシリカを使
用することが好ましい。アルミナ等を使用するとたとえ
粉末が基材表面に残留しても電極として異常溶出が起こ
ることがなく安定に使用することができる。勿論表面に
食い込んだこれらの粉末の残留を防止するために酸洗処
理等を行うことは更に望ましい。
As a physical method of the above-mentioned roughening, for example, there is a roughening by blasting, and the surface of the base material is polished with a ceramic sand such as alumina to form irregularities. In the case of this blasting method, it is preferable to use alumina or silica which is resistant to acid or alkali as the blast powder in consideration of the possibility that the electrolytic solution penetrates to the substrate surface of the electrode finally formed. If alumina or the like is used, even if the powder remains on the surface of the base material, the electrode can be used stably without causing abnormal elution as an electrode. Of course, it is more desirable to carry out pickling treatment or the like in order to prevent the residue of these powders that have penetrated the surface.

【0013】又前述の化学的粗面化法は薬品で基材表面
に凹凸を形成して粗面化する方法である。例えばチタン
やチタン合金を基材とする場合には、85〜90℃程度の約
20%の塩酸水溶液中に予め洗浄した前記基材を浸漬し数
時間保持することにより粒界腐食を起こして粗面化が行
われる。又基材がチタンやステンレスの場合には40〜60
℃の程度の約10%のヨウ素酸水溶液に前記基材を浸漬す
ることにより、所謂ピッティングコロージョンを起こし
て表面が粗面化される。
The above-mentioned chemical surface roughening method is a method of forming irregularities on the surface of a substrate with a chemical to roughen the surface. For example, when using titanium or a titanium alloy as a base material, about 85 to 90 ° C.
By immersing the previously washed substrate in a 20% hydrochloric acid aqueous solution and holding it for several hours, intergranular corrosion occurs to roughen the surface. If the substrate is titanium or stainless steel, 40-60
By immersing the base material in an aqueous solution of iodic acid of about 10% of about 10 ° C., so-called pitting corrosion is caused to roughen the surface.

【0014】次いでこの粗面化された基材表面に金属チ
タンと酸化チタンを含む溶射層をアーク溶射やプラズマ
溶射等により形成して電極基体とする。使用する溶射粉
の粒度は目的に応じて選択すればよいが、勿論電極基体
である以上、実質表面積が大きい方が望ましい。電極基
体としての表面粗度はほぼJISRmax ≧100 μm、J
ISRa ≧10μmであることが望ましく、この表面粗度
を達成するためには、粒径が20〜100 μmの溶射粉を使
用することが好ましいが線材を溶射することも可能であ
る。粒径が20μm未満であると緻密な溶射層が形成でき
るが、表面粗度が小さくなり溶射時の酸化が進行しすぎ
る可能性がある。一方100 μmを越えると、緻密で貫通
孔のない溶射層の形成が困難になる。又溶射材料を金属
のみとする場合は、アーク溶射法により金属ワイヤを原
料として溶射層を形成することができる。この場合は、
プラズマ溶射より緻密性が5〜10%程度劣るが、その分
表面の凹凸が大きくなるという特徴があるので、用途に
応じて選択できる。
Next, a sprayed layer containing metallic titanium and titanium oxide is formed on the roughened base material surface by arc spraying, plasma spraying, or the like to obtain an electrode substrate. The particle size of the spray powder to be used may be selected according to the purpose, but it is of course desirable that the surface area is large as long as the electrode substrate is used. The surface roughness of the electrode substrate is almost JISR max ≧ 100 μm, J
It is desirable that ISR a ≧ 10 μm. In order to achieve this surface roughness, it is preferable to use thermal spray powder having a particle size of 20 to 100 μm, but it is also possible to thermally spray a wire. If the particle size is less than 20 μm, a dense sprayed layer can be formed, but the surface roughness becomes small and oxidation during spraying may proceed too much. On the other hand, if it exceeds 100 μm, it becomes difficult to form a dense thermal sprayed layer without through holes. When only the metal is used as the thermal spray material, the thermal spray layer can be formed by using a metal wire as a raw material by the arc thermal spraying method. in this case,
Although the density is inferior to plasma spraying by about 5 to 10%, it has a feature that the surface unevenness is correspondingly large, so that it can be selected according to the application.

【0015】形成される溶射層の厚さは50〜200 μmが
適当であり、50μm未満であると貫通孔が残る恐れが大
きく、又200 μmを越えると溶射層が重くなり過ぎ、剥
離しやすくなり、場合によっては電気抵抗が大きくなる
という問題点がある。通常のプラズマ溶射により溶射物
を形成すると、溶射物自体は強い還元性雰囲気にあり、
該雰囲気では酸化物生成はないが、実際の被覆形成時に
は冷却過程で金属が酸化物に変換されやすく酸化物表面
が形成されることがある。従来はこの酸化物形成を防止
するために窒素やアルゴン等の不活性ガスをシールガス
として使用し酸化を抑制していた。
The thickness of the sprayed layer to be formed is suitably from 50 to 200 μm, and if it is less than 50 μm, there is a great risk that through holes will remain. If it exceeds 200 μm, the sprayed layer becomes too heavy and tends to peel off. In some cases, there is a problem that the electric resistance increases. When a thermal spray is formed by ordinary plasma spraying, the thermal spray itself is in a strong reducing atmosphere,
In this atmosphere, no oxide is generated, but during the actual coating formation, the metal is easily converted to oxide in the cooling process, and an oxide surface may be formed. Conventionally, in order to prevent this oxide formation, an inert gas such as nitrogen or argon is used as a seal gas to suppress oxidation.

【0016】これに対し本発明では、むしろ積極的にこ
の酸化物を形成する現象を利用し、金属チタンを溶射す
るのみで溶射チタンの一部を酸化チタンに変換して非化
学量論な組成化を進め導電性酸化物を含む溶射層の形成
を意図する。しかし本発明方法はこの製法に限定される
訳ではなく、他に次の2種類の方法つまり酸化性シール
ガスの使用及び酸化物溶射粒子の使用による酸化物生成
方法を含んでいる。
On the other hand, in the present invention, a phenomenon in which this oxide is formed positively is utilized, and a part of the sprayed titanium is converted into titanium oxide only by spraying metallic titanium to form a non-stoichiometric composition. It is intended to form a thermal spray layer containing a conductive oxide. However, the method of the present invention is not limited to this method, but includes the following two other methods, namely, a method using an oxidizing sealing gas and a method using a sprayed oxide particle to generate an oxide.

【0017】粗面化した基材表面に通常の溶射条件に従
って、金属チタン粉末や線材をアルゴンとヘリウムの混
合ガスをプラズマガスとして溶射する。その際に周囲の
シールガスを酸化性ガスとすると溶射されるチタンの一
部が酸化されて溶射チタンと酸化チタンとを含む部分酸
化物である混合溶射層が形成される。生成する酸化物量
は条件によって異なるが、例えば酸化性ガスを空気と
し、溶射チタンの粒径を30〜60μmとすると、溶射チタ
ンの20〜30%が酸化チタンに変換され、70〜80%の溶射
チタンと30〜20%の酸化チタンとを含む部分酸化物であ
る混合溶射層が形成される。酸素の含有量を50%程度に
高めると酸化物量も50%程度まで上昇する。しかし酸化
チタン量を更に高めると絶縁酸化物が形成され導電性が
損なわれる恐れがあり、かつ爆発的に酸化が進行する危
険があるため、シールガス中の酸素含有量は最大50%程
度とする。
According to ordinary thermal spraying conditions, a metal titanium powder or a wire is sprayed on a roughened substrate surface using a mixed gas of argon and helium as a plasma gas. At this time, if the surrounding seal gas is an oxidizing gas, a part of the sprayed titanium is oxidized to form a mixed sprayed layer which is a partial oxide containing the sprayed titanium and the titanium oxide. The amount of oxide generated varies depending on the conditions. For example, if the oxidizing gas is air and the particle size of the sprayed titanium is 30 to 60 μm, 20 to 30% of the sprayed titanium is converted to titanium oxide, and the sprayed titanium is 70 to 80%. A mixed spray layer is formed, which is a partial oxide containing titanium and 30-20% titanium oxide. When the oxygen content is increased to about 50%, the oxide amount also increases to about 50%. However, if the amount of titanium oxide is further increased, an insulating oxide may be formed and the conductivity may be impaired, and there is a risk of explosive oxidation. Therefore, the oxygen content in the seal gas should be about 50% at the maximum. .

【0018】又溶射物として前述の金属チタン粒子又は
線材だけでなく、酸化チタン粉末又は線材を混合し、同
様の溶射条件で溶射すると、所定の割合で金属チタンと
酸化チタンを含む部分酸化物である混合溶射層が形成さ
れる。なお例えば耐ハロゲン性を向上させる等の目的で
部分酸化物中に少量のタンタルやニオブを添加すること
が望ましいことがある。その場合にこの酸化物粉末を溶
射粉末の一部として使用する方法では各金属同士及び溶
射金属と溶射酸化物との割合を所定値に設定できるため
非常に好都合であり、幅広い用途に本発明を適用するこ
とが可能になる。
In addition to the above-mentioned metal titanium particles or wires as a sprayed material, a titanium oxide powder or wire is mixed and sprayed under the same spraying conditions to obtain a partial oxide containing metal titanium and titanium oxide at a predetermined ratio. Certain mixed sprayed layers are formed. In some cases, it may be desirable to add a small amount of tantalum or niobium to the partial oxide for the purpose of, for example, improving the halogen resistance. In this case, the method of using this oxide powder as a part of the sprayed powder is very convenient because the ratio of each metal and the ratio of the sprayed metal and the sprayed oxide can be set to a predetermined value. It becomes possible to apply.

【0019】基材表面に導電性酸化物のみから成る被覆
層を形成した電極基体に、例えば酸化イリジウムを含む
電極物質の被覆を形成して電極とし、該電極を酸水溶液
中で陽極として電解を行うと、酸素発生と同時に酸素イ
オンが電極内に拡散し、基材と電極被覆間に不働態酸化
物を形成して通電不能になる。前述の本発明の電極基体
では基材上に溶射により形成された溶射層が部分的に酸
化物に変換されこの部分酸化物が極めて有効に前記酸素
イオンの移動を防止し不働態化を遅らせる。これにより
実質的な電極寿命が極めて長くなる。
An electrode is formed by forming a coating of an electrode substance containing, for example, iridium oxide on an electrode substrate having a coating layer made of only a conductive oxide formed on the surface of the substrate, and using the electrode as an anode in an aqueous acid solution to conduct electrolysis. When this is done, oxygen ions diffuse into the electrode simultaneously with the generation of oxygen, and a passive oxide is formed between the substrate and the electrode coating, so that electricity cannot be supplied. In the above-described electrode substrate of the present invention, the sprayed layer formed on the substrate by thermal spraying is partially converted into an oxide, and this partial oxide extremely effectively prevents the transfer of the oxygen ions and delays the passivation. As a result, the substantial electrode life is extremely long.

【0020】又本発明に係わる電極基体はフッ化物イオ
ンを含有する浴中においても金属溶射層のみを有する電
極基体と比較すると、陽極として使用した場合に最低3
倍程度の寿命の延びが期待できる。これは前記部分酸化
物の形成により被覆全体が導電性酸化物として機能する
ためと推測される。更に逆方向の電流を流した場合にも
最低2倍程度の寿命の伸びが見られ、逆電流に対する耐
性を有することも判る。
The electrode substrate according to the present invention has a minimum of 3 when used as an anode even in a bath containing a fluoride ion, when compared with an electrode substrate having only a metal sprayed layer.
The service life can be expected to be doubled. This is presumably because the formation of the partial oxide causes the entire coating to function as a conductive oxide. Further, when a current in the reverse direction is applied, the life is extended by at least about twice, and it can be seen that the device has resistance to the reverse current.

【0021】[0021]

【実施例】次に本発明による電極基体の製造の実施例を
記載するが、該実施例は本発明を限定するものではな
い。
EXAMPLES Next, examples of the production of an electrode substrate according to the present invention will be described, but the examples do not limit the present invention.

【0022】[0022]

【実施例1】縦100 mm、横100 mm、厚さ3mmの市
販のJIS第2種の純チタン板を基材として、その表面
をサンドブラスト処理して表面組織を破壊した後、マッ
フル炉中600 ℃、2時間焼鈍を行った。このチタン表面
のグレインサイズはJISNo.6相当であった。このチタ
ン板を85℃の20%の塩酸水溶液中で2時間酸洗し粒界腐
食による表面の粗面化を行った。表面の粗度はRmax
約150 μmであった。
Example 1 A commercially available JIS type 2 pure titanium plate having a length of 100 mm, a width of 100 mm and a thickness of 3 mm was used as a base material, and its surface was sandblasted to break the surface structure. Annealing was performed at 2 ° C. for 2 hours. The grain size on the titanium surface was equivalent to JIS No. 6. The titanium plate was pickled in a 20% hydrochloric acid aqueous solution at 85 ° C. for 2 hours, and the surface was roughened by intergranular corrosion. The surface roughness is R max =
It was about 150 μm.

【0023】プラズマガスとしてアルゴンとヘリウムを
70:30に混合したガスを使用しシールガスとして空気を
吹き付けながら、試料表面に粒径が40〜60μmのチタン
金属粉末を溶射厚が平均で100 μmとなるようにプラズ
マ溶射しかつ還元性雰囲気中で冷却した。生成したプラ
ズマ溶射試料の表面粗度はRmax =180 μm、Ra =15
μmであった。該試料の表面は淡青色から濃青色を呈
し、酸化チタンの存在を示唆していた。X線回折により
溶射層の状態を観察したところ、チタン金属約80に対し
ルチル型酸化チタンが約20の割合で存在した。その他に
同定できない幾つかの回折線が見られたが、これらは低
次の酸化物であると考えられる。
Argon and helium as plasma gases
Using a gas mixed at 70:30, while spraying air as a seal gas, a titanium metal powder having a particle size of 40 to 60 μm is plasma-sprayed on the sample surface so that the spray thickness becomes 100 μm on average, and a reducing atmosphere is used. Cooled in. The surface roughness of the generated plasma sprayed sample is R max = 180 μm, R a = 15
μm. The surface of the sample exhibited a pale blue to dark blue color, indicating the presence of titanium oxide. Observation of the state of the sprayed layer by X-ray diffraction revealed that about 20 parts of rutile-type titanium oxide existed for about 80 parts of titanium metal. Several other unidentifiable diffraction lines were observed, which are considered to be lower order oxides.

【0024】前記試料の表面に金属ペーストを塗布し、
これを電極として層の厚さ方向の抵抗を測定したとこ
ろ、約4×10-4Ωcmであり、金属チタンと比較して導
電性を有するものの電気抵抗は僅かに高かった。この試
料に、イリジウム:タンタル=60:40(モル比)から成
る電極物質を含む塗布液を塗布し530 ℃で焼き付けた。
これを10回繰り返し、被覆量が8g−イリジウム/m2
である電極試料とした。銅ワイヤ切断器を使用して該電
極試料から20×40mmの電解用試料を切り出し電解試験
を行った。電解は60℃の150 g/リットル−硫酸ナトリ
ウム+100 g/リットル−硫酸の水溶液中で行い、約16
0A/dm2 の電流密度で正方向に2分、逆方向に1分の
インターバルで正電流及び逆電流を流した。2000時間経
過後でも安定な電解を継続することができた。
A metal paste is applied to the surface of the sample,
When the resistance in the thickness direction of the layer was measured using this as an electrode, it was about 4 × 10 −4 Ωcm, and the electrical resistance was slightly higher than that of metal titanium, although it had conductivity. A coating solution containing an electrode substance consisting of iridium: tantalum = 60: 40 (molar ratio) was applied to the sample and baked at 530 ° C.
This was repeated 10 times, and the coating amount was 8 g-iridium / m 2.
Was used as the electrode sample. Using a copper wire cutter, a sample for electrolysis of 20 × 40 mm was cut out from the electrode sample and subjected to an electrolysis test. The electrolysis is performed in an aqueous solution of 150 g / liter-sodium sulfate + 100 g / liter-sulfuric acid at 60 ° C.
A positive current and a reverse current were applied at intervals of 2 minutes in the forward direction and 1 minute in the reverse direction at a current density of 0 A / dm 2 . Stable electrolysis could be continued even after lapse of 2000 hours.

【0025】[0025]

【比較例1】溶射時のシールガスを使用せず、減圧プラ
ズマ法で溶射を行い酸化物が全く形成されないようにし
たこと以外は実施例1と同様にして溶射を行い、かつ電
極物質の形成及び電解試験を行った。本比較例の酸化物
を含まない電極試料では、350 時間で電圧の上昇が始ま
り、約1600時間後には通電不能になった。
Comparative Example 1 Thermal spraying was carried out in the same manner as in Example 1 except that no oxide was formed by performing thermal spraying by a reduced pressure plasma method without using a seal gas at the time of thermal spraying, and forming an electrode material. And an electrolysis test. In the electrode sample containing no oxide of the present comparative example, the voltage started to increase in 350 hours, and after about 1600 hours, the current was not supplied.

【0026】[0026]

【実施例2】実施例1と同じチタン基材を使用し、平均
粒径1.2 mmのアルミナサンドを使用してブラスト掛け
を行った。その結果表面の粗度はRmax =150 μm、R
a =15μmであった。このチタン基材を超音波洗浄器を
使用しアセトンで脱脂した。この表面に粒度範囲40〜70
μmのチタン金属にその10%相当の同じ粒度の精製した
ルチル鉱(酸化チタン)を混合したものを実施例1と同
じ条件で溶射して試料とした。シールガスはアルゴンと
酸素を1:1で混合した混合ガスを使用した。
Example 2 Using the same titanium substrate as in Example 1, blasting was performed using alumina sand having an average particle size of 1.2 mm. As a result, the surface roughness was R max = 150 μm, R
a = 15 μm This titanium substrate was degreased with acetone using an ultrasonic cleaner. Particle size range 40-70 on this surface
A mixture of titanium metal of μm and purified rutile ore (titanium oxide) having the same particle size equivalent to 10% thereof was sprayed under the same conditions as in Example 1 to obtain a sample. As the seal gas, a mixed gas obtained by mixing argon and oxygen at a ratio of 1: 1 was used.

【0027】これにより被覆厚が平均80〜120 μmで表
面粗度がRmax 160 μmである濃青色の溶射層が得られ
た。X線回折の結果からチタン:酸化チタン=1:1で
あることが判った。なお酸化チタンは主としてルチル型
結晶層であることが判った。これは導電性があることか
らマグネリ相酸化物であると推測できる。
As a result, a deep blue sprayed layer having an average coating thickness of 80 to 120 μm and a surface roughness of R max 160 μm was obtained. The result of X-ray diffraction showed that titanium: titanium oxide = 1: 1. In addition, it turned out that titanium oxide is mainly a rutile type crystal layer. Since this is conductive, it can be inferred that it is a Magneli phase oxide.

【0028】実施例1と同様にして溶射層の電気抵抗を
測定したところ、厚さ方向で3×10-3Ωcmであり、か
なり大きいことが判った。前記試料に実施例1と同様に
してイリジウム−タンタル相を形成して電極試料とし
た。この電極試料を、20ppmのフッ素イオンを含むよ
うにフッ化ナトリウムを15%硫酸に添加した60℃の硫酸
水溶液中で160 A/dm2 で電解したところ、1000時間経
過後も電解の継続が可能であった。
When the electrical resistance of the sprayed layer was measured in the same manner as in Example 1, it was found to be 3 × 10 −3 Ωcm in the thickness direction, which was considerably large. An iridium-tantalum phase was formed on the sample in the same manner as in Example 1 to obtain an electrode sample. This electrode sample was electrolyzed at 160 A / dm 2 in a sulfuric acid aqueous solution at 60 ° C in which sodium fluoride was added to 15% sulfuric acid so as to contain 20 ppm of fluorine ions. Met.

【0029】[0029]

【比較例2】比較例1で作製した電極試料を使用して実
施例2と同じ条件で電解試験を行い、金属のみを溶射層
として含む試料のフッ素イオンに対する耐性を試験し
た。電解開始後360 時間で電圧が上昇し始め、390 時間
で溶射層が剥離し、通電不能になった。
Comparative Example 2 Using the electrode sample produced in Comparative Example 1, an electrolytic test was performed under the same conditions as in Example 2, and the sample containing only metal as a sprayed layer was tested for its resistance to fluorine ions. The voltage began to rise 360 hours after the start of electrolysis, and the sprayed layer was peeled off at 390 hours, making it impossible to conduct electricity.

【0030】[0030]

【実施例3】シールガスとして空気を使用せず、かつ冷
却を酸化性雰囲気(大気)中で行ったこと以外は実施例
1と同一条件で基材上に溶射層及び電極物質を形成して
電極試料を作製し、かつ電極試験を行った。溶射層が形
成された試料表面は淡青色から濃青色を呈し、酸化チタ
ンの存在を示唆していた。又電解開始後、1000時間経過
しても電圧上昇がなく、電解を継続できた。
Example 3 A sprayed layer and an electrode material were formed on a substrate under the same conditions as in Example 1 except that air was not used as a sealing gas and cooling was performed in an oxidizing atmosphere (air). An electrode sample was prepared and an electrode test was performed. The sample surface on which the sprayed layer was formed exhibited a pale blue to dark blue color, indicating the presence of titanium oxide. Further, even after 1000 hours from the start of electrolysis, there was no increase in voltage, and electrolysis could be continued.

【0031】[0031]

【発明の効果】本発明は、予め粗面化した導電性金属基
材上に、金属チタン及び酸化チタンとを含む部分酸化物
である厚さ50から200 μmの溶射層を形成したことを特
徴とする電解用電極基体である。本発明に係わる電極基
体は、金属チタンと酸化チタンを含む溶射層を有し、こ
の電極基体に電極物質を被覆して電極として電解に使用
すると、前述の部分的に酸化物に変換された溶射層が、
電解時に陽極で発生する酸素イオンの移動を防止し不働
態化を遅らせる。これにより実質的な電極寿命が極めて
長くなる。
According to the present invention, a sprayed layer having a thickness of 50 to 200 μm, which is a partial oxide containing metallic titanium and titanium oxide, is formed on a conductive metal substrate which has been previously roughened. The electrode substrate for electrolysis described above. The electrode substrate according to the present invention has a sprayed layer containing titanium metal and titanium oxide. When the electrode substrate is coated with an electrode material and used for electrolysis as an electrode, the above-mentioned sprayed material partially converted into an oxide is formed. The layers are
It prevents the movement of oxygen ions generated at the anode during electrolysis and delays passivation. As a result, the substantial electrode life is extremely long.

【0032】又前記部分酸化物は酸素不足により溶射層
が導電性酸化物となり、その結果良好な耐ハロゲン性及
び逆電流耐性が得られる。又本発明に係わる電極基体の
第1の製造方法では、部分酸化物から成る溶射層の形成
が金属チタン粉末や線材の溶射を酸化性雰囲気中で行う
ことにより達成される。溶射雰囲気に存在する空気等の
酸化性ガスが金属チタンの一部を酸化チタンに変換して
部分的に酸化された溶射層が得られ、該溶射層は上述し
た通り酸素イオンの移動を防止して電極の長寿命化と、
その導電性による良好な耐ハロゲン性及び逆電流耐性を
有している。
In the partial oxide, the sprayed layer becomes a conductive oxide due to lack of oxygen, and as a result, good halogen resistance and reverse current resistance can be obtained. In the first method of manufacturing the electrode substrate according to the present invention, the formation of the sprayed layer composed of the partial oxide is achieved by spraying the metal titanium powder or the wire in an oxidizing atmosphere. An oxidizing gas such as air existing in the spraying atmosphere converts a part of the metallic titanium to titanium oxide to obtain a partially oxidized sprayed layer. The sprayed layer prevents the transfer of oxygen ions as described above. Electrode life and
It has good halogen resistance and reverse current resistance due to its conductivity.

【0033】又本発明に係わる電極基体の第2の製造方
法では、溶射に使用する金属チタン粉末や線材に酸化チ
タン粉末や線材を混合させることにより前述の部分酸化
物を含む溶射層を形成する。溶射粉末又は線材中に金属
チタンと酸化チタンが含まれることから生成する溶射層
も当然にこれらの混合物である部分酸化物から成り、該
溶射層は上述した通りの機能を有する。
In the second method for manufacturing an electrode substrate according to the present invention, a sprayed layer containing the above-mentioned partial oxide is formed by mixing a titanium oxide powder or a wire with a metal titanium powder or a wire used for thermal spraying. . The sprayed layer formed from the inclusion of titanium metal and titanium oxide in the sprayed powder or wire naturally also consists of a partial oxide which is a mixture of these, and the sprayed layer has the function as described above.

【0034】本発明に係わる電極基体の第3の製造方法
では、溶射層形成後の冷却を酸化性雰囲気中で行うこと
により、この冷却時に金属チタンのみから成る溶射層の
一部を酸化して部分酸化物を形成する。
In the third method of manufacturing the electrode substrate according to the present invention, the cooling after the formation of the sprayed layer is performed in an oxidizing atmosphere. Form a partial oxide.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C25C 1/00 - 7/08 C25C 4/00 - 6/00 C25B 11/00 - 11/20 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C25C 1/00-7/08 C25C 4/00-6/00 C25B 11/00-11/20

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 予め粗面化した導電性金属基材上に、金
属チタン及び酸化チタンとを含む部分酸化物である厚さ
50から200 μmの溶射層を形成したことを特徴とする電
解用電極基体。
1. A thickness which is a partial oxide containing titanium metal and titanium oxide on a conductive metal base material which has been roughened in advance.
An electrode substrate for electrolysis, wherein a sprayed layer of 50 to 200 μm is formed.
【請求項2】 予め粗面化した導電性金属基材上に、金
属チタンを酸化性雰囲気中で溶射することにより、溶射
チタンと酸化チタンとを含む部分酸化物である厚さ50か
ら200 μmの溶射層を形成することを特徴とする電解用
電極基体の製造方法。
2. A method of spraying metallic titanium in a oxidizing atmosphere on a previously roughened conductive metal base material to obtain a partial oxide containing sprayed titanium and titanium oxide having a thickness of 50 to 200 μm. A method for producing an electrode substrate for electrolysis, characterized by forming a sprayed layer of (1).
【請求項3】 予め粗面化した導電性金属基材上に、金
属チタン及び酸化チタンを溶射することにより、溶射チ
タンと酸化チタンとを含む部分酸化物である厚さ50から
200 μmの溶射層を形成することを特徴とする電解用電
極基体の製造方法。
3. Spraying metallic titanium and titanium oxide on a conductive metal base material which has been roughened in advance to obtain a partial oxide containing titanium and titanium oxide having a thickness of 50 or less.
A method for producing an electrode substrate for electrolysis, comprising forming a sprayed layer of 200 μm.
【請求項4】 予め粗面化した導電性金属基材上に、金
属チタンを溶射しかつ酸化性雰囲気中で冷却することに
より、溶射チタンと酸化チタンとを含む部分酸化物であ
る厚さ50から200 μmの溶射層を形成することを特徴と
する電解用電極基体の製造方法。
4. A method of spraying metallic titanium onto a conductive metal base material which has been roughened in advance and cooling it in an oxidizing atmosphere to form a partial oxide containing sprayed titanium and titanium oxide having a thickness of 50%. A method for producing an electrode substrate for electrolysis, comprising forming a sprayed layer having a thickness of 200 μm from the above.
JP21816993A 1993-08-09 1993-08-09 Electrode substrate for electrolysis and method for producing the same Expired - Fee Related JP3257872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21816993A JP3257872B2 (en) 1993-08-09 1993-08-09 Electrode substrate for electrolysis and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21816993A JP3257872B2 (en) 1993-08-09 1993-08-09 Electrode substrate for electrolysis and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0754182A JPH0754182A (en) 1995-02-28
JP3257872B2 true JP3257872B2 (en) 2002-02-18

Family

ID=16715713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21816993A Expired - Fee Related JP3257872B2 (en) 1993-08-09 1993-08-09 Electrode substrate for electrolysis and method for producing the same

Country Status (1)

Country Link
JP (1) JP3257872B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4284387B2 (en) * 2003-09-12 2009-06-24 株式会社和功産業 Electrode for electrolysis and method for producing the same
US20050282032A1 (en) * 2004-06-18 2005-12-22 General Electric Company Smooth outer coating for combustor components and coating method therefor
CN105040035B (en) * 2015-09-17 2017-05-31 阳谷祥光铜业有限公司 A kind of parallel jet electrolysis process and device
KR102787695B1 (en) * 2019-05-02 2025-03-27 주식회사 엘지화학 Preparation Method for Reverse Current Protector

Also Published As

Publication number Publication date
JPH0754182A (en) 1995-02-28

Similar Documents

Publication Publication Date Title
US5435896A (en) Cell having electrodes of improved service life
RU2330124C2 (en) Electrolysis method for water chloric-alkaline solutions, electrode for electrolysis of chloric-alkaline solution and method of making an electrolytic electrode
JPS6318672B2 (en)
JP2002030495A (en) Electrode characterized by surface catalytic layer having extremely high adhesive property
US6802948B2 (en) Copper electrowinning
JP3259869B2 (en) Electrode substrate for electrolysis and method for producing the same
JP3212334B2 (en) Electrode substrate for electrolysis, electrode for electrolysis, and methods for producing them
JPH04231491A (en) Electric catalyzer cathode and its manufacture
JP2574699B2 (en) Oxygen generating anode and its manufacturing method
US5324407A (en) Substrate of improved plasma sprayed surface morphology and its use as an electrode in an electrolytic cell
US5518777A (en) Method of producing an electrolytic electode having a plasma flame-coated layer of titanium oxide and tantalum oxide
JP3257872B2 (en) Electrode substrate for electrolysis and method for producing the same
JP2768904B2 (en) Oxygen generating electrode
JPH05171483A (en) Manufacture of anode for generating oxygen
JP3259870B2 (en) Electrode substrate for electrolysis and method for producing the same
JPH0774470B2 (en) Manufacturing method of anode for oxygen generation
JP2979691B2 (en) Manufacturing method of anode for oxygen generation
JPH07331494A (en) Oxygen generating electrode and its production
JPH0499294A (en) Oxygen generating anode and its production
JP3422885B2 (en) Electrode substrate
JPH0885894A (en) Electrode
JPH0633286A (en) Electrode for electrolysis and its production
JP3422884B2 (en) Electrode for electrolysis
JPH09125292A (en) Electrode substrate
CN117987674A (en) Titanium-based electrode and preparation method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees