Nothing Special   »   [go: up one dir, main page]

JP3244694B2 - Method for producing hydrotreating catalyst - Google Patents

Method for producing hydrotreating catalyst

Info

Publication number
JP3244694B2
JP3244694B2 JP28847690A JP28847690A JP3244694B2 JP 3244694 B2 JP3244694 B2 JP 3244694B2 JP 28847690 A JP28847690 A JP 28847690A JP 28847690 A JP28847690 A JP 28847690A JP 3244694 B2 JP3244694 B2 JP 3244694B2
Authority
JP
Japan
Prior art keywords
catalyst
metal
group
amount
dried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28847690A
Other languages
Japanese (ja)
Other versions
JPH04166232A (en
Inventor
勇樹 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP28847690A priority Critical patent/JP3244694B2/en
Publication of JPH04166232A publication Critical patent/JPH04166232A/en
Application granted granted Critical
Publication of JP3244694B2 publication Critical patent/JP3244694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は炭化水素油用水素化処理用触媒の製造方法に
関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a catalyst for hydrotreating a hydrocarbon oil.

[従来の技術] 炭化水素油の水添、脱硫、脱窒素、分解等を行なう水
素化処理に使用される触媒としてアルミナ、チタニア、
シリカ、活性炭等の多孔性触媒担体に周期率表第6族金
属と第8族金属とを活性金属として担持した触媒が使用
されている。一般に第6族金属としてはMoやWが用いら
れ、第8族金属としてNiやCoが用いられているが、これ
らの活性金属は触媒担体上に酸化物態で担持されており
活性を示さない。そのため、適当な予備硫化処理を施し
硫化物態として触媒として使用されている。
[Prior Art] Alumina, titania, and the like are used as catalysts used in hydrotreating for performing hydrogenation, desulfurization, denitrification, and cracking of hydrocarbon oils.
A catalyst in which a group 6 metal and a group 8 metal of the periodic table are supported as active metals on a porous catalyst carrier such as silica or activated carbon is used. Generally, Mo or W is used as the Group 6 metal, and Ni or Co is used as the Group 8 metal. However, these active metals are supported on the catalyst support in an oxide state and do not show activity. . Therefore, it is used as a catalyst after being subjected to an appropriate pre-sulfurization treatment in a sulfide form.

ところで、水素化処理触媒では触媒の活性サイトは活
性金属硫化物の表面に形成される。よって、金属硫化物
の表面積が大きくなるほど活性サイトの数が増加し、結
果として高活性な触媒が得られることが知られている。
硫化物の表面積を大きくするために金属硫化物を微細化
し、高分散化することが試みられ各種の方法が開示され
ている。例えば、特開昭59−102442、59−69147号公報
では、クエン酸やリンゴ酸等のカルボン酸と活性金属と
の混合溶液をアルミナ等の触媒担体に含浸させた後、乾
燥し、焼成する方法を開示している。これらの製造方法
は活性金属とカルボン酸とで錯イオンを形成し、これを
担持させることにより活性金属の凝集の防止を目的とす
るものであるが、いずれの方法も最終段階で含浸させた
ものを焙焼しているため必ずしも十分な結果が得られて
いない。
By the way, in the hydrotreating catalyst, the active site of the catalyst is formed on the surface of the active metal sulfide. Therefore, it is known that the number of active sites increases as the surface area of the metal sulfide increases, and as a result, a highly active catalyst can be obtained.
In order to increase the surface area of the sulfide, attempts have been made to make the metal sulfide finer and highly disperse, and various methods have been disclosed. For example, JP-A-59-102442 and JP-A-59-69147 disclose a method in which a mixed solution of a carboxylic acid such as citric acid or malic acid and an active metal is impregnated into a catalyst carrier such as alumina, and then dried and calcined. Is disclosed. These production methods form a complex ion between the active metal and the carboxylic acid, and are intended to prevent the aggregation of the active metal by supporting the complex ion.Both methods involve impregnation at the final stage. Is not necessarily obtained because of roasting.

[発明が解決しようとする課題] 最近EP 0181035(A2)号公報でニトリロ三酢酸、エ
チレンジアミン四酢酸、ジエチレントリアミンの様な含
窒素有機化合物を錯化剤として使用し、これら錯化剤と
活性金属との混合液をアルミナ担体やシリカ担体に含浸
させた後、200℃以下で乾燥させ、焙焼しない方法が開
示された。確かにこの方法により製造された触媒の活性
は従来品より高い値を示している。しかし、近時提出さ
れた答申によれば、排ガス規制強化に伴い軽油中の硫黄
分を0.05重量%以下に低下することが要求されている。
この要求を満たすためには前記EP 0181035(A2)号公
報に開示された方法で製造した触媒でも十分ではなく、
又この方法で用いる錯化剤は窒素を含有しているため予
備硫化処理の際にシアン化水素等の有害ガスを発生する
恐れが強いという問題点がある。
[Problems to be Solved by the Invention] Recently, a nitrogen-containing organic compound such as nitrilotriacetic acid, ethylenediaminetetraacetic acid, and diethylenetriamine is used as a complexing agent in EP 0181035 (A2), and these complexing agents and active metals are used. A method was disclosed in which an alumina carrier or a silica carrier was impregnated with a mixed solution of the above, followed by drying at 200 ° C. or lower and not roasting. Certainly, the activity of the catalyst produced by this method is higher than that of the conventional product. However, according to a recently submitted report, it is required that the sulfur content in light oil be reduced to 0.05% by weight or less with the tightening of exhaust gas regulations.
In order to satisfy this requirement, the catalyst produced by the method disclosed in the above-mentioned EP 0181035 (A2) is not enough,
Further, since the complexing agent used in this method contains nitrogen, there is a problem that harmful gas such as hydrogen cyanide is likely to be generated during the pre-sulfidation treatment.

本発明の目的は上記欠点がなく、更に高活性な水素化
処理触媒の製造方法の提供にある。
An object of the present invention is to provide a method for producing a hydrotreating catalyst which is free from the above-mentioned drawbacks and which is more active.

[課題を解決するための手段] 上記課題を解決するための本発明の方法は、触媒用担
体に周期率表第6族金属と第8族金属とを活性金属とし
て担持した触媒に、あるいは周期率表第6族金属と第8
族金属とリンとを担持した触媒に、該触媒中の活性金属
の総モル数に対して0.3〜5.0倍モル量の多価アルコール
を添加した後、200℃以下で乾燥させるものであり、好
ましくは触媒担体に周期率表第6族金属と第8族金属と
を含む溶液を含浸させた後、あるいは触媒担体に周期率
表第6族金属と第8族金属とを含みかつリンを含む溶液
を含浸させた後、該含浸物を200℃以下で乾燥して触媒
を得、該触媒中の活性金属の総モル数に対して0.3〜5.0
倍モル量の多価アルコールを添加した後、200℃以下で
乾燥させるものである。
[Means for Solving the Problems] The method of the present invention for solving the above-mentioned problems is characterized in that a catalyst for supporting a metal belonging to Group 6 and Group 8 of the periodic table on a catalyst carrier as an active metal, Rate Table Group 6 Metals and 8
After adding a polyhydric alcohol in an amount of 0.3 to 5.0 times the molar amount of the total number of active metals in the catalyst to the catalyst supporting the group metal and phosphorus, the mixture is dried at 200 ° C. or lower, preferably Is a solution in which the catalyst support is impregnated with a solution containing a Group 6 metal and a Group 8 metal, or a solution containing the Group 6 metal and a Group 8 metal in the catalyst support and contains phosphorus. After impregnation, the impregnated material was dried at 200 ° C. or less to obtain a catalyst, and 0.3 to 5.0 with respect to the total number of moles of active metal in the catalyst.
After adding double molar amount of polyhydric alcohol, it is dried at 200 ° C. or less.

本発明に使用できる多価アルコールとしてはエチレン
グリコール、ジエチレングリコール、トリエチレングリ
コール、グリセリン、2,2−ジエチル−1,3−プロピレン
グリコール、ブタンジオール等が挙げられる。
Examples of the polyhydric alcohol that can be used in the present invention include ethylene glycol, diethylene glycol, triethylene glycol, glycerin, 2,2-diethyl-1,3-propylene glycol, and butanediol.

[作用] 本発明に使用する触媒は、アルミナ、シリカ、チタニ
ア、ジルコニア、活系炭等の多孔質物質を触媒用担体と
して、これに周期率表第6族金属と第8族金属とを活性
金属として担持させたもの、あるいは周期率表第6族金
属と第8族金属とリンとを担持させたものである。そし
て、第6族金属としてはMo又は/及びWを用い、第8族
金属としてCo又は/及びNiを用いる。それぞれの活性金
属の担持量は水素化処理用触媒として一般的に採用され
ている値、すなわち第6族金属は酸化物として5〜30重
量%とし、第8族金属は酸化物として1〜8重量%とす
ることが好ましい。これらの金属の担持に際しては、例
えば酸化モリブデンと炭酸コバルトとを水に懸濁させ、
次いで煮沸することにより溶解し含浸させるが、含浸物
の乾燥は活性金属の凝集を防止するために200℃以下で
行うことが好ましい。
[Action] The catalyst used in the present invention is a porous carrier such as alumina, silica, titania, zirconia, or activated carbon as a carrier for the catalyst, and activated with a Group 6 metal and a Group 8 metal in the periodic table. It is carried as a metal, or carries a Group 6 metal, a Group 8 metal and phosphorus in the periodic table. Then, Mo or / and W is used as the group 6 metal, and Co or / and Ni is used as the group 8 metal. The loading amount of each active metal is a value generally adopted as a catalyst for hydrotreating, that is, the Group 6 metal is 5 to 30% by weight as an oxide, and the Group 8 metal is 1 to 8% by weight as an oxide. It is preferable to set the weight%. When carrying these metals, for example, molybdenum oxide and cobalt carbonate are suspended in water,
Then, the mixture is dissolved and impregnated by boiling. The impregnated material is preferably dried at a temperature of 200 ° C. or lower to prevent aggregation of the active metal.

また、リンは活性金属を含浸させる際に安定化剤とし
て作用するようであり、より一層活性が向上する。その
ためリンはP2O5として0.1〜8重量%含有させることが
好ましく、リン源として正リン酸等の各種のリン酸を用
いうる。
Phosphorus also appears to act as a stabilizer when impregnating the active metal, further enhancing activity. Therefore, phosphorus is preferably contained in an amount of 0.1 to 8% by weight as P 2 O 5 , and various phosphoric acids such as orthophosphoric acid can be used as a phosphorus source.

本発明の水素化処理触媒では活性金属か多価アルコー
ルと錯化合物を形成し、触媒担体に安定化して担持され
ている。多価アルコールを錯化剤として選択するとなぜ
前記含窒素有機化合物を錯化剤として用いたものより高
活性になるのかは明確ではない。本発明者は予備硫化時
に含窒素有機化合物の分解により生成されたアンモニア
やアミン等の塩基性化合物が触媒より完全に除去され
ず、活性点がこれら塩基性化合物により被毒されるため
と推定し、且つ本発明の方法により製造された触媒の活
性金属表面積の値が極めて大きいことから形成される錯
化合物の安定性や分解挙動が活性金属の予備硫化時の凝
集を防止しているものと推定している。
In the hydrotreating catalyst of the present invention, a complex compound is formed with the active metal or the polyhydric alcohol and is stably supported on the catalyst carrier. It is not clear why the selection of a polyhydric alcohol as a complexing agent results in higher activity than that using the nitrogen-containing organic compound as a complexing agent. The present inventor presumes that basic compounds such as ammonia and amines generated by decomposition of the nitrogen-containing organic compound at the time of preliminary sulfurization are not completely removed from the catalyst, and the active sites are poisoned by these basic compounds. Further, since the value of the active metal surface area of the catalyst produced by the method of the present invention is extremely large, it is presumed that the stability and decomposition behavior of the complex compound formed prevent aggregation of the active metal during presulfurization. are doing.

本発明の触媒の乾燥温度を200℃以下とするのは、錯
化剤である多価アルコールの分解や揮発を防止するため
である。添加量をモル数で活性金属の総モル量の0.3〜
5.0倍量とするのは、0.3倍未満では活性金属を十分錯化
できず、5.0倍を越えると予備硫化時に錯化剤が完全に
分解除去されず、炭素分が活性金属上に析出し硫化を妨
害して活性を低下させることになるからである。
The drying temperature of the catalyst of the present invention is set to 200 ° C. or lower in order to prevent decomposition and volatilization of the polyhydric alcohol as the complexing agent. The amount of addition is 0.3 to 0.3 of the total molar amount of the active metal in the number of moles.
If it is less than 0.3 times, the complexing agent is not completely decomposed and removed at the time of preliminary sulfurization, and carbon is deposited on the active metal and the sulfur content is reduced. Is to interfere with the activity and reduce the activity.

[実施例−1] 比表面積280m2/g、細孔容積0.75ml/gのγ−アルミナ
担体1kgに三酸化モリブデン193g、炭酸コバルト82g、85
%りん酸61.5gと水とから調製した活性金属水溶液800ml
を含浸させ、110℃で10時間かけて乾燥した。これを繰
返して必要量の乾燥物を得た。次に、該乾燥物250gに、
第1表に示した錯化剤を同表に示した含浸量に従い、そ
れぞれ含浸させ、110℃で10時間乾燥し本発明の方法に
よる触媒A、B、C、D、E、F、G、HとEP 018103
5(A2)号公報に開示された方法で作成した触媒I、
J、K、Lとを作成した。なお、第1表中の含浸量は触
媒に含まれるMoとCoの総モル数に対する倍数であり、こ
の値が1の場合は等モル量含浸させたことを示す。
Example 1 193 g of molybdenum trioxide, 82 g of cobalt carbonate, 85 g of 85 g of 85 g / alumina carrier having a specific surface area of 280 m 2 / g and a pore volume of 0.75 ml / g
800ml of active metal aqueous solution prepared from 61.5g of 6% phosphoric acid and water
And dried at 110 ° C. for 10 hours. This was repeated to obtain a required amount of dried product. Next, to 250 g of the dried product,
Each of the complexing agents shown in Table 1 was impregnated in accordance with the impregnation amount shown in the table, dried at 110 ° C. for 10 hours, and used for the catalysts A, B, C, D, E, F, G, H and EP 018103
Catalyst I prepared by the method disclosed in JP-A-5 (A2),
J, K, and L were created. The impregnation amount in Table 1 is a multiple of the total number of moles of Mo and Co contained in the catalyst, and when this value is 1, it means that the impregnation was performed in an equimolar amount.

触媒A、B、C、D、E、F、G、H、I、J、K、
LのMo含有量はいずれもMoO3として15重量%であり、Co
の含有量はいずれもCoOとして4重量%であり、Pの含
有量はいずれもP2O5として3重量%であった。
Catalysts A, B, C, D, E, F, G, H, I, J, K,
L has a Mo content of 15% by weight as MoO 3 ,
Was 4 wt% as CoO, and the P content was 3 wt% as P 2 O 5 .

この触媒A、B、C、D、E、F、G、H、I、J、
K、Lを用いて以下の条件で以下の性状のクウェート常
圧軽油の水素化脱硫試験を行った。
The catalysts A, B, C, D, E, F, G, H, I, J,
Using K and L, a hydrodesulfurization test of Kuwait atmospheric gas oil having the following properties was performed under the following conditions.

(クウェート常圧軽油の性状) 比重(15/4℃) 0.844 硫黄(重量%) 1.55 蒸留性状(初留点℃) 231 (50Vol%℃) 313 (終点℃) 390 (試験条件) 触媒量(ml) 15 原料油液空間速度(Hr-1) 2 反応水素圧力(kg/cm2G) 30 反応温度(℃) 330 水素/油流量比(Nl/l) 300 通油時間(Hr) 88 得られた水素化脱硫活性は反応速度定数の相対値で示
すこととし、速度定数は脱流反応速度が原料の常圧軽油
の硫黄濃度の1.75乗に比例するとして算出した。基準と
して用いたものは従来例の触媒Lとし、これの速度定数
を100とした。
(Properties of Kuwait atmospheric gas oil) Specific gravity (15/4 ℃) 0.844 Sulfur (wt%) 1.55 Distillation properties (initial boiling point ℃) 231 (50Vol% ℃) 313 (End point ℃) 390 (Test conditions) Catalyst amount (ml) ) 15 Raw material oil liquid space velocity (Hr -1 ) 2 Reaction hydrogen pressure (kg / cm 2 G) 30 Reaction temperature (° C) 330 Hydrogen / oil flow rate ratio (Nl / l) 300 Oil flow time (Hr) 88 obtained The hydrodesulfurization activity was indicated by the relative value of the reaction rate constant, and the rate constant was calculated assuming that the desulfation reaction rate was proportional to the 1.75 power of the sulfur concentration of the atmospheric gas oil as the raw material. The reference used was the catalyst L of the conventional example, and its rate constant was 100.

得られた結果を第1表に併せ示した。 The results obtained are shown in Table 1.

第1表より本発明の方法により作成した触媒の活性
は、従来の触媒の中で最も活性が高いとされているEP
0181035(A2)号公報で開示された方法で作成した触媒
I、J、K、Lと比較し極めて高いことがわかる。
Table 1 shows that the activity of the catalyst prepared by the method of the present invention is the highest among the conventional catalysts.
It can be seen that it is extremely high as compared with catalysts I, J, K, and L prepared by the method disclosed in JP-A-0181035 (A2).

[実施例−2] 擬ベーマイトアルミナ担体(Al2O392.8重量%)200g
に三酸化モリブデン35.7g、炭酸コバルト15.23g、85%
りん酸11.4gと水とから調製した活性金属水溶液150mlを
含浸させ、110℃で5時間かけて乾燥した。次に、該乾
燥物100gにジエチレングリコール(触媒M)とグリセリ
ン(触媒N)とをそれぞれ第1表の含浸量に従い含浸さ
せ、110℃で10時間乾燥し本発明の方法による触媒M、
Nを得た。
Example -2 pseudoboehmite alumina support (Al 2 O 3 92.8 wt%) 200 g
35.7 g of molybdenum trioxide, 15.23 g of cobalt carbonate, 85%
It was impregnated with 150 ml of an active metal aqueous solution prepared from 11.4 g of phosphoric acid and water and dried at 110 ° C. for 5 hours. Next, 100 g of the dried product was impregnated with diethylene glycol (catalyst M) and glycerin (catalyst N) according to the impregnation amounts shown in Table 1, respectively, dried at 110 ° C. for 10 hours, and dried at 110 ° C. for the catalyst M according to the method of the present invention.
N was obtained.

触媒M、NのMo含有量はいずれもMoO3として15重量%
であり、Coの含有量はいずれもCoOとして4重量%であ
り、Pの含有量はいずれもP2O5として3重量%であっ
た。
Mo content of both catalysts M and N is 15% by weight as MoO 3
The content of Co was 4% by weight as CoO, and the content of P was 3% by weight as P 2 O 5 .

この触媒M、Nを用いて実施例−1と同様にして水素
化脱硫試験を行った。得られた結果を第1表に併せて示
した。
Using these catalysts M and N, a hydrodesulfurization test was performed in the same manner as in Example-1. The results obtained are shown in Table 1.

第1表より触媒M、Nも触媒I、J、K、Lより極め
て活性が高いことがわかる。
Table 1 shows that the catalysts M and N are much more active than the catalysts I, J, K and L.

[実施例−3] シリカ・アルミナ担体(SiO2として10重量%、比表面
積325m2/g、細孔容積0.69ml/g)200gに三酸化モリブデ
ン38.5g、炭酸ニッケル16.2g、85%りん酸12.3gと水と
から調製した活性金属水溶液160mlを含浸させ、110℃で
5時間かけて乾燥した。次に、該乾燥物100gにジエチレ
ングリコール(触媒O)を第1表の含浸量に従い含浸さ
せ、110℃で10時間乾燥し本発明の方法による触媒Oを
得た。
[Example 3] 200 g of a silica / alumina carrier (10% by weight as SiO 2 , specific surface area of 325 m 2 / g, pore volume of 0.69 ml / g), 38.5 g of molybdenum trioxide, 16.2 g of nickel carbonate, 85% phosphoric acid It was impregnated with 160 ml of an aqueous active metal solution prepared from 12.3 g and water, and dried at 110 ° C. for 5 hours. Next, 100 g of the dried product was impregnated with diethylene glycol (catalyst O) according to the impregnation amount shown in Table 1, and dried at 110 ° C. for 10 hours to obtain catalyst O according to the method of the present invention.

触媒OのMo含有量はMoO3として15重量%であり、Coの
含有量はいずれもCoOとして4重量%であり、Pの含有
量はいずれもP2O5として3重量%であった。
The Mo content of the catalyst O was 15% by weight as MoO 3 , the content of Co was 4% by weight as CoO, and the content of P was 3% by weight as P 2 O 5 .

この触媒Oを用いて実施例−1と同様にして水素化脱
硫試験を行った。得られた結果を第1表に併せ示した。
Using this catalyst O, a hydrodesulfurization test was performed in the same manner as in Example-1. The results obtained are shown in Table 1.

第1表より触媒Oも触媒I、J、K、Lより極めて活
性が高いことがわかる。
From Table 1, it can be seen that the activity of the catalyst O is much higher than that of the catalysts I, J, K and L.

以上のことより、本発明の方法で作成した触媒の活性
は極めて高く、中でもジエチレングリコールを含浸させ
たものがより好ましいことがわかる。
From the above, it can be seen that the activity of the catalyst prepared by the method of the present invention is extremely high, and the catalyst impregnated with diethylene glycol is more preferable.

[発明の効果] 本発明の方法で作られた触媒の活性は極めて高く、そ
の結果、炭化水素油の深度脱硫や脱窒素等の高度な水素
化処理が可能となる。
[Effect of the Invention] The activity of the catalyst produced by the method of the present invention is extremely high, and as a result, advanced hydrotreating such as deep desulfurization and denitrification of hydrocarbon oils becomes possible.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】触媒用担体に周期率表第6族金属と第8族
金属とを活性金属として担持した触媒に、該触媒中の活
性金属の総モル数に対して0.3〜5.0倍モル量の多価アル
コールを添加した後、200℃以下で乾燥させることを特
徴とする水素化処理触媒の製造方法。
1. A catalyst in which a group 6 metal and a group VIII metal of the periodic table are supported as active metals on a catalyst carrier, in an amount of 0.3 to 5.0 times the total number of moles of the active metals in the catalyst. A method for producing a hydrotreating catalyst, comprising adding the polyhydric alcohol and drying the mixture at 200 ° C. or lower.
【請求項2】触媒用担体に周期率表第6族金属と第8族
金属とリンとを担持した触媒に、該触媒中の活性金属の
総モル数に対して0.3〜5.0倍モル量の多価アルコールを
添加した後、200℃以下で乾燥させることを特徴とする
水素化処理触媒の製造方法。
2. A catalyst in which a metal of Group 6 of the Periodic Table, a Group VIII metal and phosphorus are supported on a catalyst carrier is added in an amount of 0.3 to 5.0 times the molar amount of the total amount of active metals in the catalyst. A method for producing a hydrotreating catalyst, comprising adding a polyhydric alcohol and then drying at 200 ° C. or lower.
【請求項3】触媒担体に周期率表第6族金属と第8族金
属とを含む溶液を含浸させた後、該含浸物を200℃以下
で乾燥して触媒を得、該触媒中の活性金属の総モル数に
対して0.3〜5.0倍モル量の多価アルコールを添加した
後、200℃以下で乾燥させることを特徴とする水素化処
理触媒の製造方法。
3. A catalyst carrier is impregnated with a solution containing a Group 6 metal and a Group 8 metal in the periodic table, and the impregnated material is dried at 200 ° C. or lower to obtain a catalyst. A method for producing a hydrotreating catalyst, comprising adding a polyhydric alcohol in a molar amount of 0.3 to 5.0 times the total number of moles of a metal, and then drying the resultant at 200 ° C or lower.
【請求項4】触媒担体に周期率表第6族金属と第8族金
属とを含みかつリンを含む溶液を含浸させた後、該含浸
物を200℃以下で乾燥して触媒を得、該触媒中の活性金
属の総モル数に対して0.3〜5.0倍モル量の多価アルコー
ルを添加した後、200℃以下で乾燥させることを特徴と
する水素化処理触媒の製造方法。
4. After impregnating a catalyst support with a solution containing a Group 6 metal and a Group 8 metal in the periodic table and containing phosphorus, the impregnated product is dried at 200 ° C. or lower to obtain a catalyst. A method for producing a hydrotreating catalyst, comprising adding a polyhydric alcohol in an amount of 0.3 to 5.0 times the molar number of the total number of active metals in the catalyst, followed by drying at 200C or lower.
JP28847690A 1990-10-29 1990-10-29 Method for producing hydrotreating catalyst Expired - Fee Related JP3244694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28847690A JP3244694B2 (en) 1990-10-29 1990-10-29 Method for producing hydrotreating catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28847690A JP3244694B2 (en) 1990-10-29 1990-10-29 Method for producing hydrotreating catalyst

Publications (2)

Publication Number Publication Date
JPH04166232A JPH04166232A (en) 1992-06-12
JP3244694B2 true JP3244694B2 (en) 2002-01-07

Family

ID=17730702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28847690A Expired - Fee Related JP3244694B2 (en) 1990-10-29 1990-10-29 Method for producing hydrotreating catalyst

Country Status (1)

Country Link
JP (1) JP3244694B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2900771B2 (en) * 1992-11-18 1999-06-02 住友金属鉱山株式会社 Method for producing catalyst for hydrotreating hydrocarbon oil
JP3538887B2 (en) * 1993-05-07 2004-06-14 住友金属鉱山株式会社 Catalyst for hydrotreating hydrocarbon oil and method for producing the same
JP3802106B2 (en) 1995-06-08 2006-07-26 日本ケッチェン株式会社 Hydrocarbon oil hydrotreating catalyst, production method thereof and activation method thereof
JPH09155197A (en) * 1995-12-14 1997-06-17 Sumitomo Metal Mining Co Ltd Hydrotreatment catalyst of hydrocarbon oil
US5856260A (en) * 1997-04-22 1999-01-05 Exxon Research And Engineering Company Preparation of high activity catalysts; the catalysts and their use
FR2880822B1 (en) * 2005-01-20 2007-05-11 Total France Sa HYDROTREATING CATALYST, PROCESS FOR PREPARING THE SAME AND USE THEREOF
JP5773644B2 (en) * 2010-12-28 2015-09-02 日揮触媒化成株式会社 Method for regenerating hydrotreating catalyst

Also Published As

Publication number Publication date
JPH04166232A (en) 1992-06-12

Similar Documents

Publication Publication Date Title
JP3244692B2 (en) Method for producing catalyst for hydrotreating hydrocarbon oil
US7087546B2 (en) Process for regenerating and rejuvenating additive-based catalysts
JP4187383B2 (en) Method for sulfiding a hydrotreating catalyst comprising an organic compound containing N and carbonyl
EP0469675B1 (en) Hydrodesulphurization process
JP5060044B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
EP0601722B1 (en) Catalysts for hydrotreating hydrocarbon oils and methods of preparing the same
EP1680486B1 (en) Process for activating a hydrotreating catalyst
US7906447B2 (en) Regeneration and rejuvenation of supported hydroprocessing catalysts
JP3244693B2 (en) Method for producing catalyst for hydrotreating hydrocarbon oil
EP2915868A1 (en) Selective catalysts for naphtha hydrodesulfurization
US4455390A (en) Catalyst and method for impregnating at a pH less than one
JP2003530208A (en) Method for sulfurizing additive-containing catalysts
KR102277831B1 (en) Process for preparing a hydrotreating catalyst
JPH06339635A (en) Preparation of hydrogenation catalyst
JP4743739B2 (en) Method for regeneration and rejuvenation of additive-containing catalyst
JP3244694B2 (en) Method for producing hydrotreating catalyst
JP3244695B2 (en) Method for producing hydrotreating catalyst
JP2936753B2 (en) Method for producing hydrotreating catalyst
JPH0661464B2 (en) Catalyst for hydrodesulfurization and denitrification of heavy hydrocarbon oils
JPH04166231A (en) Production of catalyst for hydrogenation treatment
JP3339588B2 (en) Method for producing catalyst for hydrotreating hydrocarbon oil
JPH06210182A (en) Catalyst for hydrodesulfirization denitrification of hydrocarbon oil and its production
JP3230585B2 (en) Method for producing hydrotreating catalyst
JPH08243407A (en) Preparation of hydrogenated catalyst
JPH04244238A (en) Preparation of catalyst for hydrogen treatment

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees