JP3130686B2 - Liquid crystal display device - Google Patents
Liquid crystal display deviceInfo
- Publication number
- JP3130686B2 JP3130686B2 JP04302756A JP30275692A JP3130686B2 JP 3130686 B2 JP3130686 B2 JP 3130686B2 JP 04302756 A JP04302756 A JP 04302756A JP 30275692 A JP30275692 A JP 30275692A JP 3130686 B2 JP3130686 B2 JP 3130686B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- crystal cell
- viewing angle
- crystal display
- display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Liquid Crystal (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、液晶表示素子に係わ
り、特にコントラスト比や階調表示時の視角依存牲を制
御した液晶表示素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device and, more particularly, to a liquid crystal display device in which the contrast ratio and the viewing angle dependency during gradation display are controlled.
【0002】[0002]
【従来の技術】近年、薄型軽量、低消費電力という大き
な利点をもつ液晶表示素子は、日本語ワードプロセッサ
やデスクトップパーソナルコンピュータ等のパーソナル
OA機器の表示装置として積極的に用いられている。液
晶表示素子のほとんどは、ねじれネマティック液晶を用
いており、表示方式としては、このなかでもTN形とS
TN形の2つに大別できる。2. Description of the Related Art In recent years, liquid crystal display devices having great advantages such as thinness and light weight and low power consumption have been actively used as display devices for personal OA equipment such as Japanese word processors and desktop personal computers. Most liquid crystal display elements use twisted nematic liquid crystal. Among them, TN type and S
They can be roughly classified into two types: TN type.
【0003】TN形の液晶表示素子は、90°ねじれた
分子配列をもち、低電圧で高いコントラスト比を示すこ
とから時計や電卓のディスプレイのみならず、液晶テレ
ビやOA機器のディスプレイなどに幅広く用いられてい
る。特に、液晶テレビやOA機器のディスプレイには、
大表示容量と高速動作が求められるため、各表示画素に
対応する部分に薄膜トランジスタ(TFT)やダイオー
ドなどのスイッチング素子を形成したアクティブマトリ
クス方式が適用される。A TN type liquid crystal display device has a 90 ° twisted molecular arrangement and exhibits a high contrast ratio at a low voltage, so that it is widely used not only for displays of watches and calculators but also for displays of liquid crystal televisions and OA equipment. Have been. In particular, displays for LCD televisions and OA equipment
Since large display capacity and high-speed operation are required, an active matrix method in which a switching element such as a thin film transistor (TFT) or a diode is formed in a portion corresponding to each display pixel is applied.
【0004】一方、STN形の液晶表示素子は、例えば
240°の大きくねじれた分子配列をもち、急峻な電気
光学特性をもつ為、各画素ごとにスイッチング素子が無
くても単純なマトリクス状の電極構造で大容量の表示が
得られる。しかし、複屈折効果を利用しているため、黄
色と濃紺色のいわゆるイエローモード表示や、白色と青
色のいわゆるブルーモード表示(液晶セルの上下の偏光
板の吸収軸の向きにより表示色が異なる)となり、白黒
表示が不可能であった。このような表示の色づきを解消
する手段として、逆にねじれた第2の液晶セルを偏光板
と液晶セルの間に配置することによって白黒表示を実現
できることが特公昭63−53528に開示されてい
る。この白黒化の原理は、液晶分子がねじれ配列とされ
る表示用液晶セルで楕円偏光となった常光成分と異常光
成分の光を、光学補償板である第2の液晶セルによって
相互に入れ替われせ、楕円偏光を直線偏光へと変換され
る。その結果、光の波長ごとに偏光方向が異なることな
く同一の偏光が得られ、白黒表示を実現することができ
る。ここで上述したように楕円偏光の直線偏光への変換
を行うには第2の液晶セルが、電圧を印加する第1の液
晶セルとリタデーション値が、ほぼ同一でかつ、ねじれ
方向が相互間で逆であり、それらの配置は、相互に最近
接する液晶分子の配向方位が直交するように構成する。On the other hand, STN type liquid crystal display elements have a large twisted molecular arrangement of, for example, 240 ° and have steep electro-optical characteristics. Therefore, even if there is no switching element for each pixel, a simple matrix electrode is used. Large capacity display can be obtained with the structure. However, since the birefringence effect is used, a so-called yellow mode display of yellow and dark blue or a so-called blue mode display of white and blue (display colors differ depending on the directions of absorption axes of polarizing plates above and below the liquid crystal cell) And black-and-white display was impossible. Japanese Patent Publication No. 63-53528 discloses that a black-and-white display can be realized by disposing a second liquid crystal cell, which is twisted reversely, between a polarizing plate and a liquid crystal cell as means for eliminating such coloring of display. . The principle of this black-and-white conversion is that the light of the ordinary light component and the extraordinary light component, which have become elliptically polarized light in the display liquid crystal cell in which the liquid crystal molecules are arranged in a twisted arrangement, are interchanged by the second liquid crystal cell which is an optical compensator. The elliptically polarized light is converted to linearly polarized light. As a result, the same polarization can be obtained without the polarization direction being different for each wavelength of light, and a monochrome display can be realized. Here, as described above, in order to convert elliptically polarized light into linearly polarized light, the second liquid crystal cell has substantially the same retardation value as that of the first liquid crystal cell to which a voltage is applied, and has a twisting direction between each other. On the contrary, their arrangement is configured such that the liquid crystal molecules closest to each other have orthogonal orientation directions.
【0005】しかし、これらSTN形やTN形の液晶表
示素子は、見る角度や方位によって表示色やコントラス
ト比が変化するといった視角依存性をもち、カラー受像
管CRTの表示性能を完全に越えるまでにはいたらな
い。例えばTN形の液晶表示素子の視角特性は、図2に
示す様な特性をもつ。図2は、等コントラスト特性と呼
ばれ、液晶表示素子の視角特性を示す際に良く用いられ
る。液晶表示素子を観察する点を図3に示す様に方位角
Φ、視角θと定義し、観測する方位Φを変化したとき、
等しいコントラスト比を示す視角θを図2の様に極座標
系で示す。理想的な液晶表示素子としては、どの方位角
においても視角が大きいことが望まれる。図2の測定結
果にも見られるように、90°、210°、330°方
位で視角が大きく、45°、135°、270°方位で
視角が小さい。この例のように液晶表示素子は、見る角
度を変化すると同一なコントラスト比が得られず、視角
・方位によってコントラスト比が大きく変化する。[0005] However, these STN and TN liquid crystal display elements have a viewing angle dependency such that the display color and contrast ratio change depending on the viewing angle and azimuth, and the display performance of the color picture tube CRT is completely exceeded. I don't want to. For example, the viewing angle characteristics of a TN type liquid crystal display element have characteristics as shown in FIG. FIG. 2 is called an isocontrast characteristic, and is often used to show the viewing angle characteristic of a liquid crystal display element. A point at which the liquid crystal display element is observed is defined as an azimuth angle Φ and a viewing angle θ as shown in FIG. 3, and when the azimuth Φ to be observed is changed,
A viewing angle θ showing an equal contrast ratio is shown in a polar coordinate system as shown in FIG. For an ideal liquid crystal display device, it is desired that the viewing angle be large at any azimuth. As can be seen from the measurement results of FIG. 2, the viewing angles are large in the 90 °, 210 °, and 330 ° azimuths, and are small in the 45 °, 135 °, and 270 ° azimuths. As in this example, when the viewing angle is changed, the same contrast ratio cannot be obtained in the liquid crystal display element, and the contrast ratio greatly changes depending on the viewing angle and azimuth.
【0006】一方、誘電異方性が負のネマティック液晶
を垂直配向させた液晶セルを偏光板で挟んだ構造の液晶
表示素子について、液晶セルと偏光板の間にコレステリ
ック液晶を挟み視野角を改善する試みが特開平3−67
219号公報に記されている。しかし、この場合、誘電
異方性が負のネマティック液晶を垂直配向させた液晶セ
ルは、配向技術の問題や液晶材料の応答速度の問題、あ
るいは液晶の比対抗が余り高くならないためアクティブ
マトリクス駆動液晶表示に用いるのは適さなく、ネマテ
ィク液晶としては前述のTN形やSTN形が望ましい。
本技術は、実用的に問題がある。On the other hand, with respect to a liquid crystal display device having a structure in which a liquid crystal cell in which nematic liquid crystal having negative dielectric anisotropy is vertically aligned is sandwiched between polarizing plates, an attempt is made to improve a viewing angle by sandwiching a cholesteric liquid crystal between the liquid crystal cell and the polarizing plate. Is disclosed in JP-A-3-67.
No. 219. However, in this case, the liquid crystal cell in which the nematic liquid crystal with negative dielectric anisotropy is vertically aligned has the problem of the alignment technology, the problem of the response speed of the liquid crystal material, or the active matrix driven liquid crystal because the ratio of the liquid crystal does not become so high. It is not suitable for use in display, and the above-mentioned TN type and STN type are desirable as the nematic liquid crystal.
This technique has practical problems.
【0007】[0007]
【発明が解決しようとする課題】現在、液晶表示素子は
CRTのようにどこからみてもほぼ均一なコントラスト
比を示すといった特性ではなく、見る角度・方位によっ
てコントラスト比が大きく変化する。すなわち、液晶表
示素子には視角特性が存在し、それゆえ液晶表示素子
は、視角特性が狭くてコントラスト比は限定された方向
のみが良く、それ以外は表示の視認性が著しく劣ってい
た。本発明は上記不都合を解決するものである。At present, a liquid crystal display element does not have a characteristic such that it exhibits a substantially uniform contrast ratio from any point of view like a CRT, but the contrast ratio greatly changes depending on the viewing angle and azimuth. That is, the liquid crystal display element has a viewing angle characteristic. Therefore, the liquid crystal display element has a narrow viewing angle characteristic and is good only in a direction in which the contrast ratio is limited, and otherwise the visibility of the display is extremely poor. The present invention solves the above disadvantages.
【0008】[0008]
【課題を解決するための手段】本発明は、課題を解決す
る手段として、それぞれ電極を有する2枚の基板間に液
晶層を挟持した液晶セルと液晶セルとこの液晶セルを透
過する光路上に配置された光学異方素子と前記液晶セル
および光学異方素子を挟む2枚の偏光板とからなる液晶
表示素子において、前記液晶セルはセル中に2種以上の
配向領域を有し、この配向に対応して前記光学異方素子
が素子面内において2種以上の光学特性をもつ部分を有
してなることを特徴とする液晶表示素子を得るものであ
る。According to the present invention, there is provided a liquid crystal cell having a liquid crystal layer sandwiched between two substrates having electrodes, a liquid crystal cell, and an optical path passing through the liquid crystal cell. In a liquid crystal display element comprising an optically anisotropic element disposed and two polarizing plates sandwiching the liquid crystal cell and the optically anisotropic element, the liquid crystal cell has two or more types of alignment regions in the cell. According to the present invention, there is provided a liquid crystal display element characterized in that the optically anisotropic element has a portion having two or more kinds of optical characteristics in the element plane.
【0009】また、光学異方素子は、高分子液晶および
液晶からなっても良い。Further, the optically anisotropic element may be made of a polymer liquid crystal and a liquid crystal.
【0010】[0010]
【作用】本発明は、上記目的を達成するものであり、以
下その達成原理および手法について説明する。図4は、
従来例のノーマリーオープン形のTN形の液晶表示素子
(以下TN形液晶表示素子)の階調表示時の視角特性を
示したものである。表示面法線から左右の方向に0°か
ら60°まで傾いた時(表示面法線からの傾き角を以下
視角と称する)の透過率が示されている。図中の1から
8までの数字は、階調表示時の各階調レベルを示し、正
面(視角0°)において透過率が高い順に番号づけされ
ている。この場合、8レベルの階調表示時の視角特性が
示されている。最低限、1から8レベルまで透過率の順
位が正面の時と同一であることが望まれる。この図を見
ると、左右の方位共に視角約30°以上で階調順位が変
化してしまっている。The present invention achieves the above-mentioned object, and its principle and method will be described below. FIG.
FIG. 9 shows viewing angle characteristics of a normally open TN type liquid crystal display element (hereinafter referred to as a TN type liquid crystal display element) of a conventional example at the time of gradation display. The transmittance is shown when the display surface is inclined from 0 ° to 60 ° in the horizontal direction from the display surface normal (the angle of inclination from the display surface normal is hereinafter referred to as a viewing angle). Numerals 1 to 8 in the drawing indicate the respective gradation levels at the time of gradation display, and are numbered in order from the highest transmittance at the front (viewing angle 0 °). In this case, the viewing angle characteristic at the time of 8-level gradation display is shown. It is desired that the order of the transmittance at least from the 1st to the 8th level is the same as that in the front. As shown in this figure, the gradation order changes at a viewing angle of about 30 ° or more in both left and right directions.
【0011】一方、上下方位の階調表示時の視角特性を
示したものが図5である。上方位の特性が極端に悪く、
視角10°以上で階調順位が変化し、2から8レベルま
での階調レベルの透過率が著しく低下している。逆に下
方位の特性は、透過率の上昇は見られるが、上方位の場
合の様に階調順位が著しく変化することなく、階調順位
の変化は少ない。これらの原因は、液晶セル内の分子配
列にある。液晶セル内に電圧が印加されると、液晶セル
内の液晶分子は基板に対し傾く。On the other hand, FIG. 5 shows a viewing angle characteristic at the time of gradation display in the vertical direction. The characteristics of the upper direction are extremely poor,
The gradation order changes at a viewing angle of 10 ° or more, and the transmittance of the gradation levels from 2 to 8 levels is significantly reduced. Conversely, in the characteristics at the lower position, although the transmittance is increased, the gradation order does not change significantly as in the case of the upper direction, and the change in the gradation order is small. These causes are due to the molecular arrangement in the liquid crystal cell. When a voltage is applied to the liquid crystal cell, the liquid crystal molecules in the liquid crystal cell tilt with respect to the substrate.
【0012】図6は液晶セルに電源15から電圧を印加
したときの液晶セルの断面を模式的に示した図である。
16は液晶分子を表し、印加された電圧により液晶分子
16は基板13aまたは13bに対して傾き、液晶セル
の厚さ方向に連続的に広がった配列となる。TN型液晶
表示素子では旋光性の大小を制御して光の透過/遮断を
行うが、光が液晶セルを透過する際に、液晶分子長軸と
光線とが平行になるほど旋光性が消失し透過光が減少す
る。図のA点の観測点でも、A´点の観測点でも光線と
液晶分子とが平行になり透過光が得られない。一方、逆
の方位であるB点の方位では多少視角を変化しても光線
は液晶分子と平行とはならずある程度透過光が得られ
る。このように、液晶表示素子には旋光性が消失しやす
い方位が存在し、先ほど示した図5の上方位が、これに
相当する。FIG. 6 is a diagram schematically showing a cross section of the liquid crystal cell when a voltage is applied from the power supply 15 to the liquid crystal cell.
Reference numeral 16 denotes liquid crystal molecules, and the liquid crystal molecules 16 are tilted with respect to the substrate 13a or 13b by the applied voltage, so that the liquid crystal molecules 16 are arranged so as to continuously spread in the thickness direction of the liquid crystal cell. In a TN-type liquid crystal display element, the degree of optical rotation is controlled to transmit or block light. However, when the light passes through the liquid crystal cell, the optical rotation is lost and the light is transmitted as the longer axis of the liquid crystal molecule becomes parallel to the light beam. Light decreases. At both the observation point A and the observation point A 'in the figure, the light beam and the liquid crystal molecules are parallel, and transmitted light cannot be obtained. On the other hand, in the azimuth of point B, which is the opposite azimuth, even if the viewing angle is slightly changed, the light rays are not parallel to the liquid crystal molecules, and transmitted light is obtained to some extent. As described above, the liquid crystal display element has a direction in which the optical rotation is likely to disappear, and the upward direction in FIG. 5 shown earlier corresponds to this direction.
【0013】階調表示時の視角特性を改善するには、視
角を変化しても旋光性が消失しにくい液晶分子配列部
分、例えば図7に示すような配列領域13Aと対象な配
列領域13Bを表示画素中に付加すれば、表示性能の向
上が期待できる。In order to improve the viewing angle characteristic at the time of gradation display, a liquid crystal molecule alignment portion where optical rotation is hardly lost even when the viewing angle is changed, for example, an alignment region 13A and a target alignment region 13B as shown in FIG. If added to the display pixels, improvement in display performance can be expected.
【0014】図8は、電圧印加時に液晶分子が傾く方向
が互いに逆になるような2種類の配向領域が1:1の割
合で画素内にもつ液晶表示素子の上下方位の8レベルの
階調表示時の視角特性である。視角が大きくなっても階
調順位はあまり変化しない。しかし3レベル以上の輝度
は視角の増大に伴い増加してしまい、例えば、3レベル
以上の階調を用いたカラー表示をした場合、視角を変化
すると色調が大きく変化してしまう。このように、表示
画素中の配向を複数の配向部分で構成すると、階調表示
の順位の視角依存性は改善されるけれども、正面方向で
観測されるような本来の設定値が得られず、表示色の変
化をもたらす。FIG. 8 shows an 8-level gray scale in the vertical direction of a liquid crystal display element in which two types of alignment regions in which a direction in which liquid crystal molecules incline when voltage is applied are opposite to each other are provided at a ratio of 1: 1. This is a viewing angle characteristic at the time of display. Even when the viewing angle increases, the gradation order does not change much. However, the luminance at three or more levels increases with an increase in the viewing angle. For example, in the case of performing color display using three or more levels of gradation, a change in the viewing angle greatly changes the color tone. As described above, when the orientation in the display pixel is composed of a plurality of orientation parts, the viewing angle dependency of the order of gradation display is improved, but the original set value observed in the front direction cannot be obtained. This causes a change in display color.
【0015】このような液晶セルの表示画素中の配向の
多種化は、図7の例に示した様に一画素中に液晶分子の
傾き方向が異なる配向を多数作製する方法の他に、一画
素中に基板と液晶分子との境界付近での液晶分子の傾き
角(プレチルト角)が異なる配向膜を設けこれにより1
種以上の配向部を作製する方法、配向の種類は同一であ
るが電極にコンデンサを設け一画素中に印加される電圧
が画素内で異なるようにして異種の配列をもたせる方法
などがあるが、何れの方法も視角の変化による液晶層の
リタデーション値の変化は避けられない。本発明は、何
れの方法による一画素内多配向液晶セルに適用できるも
のである。The diversification of the orientation in the display pixels of such a liquid crystal cell can be achieved by not only a method of producing a large number of orientations in which the tilt directions of the liquid crystal molecules are different in one pixel as shown in the example of FIG. An alignment film having a different tilt angle (pretilt angle) of the liquid crystal molecules near the boundary between the substrate and the liquid crystal molecules is provided in the pixel, whereby one pixel is formed.
There is a method of producing more than one kind of alignment part, a method in which the type of alignment is the same, a method in which a capacitor is provided on an electrode, and a voltage applied to one pixel is made different in a pixel to have a different arrangement, In any case, a change in the retardation value of the liquid crystal layer due to a change in the viewing angle cannot be avoided. The present invention can be applied to a multi-alignment liquid crystal cell in one pixel by any method.
【0016】視角の変化による透過率の変化を抑えるに
は、以下の方法により可能となる。以下この原理につい
て説明する。In order to suppress a change in transmittance due to a change in viewing angle, the following method is possible. Hereinafter, this principle will be described.
【0017】図9に例として、垂直配列状態の液晶セル
を3次元の屈折率楕円体9で表す。z軸は液晶セルの厚
み方向で、xy面は液晶セルの基板面に相当する。複屈
折現象は、この屈折率楕円体9の中心点をある方向から
みた時の観測点と、屈折率楕円体9の中心点とを結ぶ線
の屈折率楕円体9の中心点上の法線面が、屈折率楕円体
9を切断した時に形成される楕円状の切断面の形状(こ
こでは、2次元面内の屈折率体と呼ぶ)により示され
る。この2次元面内の屈折率体の長軸と短軸の長さの差
が、常光と異常光の位相差に相当し、液晶セルを挟む偏
光板の透過軸が互いに直交していれば、その位相差が零
のとき液晶セルの透過光は遮断され、位相差が零ではな
いときにはその位相差と入射角の波長に応じた透過光が
生じる。液晶セルの基板面に垂直に光が入射した場合
(すなわち液晶セルを真正面から見たとき)には、2次
元面内の屈折率体(9.4) は円となり、常光と異常光の位
相差は零となるが、液晶セルの基板面から傾いた方向
(9.1) より光が入射した場合、屈折率体(9.5) は楕円と
なり、常光と異常光の位相差が生じ、真正面方向と斜め
方向では液晶セルを透過する光の偏光状態は異なる。FIG. 9 shows, as an example, a liquid crystal cell in a vertical alignment state by a three-dimensional refractive index ellipsoid 9. The z axis is the thickness direction of the liquid crystal cell, and the xy plane corresponds to the substrate surface of the liquid crystal cell. The birefringence phenomenon is a normal line on the center point of the refractive index ellipsoid 9 connecting the observation point when the center point of the refractive index ellipsoid 9 is viewed from a certain direction and the center point of the refractive index ellipsoid 9. The surface is indicated by the shape of an elliptical cut surface formed when the refractive index ellipsoid 9 is cut (here, referred to as a refractive index body in a two-dimensional plane). If the difference between the long axis and the short axis of the refractive index body in this two-dimensional plane corresponds to the phase difference between ordinary light and extraordinary light, and the transmission axes of the polarizing plates sandwiching the liquid crystal cell are orthogonal to each other, When the phase difference is zero, the transmitted light of the liquid crystal cell is blocked, and when the phase difference is not zero, transmitted light corresponding to the phase difference and the wavelength of the incident angle is generated. When light is vertically incident on the substrate surface of the liquid crystal cell (that is, when the liquid crystal cell is viewed from the front), the refractive index body (9.4) in the two-dimensional plane becomes a circle, and the phase difference between ordinary light and extraordinary light becomes Zero, but in a direction inclined from the substrate surface of the liquid crystal cell
When light enters from (9.1), the refractive index body (9.5) becomes elliptical, a phase difference occurs between ordinary light and extraordinary light, and the polarization state of light passing through the liquid crystal cell is different between the frontal direction and the oblique direction.
【0018】図9の屈折率楕円体9を見る角度、すなわ
ち視角(9.3) を大きくしていくと視軸(9.1) の2次元面
内の屈折率体(9.5) はn91の長さ方向に大きくなり、視
軸(9.1) の方向から見た時より大きい透過光が観測され
る。理想的には、どの方位でも視角を変化したとき、2
次元面内の屈折率体の形状が変化しないことが望まし
い。As the angle at which the refractive index ellipsoid 9 in FIG. 9 is viewed, that is, the viewing angle (9.3) is increased, the refractive index body (9.5) in the two-dimensional plane of the visual axis (9.1) becomes longer in the length direction of n91. The transmitted light is larger than when viewed from the direction of the visual axis (9.1). Ideally, when the viewing angle changes in any orientation, 2
It is desirable that the shape of the refractive index body in the dimensional plane does not change.
【0019】このような光学的な補償は、図10に示す
ような円盤上の屈折率楕円体9cを図9の屈折率楕円体
9を通過する光路上に配置する(例えば液晶セルの上あ
るいは下に隣接して配置する)ことにより実現できる。
こうすると、視角(9.3) を大きくしていったとき、屈折
率楕円体9の2次元面内の屈折率体(9.5) がn91の長さ
方向に大きくなるのに対して、n92の長さ方向の屈折率
が大きくなり、その結果、合成された2次元面内の屈折
率体は円になり、屈折率楕円体9を光学的に補償するこ
とができ、視角特性が向上する。Such optical compensation is performed by disposing a refractive index ellipsoid 9c on a disk as shown in FIG. 10 on an optical path passing through the refractive index ellipsoid 9 in FIG. 9 (for example, on a liquid crystal cell or (Disposed adjacently below).
Thus, when the viewing angle (9.3) is increased, the refractive index body (9.5) in the two-dimensional plane of the refractive index ellipsoid 9 increases in the length direction of n91, whereas the length of n92 increases. The refractive index in the direction becomes large, and as a result, the combined refractive index body in the two-dimensional plane becomes a circle, the refractive index ellipsoid 9 can be optically compensated, and the viewing angle characteristics are improved.
【0020】実際には図10に示すような屈折率楕円体
9cは、厚み方向に負の光学異方性を示す(厚み方向の
屈折率が面方向の屈折率より小さい)材質のフィルム
や、この性質の材質のフィルムの光軸を、厚み方向から
ずらした2軸性の光学異方性を示すフィルムや、光軸が
連続的にねじれた配列をした光学異方性物質層からなる
光学異方素子で実現できる。液晶表示素子の階調表示時
の視角特性をより望ましい特性にするには、これら光学
異方素子を組み合わせて用い、一画素内多配向液晶セル
中の異なる視角特性を持つ1つ1つの配向部を、それぞ
れに適した光学特性を持つ光学異方素子で正確に光学補
償することで実現できる。Actually, the refractive index ellipsoid 9c as shown in FIG. 10 is a film of a material exhibiting negative optical anisotropy in the thickness direction (the refractive index in the thickness direction is smaller than the refractive index in the plane direction), A film of a material having this property has a biaxial optical anisotropy in which the optical axis is displaced from the thickness direction, or an optical anisotropic material layer having an optical anisotropic material layer in which the optical axis is continuously twisted. It can be realized by the one element. In order to make the viewing angle characteristic of the liquid crystal display element at the time of gradation display more desirable, these optically anisotropic elements are used in combination, and each alignment unit having a different viewing angle characteristic in a multi-alignment liquid crystal cell in one pixel. Can be realized by accurately performing optical compensation with an optically anisotropic element having optical characteristics suitable for each.
【0021】一般に、液晶セルは、液晶セルに印加する
電圧によって可視の波長領域の光(一般には380nm
から750nmまでの領域)の偏光方向を積極的に変化
させて表示している。一方、光学補償用の光学異方素子
の場合、光学異方性物質層の光軸が連続的にねじれてい
る為、光学異方素子の光学条件によっては旋光性が生じ
ることがある。ここで旋光性とは、光が媒質中を進行す
るに従ってその光の振動方向が、進行方向を軸として左
または右に旋回する性質のことを示す。光軸が連続的に
ねじれた光学異方素子のリタデーション値を一定とした
時、光軸のねじれピッチが長い場合、光はその光軸のね
じれに従ってその偏光面を回転させるが、光軸のねじれ
ピッチが短い場合、光はその光軸のねじれに追従できな
くなり、旋光現象は起きない。光学異方素子の旋光性が
大きいと、素子を透過する光の偏光面を変化させてしま
いその結果、コントラスト比を減少させてしまったり、
場合によっては光の波長により偏光面が種々変化し、光
学異方素子を透過した光が着色するなどの問題が生じ
る。従って、少なくとも光学異方素子の可視光に対する
旋光性は、駆動用液晶セルの可視光に対する旋光性に比
べて小さくなるようにすることが必要である。Generally, a liquid crystal cell emits light in a visible wavelength region (generally 380 nm) by a voltage applied to the liquid crystal cell.
(The region from to 750 nm) is positively changed. On the other hand, in the case of an optically anisotropic element for optical compensation, the optical axis of the optically anisotropic material layer is continuously twisted, so that optical rotation may occur depending on the optical conditions of the optically anisotropic element. Here, the optical rotation indicates a property in which the vibration direction of the light turns left or right around the traveling direction as the light travels through the medium. When the retardation value of an optically anisotropic element whose optical axis is continuously twisted is constant and the twist pitch of the optical axis is long, light rotates its polarization plane according to the twist of the optical axis, but the twist of the optical axis When the pitch is short, the light cannot follow the twist of the optical axis, and the optical rotation phenomenon does not occur. If the optical rotation of the optically anisotropic element is large, the polarization plane of light passing through the element is changed, and as a result, the contrast ratio is reduced,
In some cases, the polarization plane changes variously depending on the wavelength of the light, which causes a problem that the light transmitted through the optically anisotropic element is colored. Therefore, it is necessary to make at least the optical rotation of the optically anisotropic element to visible light smaller than that of the driving liquid crystal cell to visible light.
【0022】ところで、ねじれのピッチの長さpと屈折
率nとの積n×pの値が、可視の波長範囲(条件によっ
て異なり、短波長端は360nmから400nm、長波
長端は760nmから830nmの範囲)にあると、選
択散乱を生じる(J.L.Fergason ; Molecular Crystals.
1. 293(1966) 参照)。選択散乱が生じると光学異方素
子の着色現象が生じ表示色が変化する。従って、光学異
方素子を形成する光学異方性物質層の平均屈折率nと、
光軸のねじれピッチpとの積n×pが可視の波長範囲か
ら除くようにすると着色現象が防止できる。但し、光学
異方素子の選択反射を利用してカラー表示を行う場合に
おいては、この限りではない。By the way, the value of the product n × p of the length p of the twist pitch and the refractive index n is in the visible wavelength range (depending on conditions, the short wavelength end is 360 nm to 400 nm, and the long wavelength end is 760 nm to 830 nm). ) Causes selective scattering (JLFergason; Molecular Crystals.
1. See 293 (1966)). When selective scattering occurs, a coloring phenomenon of the optically anisotropic element occurs and the display color changes. Therefore, the average refractive index n of the optically anisotropic material layer forming the optically anisotropic element,
If the product n × p with the twist pitch p of the optical axis is excluded from the visible wavelength range, the coloring phenomenon can be prevented. However, this is not the case when color display is performed using selective reflection of the optically anisotropic element.
【0023】以上、本発明における視角拡大、あるいは
視角制御の原理を概念的に説明したが、その際説明した
しきい値電圧以上の電圧が印加された駆動用液晶セルの
屈折率楕円体は、図9に示したような簡単な楕円体形で
はない。実際に、TN方式の駆動用液晶セルに暗状態が
得られる値の電圧を印加した時の液晶セル中の分子配列
状態を計算してみると、図11に示す様になる。図11
中のTI 及びTW はそれぞれチルト(傾き)角及びツイ
スト(ねじれ)角で、チルト角とは、図12に示すよう
に、液晶セルの表示面をxy面としたとき、xy面に対
する液晶分子LC の長軸LCAの傾き角を示し、ツイスト
角とは、液晶分子LCAをz軸からxy面へ投射した軸と
x軸とのなす角度を示す。As described above, the principle of viewing angle expansion or viewing angle control in the present invention has been conceptually explained. At this time, the refractive index ellipsoid of the driving liquid crystal cell to which a voltage equal to or higher than the threshold voltage described above is applied. It is not a simple ellipsoid as shown in FIG. FIG. 11 shows a calculation of the molecular alignment state in the liquid crystal cell when a voltage having a value that can obtain a dark state is actually applied to the TN mode driving liquid crystal cell. FIG.
In the figure, TI and TW are a tilt (tilt) angle and a twist (twist) angle, respectively. The tilt angle is defined by the liquid crystal molecules LC with respect to the xy plane, as shown in FIG. Indicates the angle of inclination of the long axis LCA, and the twist angle indicates the angle between the axis that projects the liquid crystal molecules LCA from the z axis to the xy plane and the x axis.
【0024】電圧が印加された状態では、液晶セルの中
央付近では液晶分子が90°近く傾くが、上下の基板表
面付近では、基板表面の配向規制力の影響を受けて液晶
分子はあまり傾かない。また、ツイスト角はSの字型の
分布となる。この計算結果から明らかなように、電圧を
印加した時の液晶層の分子配列は、完全な垂直配列状態
とはならない。従って、ねじれ配列を持つ液晶セルに電
圧を印加した場合、液晶セルの屈折率楕円体は、図9に
示したような単純な形状ではなく、液晶セルの中央付近
の液晶分子の傾きや、基板表面付近のねじれ配列部の影
響を受け図9を変形させた形状となる。従って、TN方
式やST方式の駆動用液晶セルに用いる光学補償用の屈
折率楕円は、駆動用液晶セルの屈折率楕円に適合させ、
図10の様な完全な円盤形ではなく多少変形させた複雑
な形状であることが望ましい。In a state where a voltage is applied, the liquid crystal molecules tilt near 90 ° near the center of the liquid crystal cell, but do not tilt much near the upper and lower substrate surfaces due to the influence of the alignment regulating force on the substrate surfaces. . The twist angle has an S-shaped distribution. As is apparent from the calculation results, the molecular arrangement of the liquid crystal layer when a voltage is applied is not completely vertical. Therefore, when a voltage is applied to a liquid crystal cell having a twisted arrangement, the refractive index ellipsoid of the liquid crystal cell does not have a simple shape as shown in FIG. The shape of FIG. 9 is deformed under the influence of the twist arrangement portion near the surface. Therefore, the refractive index ellipse for optical compensation used in the driving liquid crystal cell of the TN mode or the ST mode is adapted to the refractive index ellipse of the driving liquid crystal cell,
It is desirable to have a complex shape slightly deformed instead of a perfect disk shape as shown in FIG.
【0025】また、光学異方素子は、高分子フィルムを
延伸することにより光学異方性を生じさせた位相差(リ
タデーション)フィルムを積層したものや、ねじれ配列
させた液晶セル、ならびに高分子液晶をねじれ配列させ
た薄膜により実現できる。この場合、例えば駆動用液晶
セルの基板の少なくともどちらか一方にこの高分子層を
塗布することにより得られ、製造上容易となりより望ま
しい液晶表示素子が得られる。例えばポリシロキサン主
鎖とし、側鎖にビフェニルベンゾエートとコレステリル
基を適当な比で有した様な高分子共重合体などを用いる
ことなどができる。The optically anisotropic element is formed by laminating a retardation film having optical anisotropy by stretching a polymer film, a liquid crystal cell having a twisted arrangement, and a polymer liquid crystal. Can be realized by a thin film having a twisted arrangement. In this case, for example, the polymer layer is obtained by applying the polymer layer to at least one of the substrates of the driving liquid crystal cell, which facilitates the production and provides a more desirable liquid crystal display element. For example, a high molecular weight copolymer having a polysiloxane main chain and biphenylbenzoate and cholesteryl groups in a side chain at an appropriate ratio can be used.
【0026】さらに、より良好な補償を行うには液晶セ
ルのそれぞれの配向部分の光路上に、それぞれの配向部
に適合した光学異方素子を配置することにより所望な特
性を得ることも可能である。Further, in order to perform better compensation, it is possible to obtain desired characteristics by arranging an optically anisotropic element suitable for each alignment portion on the optical path of each alignment portion of the liquid crystal cell. is there.
【0027】[0027]
【実施例】以下本発明の液晶表示素子の実施例を詳細に
説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the liquid crystal display device of the present invention will be described below in detail.
【0028】(実施例1)図1に本実施例における液晶
表示素子の断面図を示す。液晶表示素子10は素子を透
過する光の光路z上に2枚の偏光板11、14(LLc2-92
-18:SANRITZ 社製) と、これらの間に視角補償用の光学
異方素子としての液晶セル12、と駆動用液晶セル13
とを挟む構成を有している。偏光板11は透明基板11
bの内側に偏光膜11aを付けたものであり、偏光板1
4も同様に透明基板14bに偏光膜14aをつけて形成
される。Embodiment 1 FIG. 1 is a sectional view of a liquid crystal display device according to this embodiment. The liquid crystal display element 10 has two polarizing plates 11 and 14 (LLc2-92) on an optical path z of light passing through the element.
-18: manufactured by SANRITZ), a liquid crystal cell 12 as an optically anisotropic element for compensating viewing angle, and a driving liquid crystal cell 13 between them.
Are sandwiched between them. The polarizing plate 11 is a transparent substrate 11
b, a polarizing film 11a is attached inside the
Similarly, No. 4 is formed by attaching a polarizing film 14a to a transparent substrate 14b.
【0029】駆動用液晶セル13は視角補償用高分子液
晶12と偏光板14間に配置される。上側基板13aと
下側基板13bとはそれぞれ透明電極13c、13dが
形成され、駆動電源15に接続される。これらの間に傾
き方向が異なる2種の配向領域13A及び13B(図1
3参照)が画素中に後に述べる構成で等比率で設けら
れ、ねじれネマティック液晶(ZLI-4827(E.Merck社製)
にカイラル剤S811(E.Merck社製) を混入した液晶組成
物)液晶層13eがねじれ角が90°で導入され、上側
基板13aから下側基板13bへと反時計回り(左ねじ
れ)にねじれ、駆動電源15から印加電圧に応じて状態
を変化する。The driving liquid crystal cell 13 is disposed between the viewing angle compensating polymer liquid crystal 12 and the polarizing plate 14. The upper substrate 13a and the lower substrate 13b are provided with transparent electrodes 13c and 13d, respectively, and are connected to the driving power supply 15. Two types of alignment regions 13A and 13B having different inclination directions between them (FIG. 1)
3) are provided in the pixel at an equal ratio in a configuration described later, and a twisted nematic liquid crystal (ZLI-4827 (manufactured by E. Merck)) is used.
Liquid crystal composition in which a chiral agent S811 (manufactured by E. Merck) is mixed in) The liquid crystal layer 13e is introduced at a twist angle of 90 °, and twists counterclockwise (left-hand twist) from the upper substrate 13a to the lower substrate 13b. The state changes according to the applied voltage from the drive power supply 15.
【0030】図13は、液晶層13eの構成を示す図
で、ストライプ状に2種類の配向領域13Aと13Bと
が形成される。各画素は方形でなり非画素領域12Bで
囲まれている。配向領域13Aおよび13Bは、透明電
極13c、13d上に形成された配向膜を配向処理(ラ
ビング)することで形成され、その領域の制御は、ラビ
ング方向を13Aと13Bの領域とで互いに逆となるよ
うにすることにより実現された。液晶層の厚みは5.5
μmである。FIG. 13 is a view showing the structure of the liquid crystal layer 13e. Two types of alignment regions 13A and 13B are formed in a stripe shape. Each pixel has a rectangular shape and is surrounded by the non-pixel region 12B. The alignment regions 13A and 13B are formed by performing an alignment process (rubbing) on the alignment films formed on the transparent electrodes 13c and 13d, and the control of the regions is performed in such a manner that the rubbing directions are opposite to each other in the regions 13A and 13B. It was realized by doing so. The thickness of the liquid crystal layer is 5.5
μm.
【0031】13Aの配向領域は、電圧印加時に図中の
矢印Aの方向に液晶分子が起き上がり、13Bの配向領
域は、電圧印加時に図中の矢印Bの方向に液晶分子が起
き上がる配向である。なお、図中のRAおよびRBは、
基板上での13Aおよび13Bの領域のラビング方向で
ある。この結果、図15に示すように、駆動用液晶セル
13の各画素pは非画素領域12Bに囲まれた方形領域
に本実施例では8×8個の微細配向領域13Lと13R
とが交互に隣接して形成される。In the orientation region 13A, liquid crystal molecules rise in the direction of arrow A in the figure when a voltage is applied, and in the orientation region 13B, the liquid crystal molecules rise in the direction of the arrow B in the diagram when a voltage is applied. RA and RB in the figure are:
It is a rubbing direction of the area of 13A and 13B on the substrate. As a result, as shown in FIG. 15, each pixel p of the driving liquid crystal cell 13 has 8 × 8 fine alignment regions 13L and 13R in this embodiment in a rectangular region surrounded by the non-pixel region 12B.
Are formed alternately adjacent to each other.
【0032】光学異方素子として視角補償用高分子液晶
12は、駆動用液晶セル13の基板13aの偏光板11
側の面上に、ポリシロキサン主鎖とし、側鎖がビフェニ
ルベンゾエートとコレステリル基からなる複屈折率異方
性△nが0.2の高分子重合体液晶を厚み0.25μm
で形成される。視角補償用高分子液晶12は、12L、
12R、12Bの3種類の配向領域すなわち異なる光学
特性をもつ部分からなり、図13に対応された図14に
示されるように縦8行、横8列に分割され互いにこれら
配向領域12Lと12Rとが隣接した構成で形成され
る。配向領域12Lは、左回りの配列でねじれ角が5
2.5°、螺旋ピッチは1.71μmである。配向領域
12Rは、右回りの配列でねじれ角が52.5°、螺旋
ピッチは1.71μmである。ただし、図中の方形でな
る画素を囲む符号12Bで示す領域は非画素領域であ
り、右回りでねじれ角が90°でこの配列部分が暗状態
となり、ブラックマトリクスを形成する。As an optically anisotropic element, a viewing angle compensating polymer liquid crystal 12 is provided on a polarizing plate 11 on a substrate 13 a of a driving liquid crystal cell 13.
A polymer liquid crystal having a birefringence anisotropy Δn of 0.2 having a polysiloxane main chain and a bichain benzoate and a cholesteryl group on the side surface is 0.25 μm thick.
Is formed. The viewing angle compensating polymer liquid crystal 12 is 12 L,
It is composed of three types of alignment regions 12R and 12B, that is, portions having different optical characteristics, and is divided into eight rows and eight columns as shown in FIG. 14 corresponding to FIG. Are formed in an adjacent configuration. The alignment region 12L has a twisting angle of 5 in a counterclockwise arrangement.
2.5 °, the helical pitch is 1.71 μm. The alignment region 12R has a twist angle of 52.5 ° in a clockwise arrangement and a helical pitch of 1.71 μm. However, a region indicated by reference numeral 12B surrounding a square pixel in the drawing is a non-pixel region, and the arrangement portion is in a dark state when the twist angle is 90 ° clockwise, forming a black matrix.
【0033】以上の構成で上側基板13aが画素電極と
TFT素子、下側基板13bが共通透明電極と各画素ご
とに赤、緑、青の三原色からなるカラーフィルターから
なる基板を用いてTFT駆動液晶表示素子を作成した。
フルカラーを行うため表示色に応じた階調信号電圧を各
表示画素に印加し、表示色の視角変化を観測したところ
上下左右ともに視角35°まで表示色が変化しない良好
な表示が得られた。In the above structure, the upper substrate 13a is a pixel electrode and a TFT element, and the lower substrate 13b is a common transparent electrode and a TFT driving liquid crystal using a substrate composed of a color filter of three primary colors of red, green and blue for each pixel. A display element was created.
A gradation signal voltage corresponding to the display color was applied to each display pixel in order to perform full color, and a change in the viewing angle of the display color was observed. As a result, a favorable display in which the display color did not change up to a viewing angle of 35 ° in all directions was obtained.
【0034】(比較例)実施例1において、視角補償用
液晶セル12を配置しない構成のTFT駆動液晶表示素
子を作成し、実施例1と同様な視感評価を行ったとこ
ろ、左右方位は視角約30°まで良好な階調表示性が観
測されたが、上下の方位では視角を正面から少し変化さ
せただけで白っぽくなり、実用上問題となった。COMPARATIVE EXAMPLE In Example 1, a TFT-driven liquid crystal display element having a configuration in which the viewing angle compensating liquid crystal cell 12 was not provided was prepared, and the same visual evaluation as in Example 1 was performed. Good gradation display properties were observed up to about 30 °, but in the up and down azimuths, a slight change of the viewing angle from the front slightly turned whitish, causing a practical problem.
【0035】(実施例2)図16に本実施例における液
晶表示素子の断面図を示す。液晶表示素子20は2枚の
偏光板(LLC2-92-18、サンリッツ社製)21、24で駆
動用液晶セル23を挟む構成を有する。駆動用液晶セル
23は、カラーフィルターを有する上側基板23aと、
TFT素子を有する下側基板23bで液晶層23eを挟
む構造である。Embodiment 2 FIG. 16 is a sectional view of a liquid crystal display device according to this embodiment. The liquid crystal display element 20 has a configuration in which a driving liquid crystal cell 23 is sandwiched between two polarizing plates (LLC2-92-18, manufactured by Sanritz) 21 and 24. The driving liquid crystal cell 23 includes an upper substrate 23a having a color filter,
This is a structure in which a liquid crystal layer 23e is sandwiched between lower substrates 23b having TFT elements.
【0036】上側基板23aは、ガラス板23Fに設け
た赤R、緑G、青Bの3色からなるカラーフィルター上
にITOからなる透明電極23Cが設けられ、さらにそ
の上に配向膜24Aと配向膜24Cが形成される。下側
基板23bは、ガラス23F上にTFT素子と電気的に
接続された透明電極23dが形成され、その上に配向膜
24Bが形成される。配向膜24B上には、側鎖がビフ
ェニルベンゾエートとコレステリル基からなる複屈折異
方性Δnが0.2の高分子重合体液晶22が形成され
る。なお、上側基板23aにおける符号22Bの部分は
ブラックマトリクスを示す。On the upper substrate 23a, a transparent electrode 23C made of ITO is provided on a color filter formed of three colors of red R, green G, and blue B provided on a glass plate 23F. A film 24C is formed. On the lower substrate 23b, a transparent electrode 23d electrically connected to the TFT element is formed on a glass 23F, and an alignment film 24B is formed thereon. On the alignment film 24B, a polymer liquid crystal 22 having a birefringence anisotropy Δn of 0.2 whose side chain is composed of biphenylbenzoate and a cholesteryl group is formed. In addition, the part of the code | symbol 22B in the upper substrate 23a shows a black matrix.
【0037】図17は液晶表示素子の一部平面図であ
る。図中の点線の矢印30は、下側基板23bの配向膜
24Bのラビング方向を示し、これにより高分子重合体
液晶22が配向される。上側基板23aのラビングは、
これと平行で向きは逆である。高分子重合体液晶22
は、露光により22Rと22Lの部分からなりそれらは
ねじれ方向が互いに逆で22Rは右ねじれ、22Lは左
ねじれである。これら高分子重合体液晶22は、ねじれ
角が90°で液晶23eと接する側は図の実線の矢印3
1に沿って配列する。FIG. 17 is a partial plan view of the liquid crystal display device. The dotted arrow 30 in the figure indicates the rubbing direction of the alignment film 24B on the lower substrate 23b, whereby the polymer liquid crystal 22 is aligned. Rubbing of the upper substrate 23a
The direction is parallel and opposite. High polymer liquid crystal 22
Is composed of portions 22R and 22L by exposure, the directions of which are opposite to each other, 22R is right-handed, and 22L is left-handed. The high-molecular liquid crystal 22 has a twist angle of 90 ° and the side in contact with the liquid crystal 23e has a solid arrow 3 in the drawing.
Arrange along 1.
【0038】これら上下のガラス基板23A、23B間
にねじれネマティック液晶((ZLI-4287、イー、メルク
社製)に左ねじれのカイラル剤(S811、イー、メルク社
製)を混入したもの)がねじれ角90°で導入され液晶
層23eを形成する。本実施例の場合、用いた上下の基
板の配向膜24A、24B、24Cはそれぞれプレチル
ト角が異なり、順に1°、4°、6°である。このよう
な組合わせにすると、23Lと23Uの2種類の配向領
域ができ、これらは電圧印加により液晶分子が傾く方向
が正反対となる。液晶層の厚みは5.5μmである。A twisted nematic liquid crystal (ZLI-4287, E, Merck) mixed with a left-handed chiral agent (S811, E, Merck) is twisted between the upper and lower glass substrates 23A, 23B. The liquid crystal layer 23e is introduced at an angle of 90 ° to form a liquid crystal layer 23e. In the case of the present embodiment, the alignment films 24A, 24B, and 24C of the upper and lower substrates used have different pretilt angles, which are 1 °, 4 °, and 6 °, respectively. With such a combination, two types of alignment regions 23L and 23U are formed, and the directions in which the liquid crystal molecules are tilted by voltage application are exactly opposite. The thickness of the liquid crystal layer is 5.5 μm.
【0039】以上の構成からなるTFT駆動液晶表示素
子を作成し、カラー表示を行うため表示色に応じた信号
電圧を各画素電極に印加し、表示色に視角変化を観測し
たところ上下左右ともに視角38°まで表示色が変化し
ない良好な表示が得られた。A TFT-driven liquid crystal display device having the above-described structure was prepared, and a signal voltage corresponding to a display color was applied to each pixel electrode to perform color display. A good display in which the display color did not change up to 38 ° was obtained.
【0040】[0040]
【発明の効果】本発明によれば、液晶表示素子の視角特
性が改善され、視認性にすぐれる高品位表示の液晶表示
素子を提供することができる。According to the present invention, it is possible to provide a liquid crystal display device of high quality display with improved viewing angle characteristics of the liquid crystal display device and excellent visibility.
【0041】また、本発明をTFTやMIMなどの3端
子、2端子素子を用いたアクティブマトリクス液晶表示
素子に応用しても優れた効果が得られることはいうまで
もない。It goes without saying that excellent effects can be obtained even when the present invention is applied to an active matrix liquid crystal display device using a three-terminal or two-terminal device such as a TFT or MIM.
【図1】本発明の実施例1の液晶表示素子の一部を示す
断面図。FIG. 1 is a sectional view showing a part of a liquid crystal display element according to a first embodiment of the present invention.
【図2】従来のTN形液晶表示素子の等コントラスト特
性を説明する図。FIG. 2 is a view for explaining equal contrast characteristics of a conventional TN type liquid crystal display device.
【図3】図2の観測点の座標系を説明する図。FIG. 3 is a view for explaining a coordinate system of observation points in FIG. 2;
【図4】従来のTN形液晶表示素子の左右方位の階調表
示時の透過率の視角依存性を示す図。FIG. 4 is a view showing the viewing angle dependence of the transmittance of a conventional TN-type liquid crystal display device when displaying gray scales in left and right directions.
【図5】従来のTN形液晶表示素子の上下方位の階調表
示時の透過率の視角依存性を示す図。FIG. 5 is a view showing the viewing angle dependency of the transmittance of a conventional TN type liquid crystal display element when displaying gray scales in the vertical direction.
【図6】液晶表示素子の視角依存性発生原理を説明する
図。FIG. 6 is a view for explaining the principle of generation of viewing angle dependence of a liquid crystal display element.
【図7】液晶表示素子の視角依存性改善原理を説明する
図。FIG. 7 is a view for explaining the principle of improving viewing angle dependence of a liquid crystal display element.
【図8】一画素内に2種の配向領域をもつ液晶表示素子
の上下方位の階調表示時の透過率の視角依存性を示す
図。FIG. 8 is a view showing the viewing angle dependency of the transmittance of a liquid crystal display element having two types of alignment regions in one pixel when displaying gradation in the vertical direction.
【図9】垂直配列した液晶セルの三次元屈折率楕円体を
説明する図。FIG. 9 is a diagram illustrating a three-dimensional refractive index ellipsoid of a vertically aligned liquid crystal cell.
【図10】視角補償を行う光学異方素子の屈折率楕円体
を説明する図。FIG. 10 is a diagram illustrating a refractive index ellipsoid of an optically anisotropic element that performs viewing angle compensation.
【図11】しきい値以上の電圧が印加された液晶セルの
分子配列を説明する図。FIG. 11 illustrates a molecular arrangement of a liquid crystal cell to which a voltage equal to or higher than a threshold is applied.
【図12】液晶セルの分子配列の座標系を示す図。FIG. 12 is a diagram showing a coordinate system of a molecular arrangement of a liquid crystal cell.
【図13】実施例1の光学異方素子の構成を説明する平
面図。FIG. 13 is a plan view illustrating the configuration of the optically anisotropic element according to the first embodiment.
【図14】実施例1の駆動用液晶セルの配向を説明する
平面図。FIG. 14 is a plan view illustrating the orientation of the driving liquid crystal cell according to the first embodiment.
【図15】実施例1の駆動用液晶セルの画素と液晶分子
配向領域の分布を示す平面図。FIG. 15 is a plan view showing the distribution of pixels and liquid crystal molecule alignment regions of the driving liquid crystal cell of Example 1.
【図16】実施例2の構成を説明する断面図。FIG. 16 is a cross-sectional view illustrating the configuration of the second embodiment.
【図17】実施例2の配向を説明する平面図。FIG. 17 is a plan view illustrating the orientation in Example 2.
11、14 ・・・偏光板 12・・・光学異方素子、 12L、12R・・・配向領域 13・・・駆動用液晶セル、 13A、13B・・・駆動用液晶セルの配向領域 11, 14 ... polarizing plate 12 ... optical anisotropic element, 12L, 12R ... alignment region 13 ... driving liquid crystal cell, 13A, 13B ... alignment region of driving liquid crystal cell
───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽藤 仁 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝 横浜事業所内 (56)参考文献 特開 平4−55827(JP,A) 特開 平4−55813(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/1337 505 G02F 1/13363 G02F 1/1347 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Jin Hato 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Toshiba Corporation Yokohama Office (56) References JP-A-4-55827 (JP, A) JP-A-4 −55813 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02F 1/1337 505 G02F 1/13363 G02F 1/1347
Claims (2)
晶層を挟持した駆動用液晶セルとこの駆動用液晶セルを
透過する光路上に配置された光学異方素子と前記駆動用
液晶セルおよび光学異方素子を挟む2枚の偏光板とから
なる液晶表示素子において、前記駆動用液晶セルはセル
中に2種以上の配向領域を有し、この配向に対応して前
記光学異方素子が素子面内において2種以上の光学特性
をもつ部分を有してなることを特徴とする液晶表示素
子。1. A driving liquid crystal cell having a liquid crystal layer sandwiched between two substrates each having an electrode, an optically anisotropic element disposed on an optical path passing through the driving liquid crystal cell, and the driving liquid crystal cell; In a liquid crystal display element comprising two polarizing plates sandwiching an optically anisotropic element, the driving liquid crystal cell has two or more types of alignment regions in the cell, and the optically anisotropic element corresponds to this alignment. A liquid crystal display device comprising a portion having two or more kinds of optical characteristics in a device plane.
らなることを特徴とする請求項1記載の液晶表示素子。2. The liquid crystal display device according to claim 1, wherein the optically anisotropic element is made of a polymer liquid crystal or a liquid crystal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04302756A JP3130686B2 (en) | 1992-11-13 | 1992-11-13 | Liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04302756A JP3130686B2 (en) | 1992-11-13 | 1992-11-13 | Liquid crystal display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06148642A JPH06148642A (en) | 1994-05-27 |
JP3130686B2 true JP3130686B2 (en) | 2001-01-31 |
Family
ID=17912770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04302756A Expired - Lifetime JP3130686B2 (en) | 1992-11-13 | 1992-11-13 | Liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3130686B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW259845B (en) * | 1993-07-30 | 1995-10-11 | Sharp Kk | |
JP4899503B2 (en) * | 2006-02-01 | 2012-03-21 | ソニー株式会社 | Display device |
-
1992
- 1992-11-13 JP JP04302756A patent/JP3130686B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06148642A (en) | 1994-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5434690A (en) | Liquid crystal device with pixel electrodes in an opposed striped form | |
US6411355B1 (en) | Liquid crystal display device with compensation for viewing angle dependency and optical anisotropic element used therein | |
JP2721284B2 (en) | Liquid crystal display element and optically anisotropic element | |
US5541753A (en) | Liquid crystal display and device having a total retardance of (M+1) λ/2 and (Mλ/2) at first and second operating voltages | |
JPH09160042A (en) | Liquid crystal display element | |
JPH063665A (en) | Liquid crystal display device and eliptical polarizing plate | |
KR100228811B1 (en) | Lcd device and optical anisotropic device | |
KR100320102B1 (en) | Vertically Aligned Helix-Deformed Liquid Crystal Display | |
JP3432293B2 (en) | Liquid crystal display device | |
JP3130682B2 (en) | Liquid crystal display device | |
KR20050020642A (en) | Liquid crystal display device | |
JP3776844B2 (en) | Liquid crystal display | |
JP3130686B2 (en) | Liquid crystal display device | |
JP2856942B2 (en) | Liquid crystal display element and optically anisotropic element | |
KR100241816B1 (en) | Liquid crystal display device and optical isotropic device | |
JP3628094B2 (en) | Liquid crystal display element and optical anisotropic element | |
JP3643439B2 (en) | Liquid crystal display element | |
JP4266209B2 (en) | Liquid crystal display element and optical anisotropic element | |
JP3896135B2 (en) | Liquid crystal display element and optical anisotropic element | |
JPH09203895A (en) | Liquid crystal display element and optical anisotropic element | |
JPH06235914A (en) | Liquid crystal display device | |
JPH0950026A (en) | Liquid crystal display device | |
JP2005301315A (en) | Liquid crystal display device and optical anisotropic device | |
JPH0950027A (en) | Liquid crystal display device | |
JPH07175058A (en) | Liquid crystal display element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071117 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081117 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081117 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091117 Year of fee payment: 9 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091117 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 12 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |