Nothing Special   »   [go: up one dir, main page]

JP3101122B2 - Integrated composite electrode - Google Patents

Integrated composite electrode

Info

Publication number
JP3101122B2
JP3101122B2 JP05090291A JP9029193A JP3101122B2 JP 3101122 B2 JP3101122 B2 JP 3101122B2 JP 05090291 A JP05090291 A JP 05090291A JP 9029193 A JP9029193 A JP 9029193A JP 3101122 B2 JP3101122 B2 JP 3101122B2
Authority
JP
Japan
Prior art keywords
electrode
integrated composite
electrodes
composite electrode
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05090291A
Other languages
Japanese (ja)
Other versions
JPH06296595A (en
Inventor
宏和 杉原
誠 竹谷
忠泰 光亦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP05090291A priority Critical patent/JP3101122B2/en
Priority to DE1993633945 priority patent/DE69333945T2/en
Priority to EP19930114091 priority patent/EP0585933B1/en
Publication of JPH06296595A publication Critical patent/JPH06296595A/en
Priority to US08/481,149 priority patent/US5810725A/en
Priority to US09/160,252 priority patent/US6151519A/en
Application granted granted Critical
Publication of JP3101122B2 publication Critical patent/JP3101122B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、生体活動の電気的計
測、特に神経細胞の電気的活動を計測する神経生理の分
野で用いる、多電極を有する一体化複合電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated composite electrode having multiple electrodes, which is used in the field of electrical measurement of biological activity, particularly in the field of neurophysiology for measuring electrical activity of nerve cells.

【0002】[0002]

【従来の技術】近年、神経細胞の医学的検討や電気素子
としての適用の可能性の検討などが活発に行われてきて
いる。神経細胞が活動する際には、活動電位が発生す
る。活動電位は、神経細胞のイオン透過性の変化に伴
い、細胞膜内外のイオン濃度が変わることにより生じる
ものである。そして電極により、神経細胞近傍のイオン
濃度変化(すなわちイオン電流)に伴う電位変化を測定
することによって、神経活動の検出、検討が行われてい
る。
2. Description of the Related Art In recent years, medical examination of nerve cells and possibility of application as an electric element have been actively conducted. When a nerve cell is activated, an action potential is generated. The action potential is caused by a change in ion concentration inside and outside the cell membrane due to a change in ion permeability of a nerve cell. Detecting and examining nerve activity is performed by measuring potential changes associated with ion concentration changes (that is, ionic currents) near nerve cells using electrodes.

【0003】従来、神経細胞の電気的活動を計測するに
は、ガラス電極等からなる記録電極と、金属電極等から
なる刺激電極とを各々細胞内または細胞間に挿入し、刺
激電極より刺激電流(または電圧)を印加した際の、神
経細胞の電気的活動を記録電極により計測するのが普通
であった。
Conventionally, in order to measure the electrical activity of a nerve cell, a recording electrode composed of a glass electrode or the like and a stimulation electrode composed of a metal electrode or the like are inserted into cells or between cells, respectively, and the stimulation current is supplied from the stimulation electrode. It was common to measure the electrical activity of the nerve cells when a voltage (or voltage) was applied using a recording electrode.

【0004】これ以外にも、例えば細胞体を細管状のガ
ラス吸引電極で突き刺し、細胞体の内部をガラス吸引電
極中の液で還流し、このガラス吸引電極から電気信号を
与えて細胞膜の電気的特性を観察するいわゆるパッチク
ランプ法等多数の変法がある。
In addition to this, for example, a cell body is pierced with a thin glass suction electrode, and the inside of the cell body is refluxed with a liquid in the glass suction electrode. There are many variations such as the so-called patch clamp method for observing characteristics.

【0005】さらには、絶縁性の基盤上にITO(酸化
インジウム錫)等の導電性物質で直径15〜20μmの
電極を形成し、この上で神経細胞を培養することによ
り、細胞に電極を刺入する事なく、細胞に電気的刺激を
印加し、また神経細胞の電気的活動を記録する方法につ
いても本発明者らが別途提案している。
Further, an electrode having a diameter of 15 to 20 μm is formed on a base made of an electrically conductive material such as ITO (indium tin oxide), and a nerve cell is cultured on the electrode. The present inventors have also separately proposed a method of applying an electrical stimulus to cells without recording, and recording electrical activity of nerve cells.

【0006】また、この改良法として、電極の直径を2
0〜200μmとすれば、神経細胞に定電流刺激を印加
した際に電極間に発生する電位差が小さくなり、この結
果ITOの破壊が起こりにくく、より長期にわたる観察
が可能となることも本発明者らが別途提案している。
[0006] As an improved method, the diameter of the electrode is set to two.
When the thickness is set to 0 to 200 μm, the potential difference generated between the electrodes when a constant current stimulus is applied to a nerve cell becomes small, and as a result, ITO is hardly destroyed, and observation for a longer period becomes possible. Have proposed separately.

【0007】[0007]

【発明が解決しようとする課題】上述した従来の技術お
よびその変法においては、ガラス電極など、細胞に比べ
てかなりの大きさにならざるを得ない電極を用いるの
で、おもに空間的な制約と操作精度上の制約で、1つの
サンプル中に一度に2本以上の記録電極を挿入し、神経
細胞の電気的活動を記録する多点同時計測は非常に困難
であるという課題があった。
In the above-mentioned prior art and its modifications, electrodes, such as glass electrodes, which are inevitably larger than cells are used, so that the space and the space are limited. Due to limitations on operation accuracy, there is a problem that it is very difficult to perform simultaneous multipoint measurement in which two or more recording electrodes are inserted into one sample at a time and the electrical activity of nerve cells is recorded.

【0008】神経回路網全体の働きを検討するために
は、多くの神経細胞の活動を同時に記録する必要があ
り、測定点が増えるにしたがって、困難さの度合が増加
し、多細胞間の観察ができ難いという課題があった。
In order to study the operation of the entire neural network, it is necessary to simultaneously record the activities of many nerve cells, and as the number of measurement points increases, the degree of difficulty increases. There was a problem that it was difficult to do.

【0009】さらには、ガラス・金属等の電極を細胞内
または細胞間に刺入する必要があるために、細胞に与え
る損傷が大きく、数時間以上の長時間にわたる測定がで
き難いという課題があった。
Furthermore, since it is necessary to insert an electrode made of glass, metal, or the like into or between cells, there is a problem that the cells are greatly damaged, and it is difficult to perform measurement over a long time of several hours or more. Was.

【0010】一方、絶縁性の基盤上にITO等の導電性
物質で直径(または1辺)15〜20μmの円形(また
は正方形)の電極を形成したものを用いれば、多細胞間
にわたる信号伝達の観察が可能となる。しかしながら、
電極面積が177μm2 〜400μm2 と小さいため、
培養液界面での電極抵抗は数MΩとなり、通常刺激は定
電流で与えられるので、電気抵抗が大きいと電極間には
きわめて大きな電位差が発生することになり、かかる大
きな電圧で長期にわたり電気刺激を与えるとITOの破
壊がおき、このため長期にわたる観察が困難であるとい
う問題点があった。
On the other hand, if a circular (or square) electrode having a diameter (or one side) of 15 to 20 μm is formed of an electrically conductive substance such as ITO on an insulating substrate, signal transmission over many cells is performed. Observation becomes possible. However,
Since the electrode area is small as 177μm 2 ~400μm 2,
The electrode resistance at the culture solution interface is several MΩ, and the stimulus is usually given at a constant current.If the electric resistance is large, an extremely large potential difference occurs between the electrodes. When given, ITO is destroyed, and there is a problem that long-term observation is difficult.

【0011】また、電極面積を300μm2 〜4000
0μm2 にすれば、培養液界面での電極抵抗が小さくな
るため、電極間に発生する電位差は比較的小さなものと
なる。長期にわたり刺激電流を加えてもITOの破壊
は、顕微鏡的には認められなかった。しかしながら、あ
る電極から刺激電流を印加し、他の電極で刺激に伴う電
位変化を記録した際、長期刺激の前後で記録波形に大き
な変化がみられた。すなわち長期刺激後では、刺激電流
印加が記録波形に及ぼす影響(すなわちアーチファク
ト)が、長期刺激前より大きくなった。波形変化の原因
は、電極表面が分極することによると考えられる。最悪
の場合、神経細胞の電気的活動はアーチファクトに隠れ
測定不可能となった。また、アーチファクトがそれほど
大きくならない場合でも、長期刺激前後で神経活動強度
を比較することが困難となるという問題点があった。
Further, the electrode area is set to 300 μm 2 to 4000.
If the thickness is 0 μm 2 , the electrode resistance at the interface of the culture solution is reduced, and the potential difference generated between the electrodes is relatively small. Destruction of ITO was not observed microscopically even when the stimulation current was applied for a long period of time. However, when a stimulation current was applied from one electrode and the potential change accompanying the stimulation was recorded on another electrode, a large change was observed in the recorded waveform before and after the long-term stimulation. That is, after the long-term stimulation, the effect of the stimulation current application on the recording waveform (ie, artifact) was greater than before the long-term stimulation. It is considered that the cause of the waveform change is that the electrode surface is polarized. In the worst case, the electrical activity of the nerve cells was hidden by artifacts and could not be measured. Further, there is a problem that even when the artifact is not so large, it becomes difficult to compare the nerve activity intensity before and after the long-term stimulation.

【0012】本発明は、かかる従来の問題点を解決し、
神経細胞などの多点同時刺激・計測を簡便に行い、多細
胞間にわたる信号伝達観察を数時間以上にわたり可能と
し、かつ刺激電流印加に伴うアーチファクトの発生を抑
え、長期刺激の前後にわたり電位記録波形の比較を可能
ならしめる一体化複合電極を提供することを目的とす
る。
The present invention solves such a conventional problem,
Simultaneous simultaneous stimulation and measurement of nerve cells etc. can be easily performed, signal transmission observation between multiple cells can be observed for more than several hours, artifact generation due to stimulation current application is suppressed, potential recording waveform before and after long-term stimulation It is an object of the present invention to provide an integrated composite electrode that enables comparison of the above.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するた
め、本発明の一体化複合電極は、絶縁基盤上に、最近接
の電極間距離が相等しい複数個の電極を備え、前記電極
からリード線を略放射状に配設した配線部と、前記リー
ド線をカバーする絶縁層とを設け、かつ電極面積が3×
102 μm2 以上4×104 μm2 以下の範囲であり、
電極部の表面抵抗が10Ω/cm2 以下である構成を有
する。
In order to solve the above-mentioned problems, an integrated composite electrode according to the present invention comprises a plurality of electrodes having the same distance between the nearest electrodes on an insulating substrate, and leads from the electrodes. A wiring portion in which the wires are arranged substantially radially; and an insulating layer covering the lead wires, and the electrode area is 3 ×
In the range from 10 2 μm 2 to 4 × 10 4 μm 2 ,
It has a configuration in which the surface resistance of the electrode portion is 10 Ω / cm 2 or less.

【0014】前記本発明の一体化複合電極においては、
最近接の電極間距離が、10μm以上1000μm以下
であることが好ましい。また、前記本発明の一体化複合
電極においては、リード線をカバーする絶縁層が、各電
極上に孔を有し、かつリード線の外部回路との接点近傍
を除いて前記絶縁基盤のほぼ全面に設けられた絶縁層で
あることが好ましい。
In the integrated composite electrode of the present invention,
It is preferable that the closest distance between the electrodes is 10 μm or more and 1000 μm or less. In the integrated composite electrode according to the present invention, the insulating layer covering the lead wire has a hole on each electrode, and substantially the entire surface of the insulating base except for near the contact of the lead wire with an external circuit. It is preferable that the insulating layer is provided on the substrate.

【0015】また、前記本発明の一体化複合電極におい
ては、複数個の電極中心部が、8×8の格子上の各交点
に位置することが好ましい。
In the integrated composite electrode according to the present invention, it is preferable that a plurality of electrode central portions are located at respective intersections on an 8 × 8 grid.

【0016】[0016]

【作用】本発明の一体化複合電極は、絶縁基盤上に、最
近接の電極間距離が相等しい複数個の電極を備え、前記
電極からリード線を略放射状に配設した配線部と、前記
リード線をカバーする絶縁層とを設け、かつ電極面積が
3×102 μm2 以上4×104 μm2 以下の範囲であ
り、電極部の表面抵抗が10Ω/cm2 以下であるの
で、本発明の一体化複合電極上に培養した神経細胞に信
号を与え、同時に細胞間の信号の伝達を計測する際に、
最近接の電極間距離を測定対象の神経細胞(すなわち細
胞体と樹状突起と軸索突起)の長さとほぼ等しく調整
し、しかもこの電極を等間隔で並ばせることにより、一
細胞体が電極上に配置し、この細胞体から伸びた細胞突
起を介した細胞体が、隣合う電極上に位置する確率が高
くなる。したがって、隣合う細胞体間の信号の伝達を検
知できる。
The integrated composite electrode according to the present invention comprises a plurality of electrodes having the same distance between the nearest electrodes on an insulating substrate, and a wiring portion in which lead wires are arranged substantially radially from the electrodes. Since an insulating layer covering the lead wire is provided, the electrode area is in the range of 3 × 10 2 μm 2 or more and 4 × 10 4 μm 2 or less, and the surface resistance of the electrode part is 10 Ω / cm 2 or less, When giving a signal to the nerve cells cultured on the integrated composite electrode of the present invention and simultaneously measuring the signal transmission between the cells,
By adjusting the distance between the nearest electrodes to be approximately equal to the length of the nerve cell to be measured (that is, the cell body, dendrites, and axons), and by arranging these electrodes at equal intervals, one cell body There is a high probability that the cell body placed via the cell projection extending from the cell body is located on an adjacent electrode. Therefore, transmission of a signal between adjacent cell bodies can be detected.

【0017】しかも、電極から伸ばしたリード線を略放
射状に配置したので、例えばリード線を平行に配置した
場合に比べて、リード線間の容量成分(キャパシタン
ス)が少なくなり、電気信号であるパルス信号波形の崩
れを小さくでき、回路の時定数が小さくなるため、早い
パルス信号に対する応答性が向上し、神経細胞活動の早
い成分に対する追従性が向上する。
Moreover, since the lead wires extending from the electrodes are arranged substantially radially, a capacitance component (capacitance) between the lead wires is reduced as compared with, for example, a case where the lead wires are arranged in parallel, and a pulse as an electric signal is provided. Since the collapse of the signal waveform can be reduced and the time constant of the circuit is reduced, the responsiveness to a fast pulse signal is improved, and the responsiveness to a fast component of nerve cell activity is improved.

【0018】さらに、電極面積を3×102 μm2 以上
4×104 μm2 以下の範囲で調整することにより、数
時間以上の長時間にわたり細胞に電気刺激を与え、かつ
細胞の電気的活動を測定することができる。
Furthermore, by adjusting the electrode area in the range of 3 × 10 2 μm 2 or more and 4 × 10 4 μm 2 or less, the cells are electrically stimulated for a long time of several hours or more, and the electrical activity of the cells is increased. Can be measured.

【0019】また、電極部の表面抵抗が10Ω/cm2
以下であるため、ある電極で神経細胞に長期に刺激電流
を印加し、他の電極で刺激電流に応じた神経細胞の電気
的活動(電位変化)を記録する際に、刺激電極表面の分
極が起こり難いため、刺激電流が電位記録波形に及ぼす
影響(すなわちアーチファクト)が小さくなる。特に、
長期に刺激電流を印加した後でもアーチファクトが小さ
く、かつ形態の変化が無いため、長期刺激前後での神経
細胞の電気的活動を比較することができる。
Further, the surface resistance of the electrode portion is 10 Ω / cm 2
When the stimulation current is applied to a nerve cell for a long time with one electrode and the electrical activity (potential change) of the nerve cell according to the stimulation current is recorded with another electrode, the polarization of the stimulation electrode surface is Since it is unlikely to occur, the effect of the stimulation current on the potential recording waveform (ie, artifact) is reduced. In particular,
Even after the application of the stimulation current for a long period of time, the artifact is small and there is no change in morphology, so that the electrical activity of the nerve cells before and after the long-term stimulation can be compared.

【0020】また、前記本発明の一体化複合電極におい
て、最近接の電極間距離が、10μm以上1000μm
以下である好ましい態様とすることにより、一般的に神
経細胞の神経突起の長さがこの範囲内であるので、細胞
体が電極上に位置し、かつ神経突起を介して結合する可
能性が高く、神経細胞の測定に好都合な電極間距離とな
る。
In the integrated composite electrode according to the present invention, the distance between the nearest electrodes is 10 μm to 1000 μm.
Since the length of the neurite of the nerve cell is generally within this range by the following preferred embodiment, there is a high possibility that the cell body is located on the electrode and binds through the neurite. This is a convenient distance between electrodes for measuring neurons.

【0021】また、前記本発明の一体化複合電極におい
て、リード線をカバーする絶縁層が、各電極上に孔を有
し、かつリード線の外部回路との接点部近傍を除いて前
記絶縁層基盤のほぼ全面に設けられた絶縁層である好ま
しい態様とすることにより、絶縁層をリード線上のみに
選択的に設ける場合に比べ、感光性樹脂からなる絶縁性
材料を使用して、ほぼ全面にこの樹脂を塗布し、フォト
エッチング手法により、各電極上の絶縁層を除去して電
極が露出するように孔を開けるなどのフォトエッチング
で容易に必要な絶縁層が形成でき、生産を容易にするこ
とができるし、絶縁不良の確率を小さくできるので好ま
しい。
In the integrated composite electrode according to the present invention, the insulating layer covering the lead wire has a hole on each electrode, and the insulating layer except for the vicinity of a contact portion of the lead wire with an external circuit. By adopting a preferable mode in which the insulating layer is provided on almost the entire surface of the base, compared with the case where the insulating layer is selectively provided only on the lead wire, the insulating layer made of a photosensitive resin is used to cover almost the entire surface. The required insulating layer can be easily formed by photo-etching such as applying the resin and removing the insulating layer on each electrode by a photo-etching method to form a hole so that the electrode is exposed, thereby facilitating production. This is preferable because the probability of insulation failure can be reduced.

【0022】さらにまた、前記本発明の一体化複合電極
においては、複数個の電極中心部が、8×8の格子上の
各交点に位置することにより、前記本発明の電極からリ
ード線を略放射状に配設できる最高の電極数とすること
ができるので好ましい。
Further, in the integrated composite electrode of the present invention, the plurality of electrode central portions are located at the respective intersections on the 8.times.8 grid, so that the lead wire is substantially separated from the electrode of the present invention. This is preferable because the maximum number of electrodes that can be radially arranged can be obtained.

【0023】[0023]

【実施例】本発明に供される絶縁基盤材料としては、細
胞培養後顕微鏡観察する必要があるため透明な基盤が好
ましく、石英ガラス、鉛ガラス、ホウ珪酸ガラス等のガ
ラス、もしくは石英等の無機物質、または、ポリメタク
リル酸メチルまたはその共重合体、ポリスチレン、ポリ
塩化ビニル、ポリエステル、ポリプロピレン、尿素樹
脂、メラミン樹脂などの透明性を有する有機物質等が挙
げられるが、機械的強度と透明性を加味すると無機物質
が好ましい。
Examples As the insulating substrate material used in the present invention, a transparent substrate is preferable because it is necessary to observe the cells after cell culture, and a glass such as quartz glass, lead glass, borosilicate glass, or an inorganic material such as quartz is preferred. Substances, or polymethyl methacrylate or a copolymer thereof, polystyrene, polyvinyl chloride, polyester, polypropylene, urea resin, urea resin, and organic substances having transparency such as melamine resin. When added, inorganic substances are preferred.

【0024】本発明に供される電極材料としては、例え
ば酸化インジウム錫(ITO)、酸化錫、Cr、Au、
Cu、Ni、Al等が使用可能である。特に、ITOも
しくは酸化錫を用いると、電極は僅かに黄味を帯びた透
明なものとなり、神経細胞の顕微鏡下での視認性がよ
く、実験操作上有利であるが、とりわけITOが良導伝
性であるため望ましい。
As the electrode material used in the present invention, for example, indium tin oxide (ITO), tin oxide, Cr, Au,
Cu, Ni, Al, etc. can be used. In particular, when ITO or tin oxide is used, the electrode becomes slightly yellowish and transparent, and the visibility of nerve cells under a microscope is good, which is advantageous for experimental operation. It is desirable because of the nature.

【0025】リード線材料にも同様の材料が適用でき、
やはり電極材料と同様の理由でITOが好ましい。特に
限定するものではないが、通常これらの電極やリード線
の厚みは、約500〜5000オングストローム程度で
あり、通常これらの材料を絶縁基盤上に蒸着し、フォト
レジストを用いてエッチングにより所望のパターンに形
成できる。
A similar material can be applied to the lead wire material.
Again, ITO is preferred for the same reasons as the electrode material. Although not particularly limited, the thickness of these electrodes and lead wires is usually about 500 to 5000 angstroms, and these materials are usually deposited on an insulating substrate, and the desired pattern is formed by etching using a photoresist. Can be formed.

【0026】また、本発明に供されるリード線を絶縁す
るための絶縁層材料としては、例えばポリイミド(P
I)樹脂、エポキシ樹脂、アクリレート樹脂、ポリエス
テル樹脂、またはポリアミド樹脂等の透明な樹脂が挙げ
られる。
As an insulating layer material for insulating the lead wire used in the present invention, for example, polyimide (P
I) Transparent resins such as resin, epoxy resin, acrylate resin, polyester resin, and polyamide resin.

【0027】これらの樹脂は、リード線上に通常の手法
によって塗布して絶縁層が構成される。なお、絶縁層材
料が光重合性等の感光性樹脂であると、前述したように
電極を露出させるために電極上の絶縁層部分に孔を開け
るなどのパターン形成が可能となるため好ましい。
These resins are applied on lead wires by a usual method to form an insulating layer. Note that it is preferable that the insulating layer material is a photosensitive resin such as a photopolymerizable resin, as described above, since a pattern can be formed by opening a hole in the insulating layer portion on the electrode to expose the electrode.

【0028】特に、絶縁層材料がPIであり、培養する
細胞が神経細胞である場合には、良好な生育を示すため
望ましい。さらにPIの中でも、ネガティブフォトセン
シティブポリイミド(NPI)が、配線部のパターン形
成と同様に、略全面にネガティブフォトセンシティブポ
リイミドを塗布した後フォトエッチングプロセスを用い
て電極状に孔を形成できるため好ましい。
In particular, when the material of the insulating layer is PI and the cells to be cultured are nerve cells, it is desirable to show good growth. Further, among PIs, negative photo-sensitive polyimide (NPI) is preferable, as in the case of forming a wiring portion pattern, since a negative photo-sensitive polyimide can be applied to substantially the entire surface and then holes can be formed in an electrode shape using a photo-etching process.

【0029】また、絶縁層の厚みは絶縁性が付与できる
程度であればよく、特に限定するものではないが、通常
0.1〜10μmが好ましく、1〜5μmがさらに好ま
しい。
The thickness of the insulating layer is not particularly limited as long as the insulating property can be imparted, but is preferably 0.1 to 10 μm, more preferably 1 to 5 μm.

【0030】本発明の一体化複合電極を用いて、直接細
胞を培養して細胞の電気活動を計測記録した。培養条件
もしくは細胞の種類によって、細胞体の大きさもしくは
樹状突起や軸索などの細胞突起の長さが異なるが、一体
化複合電極の最近接の電極間距離は、10〜1000μ
mが好ましい。電極間距離が10μm未満であると、互
いに近接し過ぎるため細胞体が細胞突起を介して相隣合
う確率が減り、またリード線の配線も困難となる。ま
た、1000μmを越えると、リード線の配線はしやす
いが、細胞突起が1000μm程度も伸びることは稀な
ため、細胞体が電極上に位置する確率が減る。一般の条
件でも、培養した細胞の細胞突起の長さは、哺乳動物の
中枢神経細胞の場合、平均200〜300μm程度であ
るため、電極間距離は200〜300μm程度が望まし
い。
Using the integrated composite electrode of the present invention, the cells were directly cultured, and the electrical activity of the cells was measured and recorded. The size of the cell body or the length of cell projections such as dendrites and axons varies depending on the culture conditions or cell types, but the distance between the nearest electrodes of the integrated composite electrode is 10 to 1000 μm.
m is preferred. If the distance between the electrodes is less than 10 μm, the probability that the cell bodies are adjacent to each other via cell projections is reduced because the cells are too close to each other, and wiring of the lead wires becomes difficult. On the other hand, if the thickness exceeds 1000 μm, wiring of the lead wire is easy, but since the cell protrusion rarely extends by about 1000 μm, the probability that the cell body is located on the electrode is reduced. Under general conditions, the length of cell projections of cultured cells is about 200 to 300 μm on average in the case of mammalian central nervous cells. Therefore, the distance between electrodes is preferably about 200 to 300 μm.

【0031】電極面積については、長期にわたり細胞に
電気刺激を印加する際の電極破壊を避けるため、培養液
との界面での抵抗を小さくする必要があるため、ある程
度以上の大きさが要求される。しかしながら、電極面積
が大きくなり培養液との界面での抵抗が小さくなると、
測定される細胞の電気的活動は小さくなり、S/N比が
低下する。すなわち、電流値Iが一定とすると、I=V
/Rであるから、抵抗値Rが小さくなると測定される電
位Vの変化も小さくなる。つまり測定される細胞の電気
的活動が小さくなりS/N比が低下する。このため、電
極面積は慎重に調整される必要があり、円形状の電極の
場合、直径が20μmより大きく200μm以下、特に
100μm〜200μmが好ましい。
The electrode area is required to have a certain size or more because it is necessary to reduce the resistance at the interface with the culture solution in order to avoid electrode destruction when applying electrical stimulation to cells for a long period of time. . However, when the electrode area increases and the resistance at the interface with the culture solution decreases,
The measured electrical activity of the cells is reduced and the S / N ratio is reduced. That is, if the current value I is constant, I = V
/ R, the smaller the resistance R, the smaller the change in the measured potential V. That is, the measured electrical activity of the cell decreases, and the S / N ratio decreases. For this reason, the electrode area must be carefully adjusted. In the case of a circular electrode, the diameter is preferably larger than 20 μm and 200 μm or less, particularly preferably 100 μm to 200 μm.

【0032】また、電極部分の表面抵抗を10Ω/cm
2 以下にするため、ITO上面に金属をコートした。コ
ート材料としては、Ag,Al,Bi,Au,Cu,C
r,Pt,Co等が使用可能であるが、神経細胞に対す
る毒性の低さを考慮すれば、Au,Ptの使用が望まし
い。コートの厚みは、特に限定されるものではないが、
約500オングストローム程度であり、通常これらの材
料を絶縁基盤上に蒸着し、フォトレジストを用いてエッ
チングにより所望のパターンに形成できる。
Further, the surface resistance of the electrode portion is set to 10 Ω / cm.
Metal was coated on the upper surface of the ITO in order to make it 2 or less. Ag, Al, Bi, Au, Cu, C
Although r, Pt, Co, etc. can be used, use of Au, Pt is desirable in consideration of low toxicity to nerve cells. The thickness of the coat is not particularly limited,
Usually, these materials are deposited on an insulating substrate and formed into a desired pattern by etching using a photoresist.

【0033】さらに、本発明の前述した好ましい態様に
よれば、一体化複合電極の絶縁層中の孔は、一体化複合
電極上で培養した細胞体に電気刺激を与えると同時に、
隣合う細胞体から電気的活動を検知するため、電極を露
出する目的で形成し、電極中心部に位置する。
Further, according to the preferred embodiment of the present invention, the holes in the insulating layer of the integrated composite electrode provide electrical stimulation to the cell bodies cultured on the integrated composite electrode,
In order to detect electrical activity from adjacent cell bodies, it is formed for the purpose of exposing electrodes and is located at the center of the electrodes.

【0034】また、電極から伸ばしたリード線を略放射
状に配設することにより、リード線間の容量成分がなく
なり、ノイズが減少し測定精度が向上する。また、本発
明の一体化複合電極の電極中心部が、同心円状もしくは
8×8以下の格子上の各交点に位置する構成であると、
リード線を放射状に配線でき、特に可能な限り多くの電
極を構成し、多点同時刺激・記録を行うという観点から
は、8×8の格子上の各交点に電極を設けることが望ま
しい。
Further, by arranging the leads extending from the electrodes in a substantially radial manner, the capacitance component between the leads is eliminated, noise is reduced, and measurement accuracy is improved. Further, when the electrode center portion of the integrated composite electrode of the present invention is located at each intersection on a concentric or 8 × 8 or less grid,
From the viewpoint of arranging the leads in a radial manner, particularly configuring as many electrodes as possible, and performing simultaneous stimulation and recording at multiple points, it is desirable to provide electrodes at each intersection on an 8 × 8 grid.

【0035】以下具体的実施例で、本発明の一体化複合
電極をさらに詳細に説明する。 実施例1 図1は絶縁基盤3上に電極1とリード線2を形成した本
実施例の一体化複合電極の絶縁層のない状態の配線部の
パターンを示した平面図である。図2は図1で示した部
材の上に形成された絶縁層のみの平面図の一部切り欠き
図である。図3は本実施例の一体化複合電極の一部の断
面図である。以下これらの図面を参照しながら説明す
る。
Hereinafter, the integrated composite electrode of the present invention will be described in more detail with reference to specific examples. Embodiment 1 FIG. 1 is a plan view showing a pattern of a wiring portion of an integrated composite electrode according to the present embodiment in which an electrode 1 and a lead wire 2 are formed on an insulating substrate 3 without an insulating layer. FIG. 2 is a partially cutaway view of a plan view of only the insulating layer formed on the member shown in FIG. FIG. 3 is a cross-sectional view of a part of the integrated composite electrode of this embodiment. Hereinafter, description will be made with reference to these drawings.

【0036】まず、複合電極配線部の作製について述べ
る。一体化複合電極の絶縁基盤3は機械的強度の強い透
明な絶縁素材として、50×50×1mmの硬質ガラス
(“IWAKI CODE 7740 GLASS”
[岩城硝子(株)製]以下同じ)を用いた。
First, the production of the composite electrode wiring section will be described. The insulating substrate 3 of the integrated composite electrode is made of a 50 × 50 × 1 mm hard glass (“IWAKI CODE 7740 GLASS”) as a transparent insulating material having high mechanical strength.
[Iwaki Glass Co., Ltd.] The same applies hereinafter).

【0037】電極1およびリード線2の材料にITOを
用い、前記硬質ガラスの絶縁基盤3上の全面に約100
0オングストローム厚に蒸着し、その後洗浄した。次
に、8×8の格子上の各交点(図2の5で示されたよう
な位置)に各電極1の中心部が位置し、各電極の最近接
の電極の中心間距離が等しく、しかもリード線2が放射
状に伸びた形状の電極1およびリード線2のパターンに
なるように、フォトレジストを用いて露光し、純水5
0、塩酸50、硝酸1の体積比で混合した溶液中でIT
Oをエッチングした後、フォトレジストを除去した。電
極1の直径は60μm、リード線2の幅は30μm、電
極中心間距離は300μmの配線部を形成した。
Using ITO as a material for the electrodes 1 and the lead wires 2, about 100
Deposited to a thickness of 0 Å and then cleaned. Next, the center of each electrode 1 is located at each intersection (the position indicated by 5 in FIG. 2) on the 8 × 8 grid, and the distance between the centers of the electrodes closest to each electrode is equal. In addition, exposure is performed using a photoresist so that the lead wire 2 is formed into a pattern of the electrode 1 and the lead wire 2 having a radially extending shape, and pure water 5
0, hydrochloric acid 50, nitric acid 1
After etching O, the photoresist was removed. A wiring portion was formed in which the diameter of the electrode 1 was 60 μm, the width of the lead wire 2 was 30 μm, and the distance between the electrode centers was 300 μm.

【0038】ついで、絶縁層4としてネガティブフォト
センシティブポリイミド(以下NPIと略す)を、乾燥
後の厚みが1μmとなるようにスピンコートし、図2に
示すように配線部の各電極の中心に1辺50μmの正方
形の孔5ができるように、絶縁層パターンを露光形成し
た。さらに、各電極の露出部分(すなわち1辺50μm
の正方形の内部)に、膜厚500オングストロームとな
るように金6を蒸着した。
Next, a negative photo-sensitive polyimide (hereinafter abbreviated as NPI) as an insulating layer 4 is spin-coated so that the thickness after drying becomes 1 μm, and as shown in FIG. The insulating layer pattern was exposed to light so as to form a square hole 5 with a side of 50 μm. Furthermore, the exposed portion of each electrode (ie, 50 μm
Of gold 6 was deposited on the inside of the square having a thickness of 500 Å.

【0039】リード線2の電極1と反対方向の端部近傍
の部分の外部回路との接点は、金7およびニッケル8で
コートし、耐久性を向上させた。なお、本実施例では電
極1およびリード2の部分にITO、絶縁層にNPI、
電極表面コート材に金を用いたが、用いる材料はこれら
に限定されないことは既に述べた。
The contact of the lead wire 2 with the external circuit near the end in the direction opposite to the electrode 1 was coated with gold 7 and nickel 8 to improve the durability. In this embodiment, the electrode 1 and the lead 2 are made of ITO, the insulating layer is made of NPI,
Although gold was used as the electrode surface coating material, it was already described that the material to be used is not limited to these.

【0040】また、本発明の一体化複合電極を構成する
ためのプロセスは本実施例の方法に限定されない。 実施例2 次に、一体化複合電極上での神経細胞の培養について述
べる。
The process for forming the integrated composite electrode of the present invention is not limited to the method of this embodiment. Example 2 Next, the culture of nerve cells on an integrated composite electrode will be described.

【0041】実施例1のようにして構成した一体化複合
電極上で、神経細胞としてラット大脳視覚皮質を培養し
た。以下、培養法について詳細に述べる。 (イ)妊娠後16〜18日を経過したSDラットの胎児
の脳を摘出し、氷冷したハンクス平衡塩液(以下HBB
Sと略す)に浸す。 (ロ)氷冷HBBS中の脳から視覚皮質を切り出し、イ
ーグル最小必須培地(以下MEMと略す)液中に移す。 (ハ)MEM液中で、視覚皮質をできるだけ細かく、最
大でも0.2mm角となるように切断する。 (ニ)細かく切断した視覚皮質を遠沈管(遠心分離用試
験管)に入れ、カルシウムおよびマグネシウムを含まな
いHBBS(以下CMF−HBBSと略す)で3回洗浄
した後、適量の同液中に分散する。 (ホ)上記(ニ)の遠沈管中に、トリプシンのCMF−
HBBS溶液(0.25重量%)を加え、全量を倍にす
る。緩やかに撹拌しながら、37℃で15分から20分
間恒温状態に保ち酵素反応を行わせた。 (ヘ)牛胎児血清(FCS)10vol.%を含むダルベッ
コ変更イーグル培地(DMEM)とHamF−12培地
を1対1の体積比で混合したDMEM/F−12混合培
地を、上記(ホ)を経た遠沈管中に加え、全量をさらに
倍にする。先端をバーナーであぶり口径を小さくしたパ
スツールピペットで、緩やかにピペッティングを繰り返
し(最大20回程度)、細胞をほぐす。 (ト)9806.65m/sec2 (すなわち1000
g)で約5分間遠心分離を行う。遠心分離終了後、上清
を捨て、沈澱をFCS5vol.%を含むDMEM/F−1
2混合培地に懸濁する。 (チ)上記(ト)および(チ)をあと2回(計3回)繰
り返す。 (リ)最終的に得られた沈澱を、5vol.%FCSを含む
DMEM/F−12混合培地に懸濁し、懸濁液中の細胞
濃度を赤血球計数板を用いて計測する。同様の培地を用
いて細胞濃度を2〜4×106 個/mlになるように調
整する。 (ヌ)一体化複合電極上に直径25mm、高さ6mmの
プラスティック製円筒を、複合電極の中心とプラスティ
ック円筒の中心を合わせて接着することにより構成した
細胞培養用ウェル中に、あらかじめ5vol.%FCSを含
むDMEM/F−12混合培地500μlを加え、CO
2 インキュベータ内(空気濃度95vol.%、CO2 濃度
5vol.%、相対湿度97%、温度37℃)で暖めてお
く。 (ル)上記(ヌ)のウェル中に、細胞濃度を調整した懸
濁液100μlを静かに加え、再びCO2 インキュベー
タ内に静置する。 (ヲ)上記(ル)の操作より3日後に、培地の半量を新
しいものと交換する。交換培地はFCSを含まないDM
EM/F−12混合培地を用いる。 (ワ)以降、4〜5日毎に上記と同様の培地交換をおこ
なう。
The visual cortex of the rat cerebrum was cultured as neurons on the integrated composite electrode constructed as in Example 1. Hereinafter, the culture method will be described in detail. (A) The brain of the fetal rat of SD rat 16-18 days after pregnancy was excised and ice-cooled Hanks balanced salt solution (hereinafter HBB)
(Abbreviated as S). (B) Cut out the visual cortex from the brain in ice-cold HBBS and transfer it to Eagle's minimum essential medium (hereinafter abbreviated as MEM) solution. (C) In the MEM solution, the visual cortex is cut as finely as possible and cut into a maximum of 0.2 mm square. (D) The finely cut visual cortex is placed in a centrifuge tube (test tube for centrifugation), washed three times with HBBS containing no calcium and magnesium (hereinafter abbreviated as CMF-HBBS), and then dispersed in an appropriate amount of the same solution. I do. (E) In the centrifuge tube of (d) above, trypsin CMF-
Add HBBS solution (0.25% by weight) and double the total volume. The enzyme reaction was carried out while maintaining the temperature at 37 ° C. for 15 to 20 minutes with gentle stirring. (F) A DMEM / F-12 mixed medium in which Dulbecco's modified Eagle medium (DMEM) containing 10 vol.% Fetal calf serum (FCS) and a HamF-12 medium were mixed at a volume ratio of 1: 1 was used, Add to the centrifuge tubes that have passed, and double the total volume. Using a pasteur pipette whose tip is burned with a burner and whose diameter is reduced, gently repeat pipetting (up to about 20 times) to loosen the cells. (G) 9806.65 m / sec 2 (that is, 1000
Centrifuge at g) for about 5 minutes. After the centrifugation, the supernatant was discarded, and the precipitate was washed with DMEM / F-1 containing 5 vol.% Of FCS.
2 Suspend in mixed medium. (H) The above (g) and (h) are repeated two more times (three times in total). (I) The finally obtained precipitate is suspended in a DMEM / F-12 mixed medium containing 5 vol.% FCS, and the cell concentration in the suspension is measured using an erythrocyte counter. Using the same medium, the cell concentration is adjusted to 2 to 4 × 10 6 cells / ml. (V) A plastic cylinder having a diameter of 25 mm and a height of 6 mm was adhered on the integrated composite electrode so that the center of the composite electrode was aligned with the center of the plastic cylinder. 500 μl of a DMEM / F-12 mixed medium containing FCS was added, and CO 2 was added.
In 2 incubator (air concentration 95 vol.% CO 2 concentration 5 vol.% Relative humidity 97%, temperature 37 ° C.) previously warmed at. (L) 100 μl of the cell concentration-adjusted suspension is gently added to the well of (nu), and the mixture is again left in a CO 2 incubator. (Iii) Three days after the above operation (l), half of the medium is replaced with a new one. The exchange medium was DM without FCS.
An EM / F-12 mixed medium is used. (W) Thereafter, the same medium exchange as above is performed every 4 to 5 days.

【0042】これら一連の操作により、一体化複合電極
上でラット大脳視覚皮質の神経細胞を培養することがで
きた。細胞は絶縁層(NPI)上でも白金黒を析出させ
た電極上でも良好に生育した。したがって、適当な位置
にある電極を刺激電極または記録電極として用いれば、
神経細胞電気活動の同時多点計測が可能であった。
Through a series of these operations, the neurons of the rat cerebral visual cortex could be cultured on the integrated composite electrode. The cells grew well both on the insulating layer (NPI) and on the electrode on which platinum black was deposited. Therefore, if an electrode at an appropriate position is used as a stimulation electrode or a recording electrode,
Simultaneous multi-point measurement of neuronal electrical activity was possible.

【0043】また、本発明の一実施例の一体化複合電極
の適当な位置にある電極を通じて100μAの定電流刺
激を1Hzの頻度で1週間にわたって与えた前後で、適
当な位置にある電極で神経細胞の電気的応答(電位変
化)を記録した例を図4および図5に示す。図4は刺激
前の神経細胞の電気的応答の記録、図5は刺激後の神経
細胞の電気的応答の記録を示す。
Further, before and after a constant current stimulus of 100 μA was applied at a frequency of 1 Hz for one week through an electrode at an appropriate position of the integrated composite electrode according to one embodiment of the present invention, the nerve at the appropriate position was applied to the nerve. FIGS. 4 and 5 show examples of recording the electrical response (electric potential change) of cells. FIG. 4 shows the recording of the electrical response of the nerve cell before stimulation, and FIG. 5 shows the recording of the electrical response of the nerve cell after stimulation.

【0044】さらに、図6および図7に電極表面を金で
コートしていない一体化複合電極を用いて、上記と同様
の条件で長期刺激を加えた前後での、神経細胞の電気的
応答を記録した例を示す。図6は刺激前の神経細胞の電
気的応答の記録、図7は刺激後の神経細胞の電気的応答
の記録を示す。
Further, FIGS. 6 and 7 show that the electrical response of nerve cells before and after the long-term stimulation was applied under the same conditions as above using an integrated composite electrode whose electrode surface was not coated with gold. An example of recording is shown. FIG. 6 shows the recording of the electrical response of the nerve cell before stimulation, and FIG. 7 shows the recording of the electrical response of the nerve cell after stimulation.

【0045】図4から図7において、矢印は刺激電流印
加に伴い発生したアーチファクト、矢頭は神経細胞の電
気的活動により発生した電位変化を示す。図6から分か
るように、電極表面を金でコートしていない一体化複合
電極を用いた場合はアーチファクトの発生が大きいのに
対し、図4の本発明の一実施例の一体化複合電極を用い
た場合では、アーチファクトの発生が抑えられている。
In FIGS. 4 to 7, arrows indicate artifacts caused by the application of the stimulation current, and arrowheads indicate potential changes caused by electrical activity of nerve cells. As can be seen from FIG. 6, the use of the integrated composite electrode of one embodiment of the present invention shown in FIG. In this case, the occurrence of artifacts is suppressed.

【0046】また、図7から分かるように、電極表面を
金でコートしていない一体化複合電極を用いた場合はア
ーチファクトの発生が刺激前より大きく、神経細胞の電
気的活動はアーチファクトに隠れ測定不可能となった。
それに対し、図5の本発明の一実施例の一体化複合電極
を用いた場合では、図4で示された場合と同様、アーチ
ファクトの発生が抑えられており、神経細胞の電気的活
動を十分に記録することができた。
As can be seen from FIG. 7, when an integrated composite electrode whose electrode surface is not coated with gold is used, the occurrence of artifacts is larger than before stimulation, and the electrical activity of nerve cells is hidden by the artifacts. Became impossible.
On the other hand, when the integrated composite electrode of one embodiment of the present invention shown in FIG. 5 is used, the occurrence of artifacts is suppressed as in the case shown in FIG. Could be recorded.

【0047】なお、神経細胞の培養法は本実施例以外に
も多くの変法があり、本実施例に限定されるものではな
い。
The method of culturing nerve cells has many variations other than the present embodiment, and is not limited to the present embodiment.

【0048】[0048]

【発明の効果】以上説明した通り、本発明の一体化複合
電極は、神経細胞の培養が可能で、従来不可能または非
常に困難であった神経細胞電気活動の同時多点計測およ
び多細胞にわたる信号伝達の数時間以上の長期観察が実
現でき、また、応答性の優れた一体化複合電極を提供で
きる。
As described above, the integrated composite electrode of the present invention enables the culturing of nerve cells, enables simultaneous multipoint measurement of nerve cell electrical activity, which has been impossible or very difficult in the past, and extends over multiple cells. Long-term observation of several hours or more of signal transmission can be realized, and an integrated composite electrode with excellent responsiveness can be provided.

【0049】また、最近接の電極間距離が、10μm以
上1000μm以下の範囲であることにより、各細胞体
が各電極上に位置し、かつ神経突起を介して結合する可
能性が高くでき、神経細胞の測定に好都合な一体化複合
電極とすることができる。
Further, when the distance between the nearest electrodes is in the range of 10 μm or more and 1000 μm or less, it is possible to increase the possibility that each cell body is located on each electrode and is connected via a neurite. An integrated composite electrode convenient for measuring cells can be obtained.

【0050】また、リード線をカバーする絶縁層が、各
電極上に孔を有し、かつリード線の外部回路との接点近
傍を除いて前記絶縁基盤のほぼ全面に設けられた絶縁層
であることにより、感光性樹脂からなる絶縁材料を使用
して、ほぼ全面にこの樹脂を塗布し、フォトエッチング
手法により、容易に必要な絶縁層パターンが形成でき、
生産が容易で、絶縁不良の確率の小さい一体化複合電極
とすることができる。
The insulating layer covering the lead wire is an insulating layer having a hole on each electrode and provided on almost the entire surface of the insulating base except for the vicinity of the contact between the lead wire and an external circuit. By using an insulating material made of a photosensitive resin, the resin can be applied to almost the entire surface, and a necessary insulating layer pattern can be easily formed by a photo etching method.
An integrated composite electrode which is easy to produce and has a low probability of insulation failure can be obtained.

【0051】また、各電極部分の表面抵抗が低く、かつ
細胞毒性の低い物質でコートされているため、適当な電
極を用いて刺激電流を加え、他の適当な電極を用いて電
位変化を記録する際に、長期にわたり刺激を加えた後で
も電極の分極が少なく、安定した記録が可能な一体化複
合電極とすることができる。
Further, since each electrode portion is coated with a substance having low surface resistance and low cytotoxicity, a stimulating current is applied using an appropriate electrode, and a potential change is recorded using another appropriate electrode. In this case, even after a long-time stimulus is applied, the polarization of the electrode is small, and an integrated composite electrode capable of stable recording can be obtained.

【0052】また、複数個の電極中心部が、8×8の格
子上の各交点に位置することにより、前記本発明の電極
からリード線を略放射状に配設できる最高の電極数とす
ることができる。
Further, since the plurality of electrode central portions are located at the respective intersections on the 8.times.8 grid, the maximum number of electrodes from which the lead wires can be arranged substantially radially from the electrodes of the present invention is provided. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の絶縁基盤上に電極とリード
線を形成した本発明の一体化複合電極の絶縁層のない状
態のパターンを示した平面図である。
FIG. 1 is a plan view showing a pattern without an insulating layer of an integrated composite electrode of the present invention in which electrodes and lead wires are formed on an insulating substrate according to an embodiment of the present invention.

【図2】本発明の一体化複合電極の一実施例の絶縁層の
みの平面図の一部切り欠き図である。
FIG. 2 is a partially cutaway view of a plan view of only an insulating layer of one embodiment of the integrated composite electrode of the present invention.

【図3】本発明の一体化複合電極の一実施例の一部の断
面図である。
FIG. 3 is a partial cross-sectional view of one embodiment of the integrated composite electrode of the present invention.

【図4】本発明の一体化複合電極の一実施例において、
適当な電極を用いて長期に刺激電流を印加する前に、他
の適当な電極を用いて記録した電位変化波形図である。
FIG. 4 shows one embodiment of the integrated composite electrode of the present invention.
FIG. 10 is a potential change waveform diagram recorded using another appropriate electrode before applying a stimulation current for a long time using an appropriate electrode.

【図5】本発明の一体化複合電極の一実施例において、
適当な電極を用いて長期に刺激電流を印加した後に、他
の適当な電極を用いて記録した電位変化波形図である。
FIG. 5 shows one embodiment of the integrated composite electrode of the present invention.
FIG. 9 is a potential change waveform diagram recorded by using another appropriate electrode after applying a stimulation current for a long time using an appropriate electrode.

【図6】本発明の一体化複合電極の一実施例と電極表面
を金でコートしていない点だけが異なる一体化複合電極
を用いて、適当な電極を用いて長期に刺激電流を印加す
る前に、他の適当な電極を用いて記録した電位変化波形
図である。
FIG. 6 shows an embodiment of the integrated composite electrode according to the present invention and an integrated composite electrode which is different only in that the electrode surface is not coated with gold, and a long-term stimulation current is applied using an appropriate electrode. FIG. 8 is a potential change waveform diagram recorded using another appropriate electrode before.

【図7】本発明の一体化複合電極の一実施例と電極表面
を金でコートしていない点だけが異なる一体化複合電極
を用いて、適当な電極を用いて長期に刺激電流を印加
た後に、他の適当な電極を用いて記録した電位変化波形
図である。
Using an integrated composite electrode only in that no one embodiment the electrode surface of the integrated multiple electrode and coated with gold are different in the present invention; FIG, the stimulation current is applied to the long term by using an appropriate electrode
After the, which is the potential change waveform diagram recorded using other suitable electrode.

【符号の説明】[Explanation of symbols]

1 電極 2 リード線 3 絶縁基盤 4 絶縁層 5 孔 6 金 7 金 8 ニッケル DESCRIPTION OF SYMBOLS 1 Electrode 2 Lead wire 3 Insulating base 4 Insulating layer 5 Hole 6 Gold 7 Gold 8 Nickel

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01B 5/14 A61B 5/04 300J (56)参考文献 特開 平4−204244(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 33/483 A61B 5/0408 A61B 5/0492 H01B 5/14 G01N 27/327 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI H01B 5/14 A61B 5/04 300J (56) References JP-A-4-204244 (JP, A) (58) Fields surveyed ( Int.Cl. 7 , DB name) G01N 33/483 A61B 5/0408 A61B 5/0492 H01B 5/14 G01N 27/327

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絶縁基盤上に、最近接の電極間距離が相
等しい複数個の電極を備え、前記電極からリード線を略
放射状に配設した配線部と、前記リード線をカバーする
絶縁層とを設け、かつ電極面積が3×102 μm2 以上
4×104 μm 2 以下の範囲であり、電極部の表面抵抗
が10Ω/cm2 以下である一体化複合電極。
1. The distance between electrodes closest to each other on an insulating substrate is different.
It has a plurality of electrodes that are equal and the lead wire is
Covers the radially arranged wiring sections and the lead wires
An insulating layer and an electrode area of 3 × 10TwoμmTwothat's all
4 × 10Fourμm TwoThe surface resistance of the electrode part is in the following range
Is 10Ω / cmTwoAn integrated composite electrode as follows.
【請求項2】 最近接の電極間距離が、10μm以上1
000μm以下の範囲である請求項1に記載の一体化複
合電極。
2. The method according to claim 1, wherein the distance between the nearest electrodes is 10 μm or more and 1
The integrated composite electrode according to claim 1, wherein the thickness is in a range of 000 µm or less.
【請求項3】 リード線をカバーする絶縁層が、各電極
上に孔を有し、かつリード線の外部回路との接点近傍を
除いて前記絶縁基盤のほぼ全面に設けられた絶縁層であ
る請求項1または2に記載の一体化複合電極。
3. An insulating layer covering a lead wire is an insulating layer having a hole on each electrode and provided on substantially the entire surface of the insulating base except for the vicinity of a contact point between the lead wire and an external circuit. The integrated composite electrode according to claim 1.
【請求項4】 複数個の電極中心部が、8×8の格子上
の各交点に位置する請求項1〜3のいずれかに記載の一
体化複合電極。
4. The integrated composite electrode according to claim 1, wherein a plurality of electrode central portions are located at respective intersections on an 8 × 8 grid.
JP05090291A 1992-09-04 1993-04-16 Integrated composite electrode Expired - Lifetime JP3101122B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP05090291A JP3101122B2 (en) 1993-04-16 1993-04-16 Integrated composite electrode
DE1993633945 DE69333945T2 (en) 1992-09-04 1993-09-02 Flat electrode
EP19930114091 EP0585933B1 (en) 1992-09-04 1993-09-02 Planar electrode
US08/481,149 US5810725A (en) 1993-04-16 1995-06-07 Planar electrode
US09/160,252 US6151519A (en) 1993-04-16 1998-09-22 Planar electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05090291A JP3101122B2 (en) 1993-04-16 1993-04-16 Integrated composite electrode

Publications (2)

Publication Number Publication Date
JPH06296595A JPH06296595A (en) 1994-10-25
JP3101122B2 true JP3101122B2 (en) 2000-10-23

Family

ID=13994434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05090291A Expired - Lifetime JP3101122B2 (en) 1992-09-04 1993-04-16 Integrated composite electrode

Country Status (1)

Country Link
JP (1) JP3101122B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE40209E1 (en) 1994-06-13 2008-04-01 Matsushita Electric Industrial Co., Ltd. Cell potential measurement apparatus having a plurality of microelectrodes
US5563067A (en) 1994-06-13 1996-10-08 Matsushita Electric Industrial Co., Ltd. Cell potential measurement apparatus having a plurality of microelectrodes
JP2930182B2 (en) 1995-06-20 1999-08-03 松下電器産業株式会社 Two-dimensional sensor for measuring nerve cell activity and measuring device using the same
JP2930181B2 (en) 1995-06-20 1999-08-03 松下電器産業株式会社 Two-dimensional sensor for measuring nerve cell activity and measuring device using the same
TWM243483U (en) 1996-01-24 2004-09-11 Matsushita Electric Ind Co Ltd A test instrument for electric physiological properties of organism, cell, and the section from live organ
WO2002099408A1 (en) * 2001-06-05 2002-12-12 Matsushita Electric Industrial Co., Ltd. Signal detecting sensor provided with multi-electrode
CN1204396C (en) 2001-06-20 2005-06-01 松下电器产业株式会社 Extracellular recording electrode
US7017394B2 (en) * 2002-08-06 2006-03-28 The Regents Of The University Of California Tear film osmometry
US7810380B2 (en) 2003-03-25 2010-10-12 Tearlab Research, Inc. Systems and methods for collecting tear film and measuring tear film osmolarity
US8020433B2 (en) 2003-03-25 2011-09-20 Tearlab Research, Inc. Systems and methods for a sample fluid collection device
JP4220756B2 (en) 2002-10-28 2009-02-04 極東製薬工業株式会社 Incubator, incubator production method and culture method
JP3801617B2 (en) 2003-06-27 2006-07-26 松下電器産業株式会社 Pharmacological measurement apparatus and system and well container used therefor
JP5075016B2 (en) * 2008-05-29 2012-11-14 日本電信電話株式会社 Penetration type flexible nerve electrode and manufacturing method thereof
JP5075017B2 (en) * 2008-05-29 2012-11-14 日本電信電話株式会社 Peripheral nerve type flexible nerve electrode and manufacturing method thereof
JP5544474B2 (en) * 2009-12-11 2014-07-09 国立大学法人東北大学 Bioassay kit for cytology
JP6550694B2 (en) * 2014-07-08 2019-07-31 国立大学法人九州工業大学 Extracellular potential measuring device and extracellular potential measuring method
CN106716116B (en) 2014-09-23 2021-04-27 蒂尔实验室研究有限公司 Integrated system and method for microfluidic tear collection and lateral flow analysis of analytes of interest
KR102316273B1 (en) * 2019-10-15 2021-10-25 이화여자대학교 산학협력단 Method of Manufacturing Planar Multi-electrode Array Using Laser Patterning and Photosensitive Polymer Insulating Film

Also Published As

Publication number Publication date
JPH06296595A (en) 1994-10-25

Similar Documents

Publication Publication Date Title
JP3101122B2 (en) Integrated composite electrode
US6151519A (en) Planar electrode
JP3193471B2 (en) Integrated composite electrode
EP0585933B1 (en) Planar electrode
US6894511B2 (en) Extracellular recording multiple electrode
Thomas Jr et al. A miniature microelectrode array to monitor the bioelectric activity of cultured cells
CN102445477B (en) Ex-vivo nerve information dual-mode detection microelectrode array chip and preparation method thereof
Regehr et al. Sealing cultured invertebrate neurons to embedded dish electrodes facilitates long-term stimulation and recording
Nisch et al. A thin film microelectrode array for monitoring extracellular neuronal activity in vitro
Pine Recording action potentials from cultured neurons with extracellular microcircuit electrodes
Breckenridge et al. Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording
JP3570715B2 (en) Signal detection sensor with multiple electrodes
US20050231186A1 (en) High throughput electrophysiology system
KR19980703274A (en) Methods of measuring physicochemical properties of tissues or cells, methods of drug testing
JPH0862209A (en) Cell potential measuring apparatus
JP2949845B2 (en) Electrodes for measuring cell electrical activity
Gawad et al. Substrate arrays of iridium oxide microelectrodes for in vitro neuronal interfacing
Mohr et al. Performance of a thin film microelectrode array for monitoring electrogenic cells in vitro
JP3979574B2 (en) Array electrode for biological sample and production method thereof
Burnett et al. Fluorescence imaging of electrically stimulated cells
US6890762B1 (en) Method for measuring physiocochemical properties of tissues of cells, method for examining chemicals, and apparatus therefor
JP4510766B2 (en) Extracellular electrode
US20180224421A1 (en) Method and apparatus for a surface microstructured multielectrode array
US20230323266A1 (en) Cell culture substrate and cell culture scaffold kit
JP2001281201A (en) Electrode for extracellular recording

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 13

EXPY Cancellation because of completion of term