JP3199601U - Structure of external pressure hollow fiber membrane - Google Patents
Structure of external pressure hollow fiber membrane Download PDFInfo
- Publication number
- JP3199601U JP3199601U JP2015002827U JP2015002827U JP3199601U JP 3199601 U JP3199601 U JP 3199601U JP 2015002827 U JP2015002827 U JP 2015002827U JP 2015002827 U JP2015002827 U JP 2015002827U JP 3199601 U JP3199601 U JP 3199601U
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- core material
- membrane
- fiber membrane
- nonwoven fabric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 62
- 239000012510 hollow fiber Substances 0.000 title claims abstract description 36
- 239000004745 nonwoven fabric Substances 0.000 claims abstract description 44
- 239000012466 permeate Substances 0.000 claims abstract description 10
- 230000001788 irregular Effects 0.000 claims abstract description 6
- 229920000642 polymer Polymers 0.000 claims description 9
- 229920000098 polyolefin Polymers 0.000 claims description 3
- 238000001471 micro-filtration Methods 0.000 claims description 2
- 238000000108 ultra-filtration Methods 0.000 claims description 2
- 239000011162 core material Substances 0.000 abstract description 35
- 239000000463 material Substances 0.000 abstract description 13
- 239000000835 fiber Substances 0.000 description 22
- 238000002844 melting Methods 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000008018 melting Effects 0.000 description 11
- 239000012779 reinforcing material Substances 0.000 description 11
- 239000002033 PVDF binder Substances 0.000 description 8
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 8
- 229920000297 Rayon Polymers 0.000 description 4
- 239000002964 rayon Substances 0.000 description 4
- 239000010802 sludge Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 101000916532 Rattus norvegicus Zinc finger and BTB domain-containing protein 38 Proteins 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000002759 woven fabric Substances 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009940 knitting Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- 229920006369 KF polymer Polymers 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000004750 melt-blown nonwoven Substances 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
【課題】丸紐と膜との剥離などの問題が解決できるとともに剛性の高い不織布芯材を連続的に高速で成形できるので芯材成形と製膜塗布を同時に行うことが可能となる外圧式中空子膜の構造を提供する。【解決手段】丸紐に替わる素材として不織布11を芯材13の周囲に熱融着することで剛性のある不織布11を中空の芯材13の周囲に成形し、製膜液を不織布の表面や内部に含浸させることで中空糸膜と一体化することができ、物理的な伸び、弾性を調整することが可能となった。芯材13の中央には異形断面の縦糸フィラメントを採用することで透過水流路の確保と芯材部の断面積減少が可能となるので不織布11の外周に塗布された膜素材12の弾性や伸び率を芯材13と膜素材12との間で調整することが可能となる。【選択図】図1[PROBLEMS] To solve problems such as peeling of a round string and a film and to form a non-woven core material having high rigidity continuously at a high speed, so that it is possible to perform core material forming and film application simultaneously. Provides the structure of the empty membrane. As a material to replace a round string, a non-woven fabric 11 is heat-sealed around a core material 13 to form a rigid non-woven fabric 11 around a hollow core material 13, and a film-forming solution is applied to the surface of the non-woven fabric. It was possible to integrate with the hollow fiber membrane by impregnating the inside, and it was possible to adjust physical elongation and elasticity. By adopting a warp filament with an irregular cross section at the center of the core material 13, it is possible to secure a permeate flow path and reduce the cross-sectional area of the core material portion, so the elasticity and elongation of the membrane material 12 applied to the outer periphery of the nonwoven fabric 11. The rate can be adjusted between the core material 13 and the membrane material 12. [Selection] Figure 1
Description
排水処理、下水処理、浄水の前処理などに利用される浸漬型外圧式中空糸膜の構造に関する
出願である
It is an application related to the structure of submerged external pressure hollow fiber membranes used for wastewater treatment, sewage treatment, pretreatment of purified water, etc.
下水処理排水処理分野では活性汚泥水槽の中に外圧式の中空糸膜を浸漬し、中空糸膜の内部に吸引圧を付与することで汚泥水を吸引ろ過しながら汚泥水槽中のバクテリア濃度を制御している。
この分野に使われる中空糸膜は膜面の洗浄が重要であり通常は活性汚泥水槽中の曝気用空気の気泡を利用して中空糸膜外表面の汚れを防止する。 この際曝気用空気の気泡により大きく動く中空糸膜には引張り力、曲げ力などが加わるために折れやすいという課題があった。
この課題を解決したのがカナダのゼノン社(現在GE社の一部)の考案した合成繊維の丸紐(中空状織布)で製作した中空の芯材を用いて外周部に膜を塗布した丸紐強化型中空糸膜である。
この丸紐強化型中空糸膜により強度は大幅に向上したが,課題としては中空の芯材としている紐の強度が強すぎるため弾性が不足することと生産性が悪いことである。 すなわち紐は中空糸膜に比べて伸びが著しく少ないために膜素材との間に剥離現象を生じやすいという課題とともに中空の芯材である紐の製造速度が3m/分以下の低速でしか製造できないという新たな課題が生じた。
In the sewage treatment and wastewater treatment field, the external pressure-type hollow fiber membrane is immersed in the activated sludge water tank, and suction pressure is applied to the inside of the hollow fiber membrane to control the bacterial concentration in the sludge water tank while suctioning and filtering sludge water. doing.
In the hollow fiber membranes used in this field, it is important to clean the membrane surface, and normally, contamination of the outer surface of the hollow fiber membranes is prevented by using bubbles of aeration air in an activated sludge water tank. At this time, the hollow fiber membrane that moves greatly by the bubbles of aeration air has a problem that it easily breaks due to the addition of tensile force, bending force, and the like.
This problem was solved by applying a film to the outer periphery using a hollow core made of a synthetic fiber round string (hollow woven fabric) devised by Canadian company Zenon (currently part of GE) It is a round string reinforced hollow fiber membrane.
This round string reinforced hollow fiber membrane greatly improved the strength, but the problem is that the string as a hollow core material is too strong, resulting in insufficient elasticity and poor productivity. In other words, the string has a remarkably small elongation compared to the hollow fiber membrane, so that a peeling phenomenon is likely to occur between the membrane material and the string can be produced only at a low speed of 3 m / min or less as a hollow core material. A new issue has arisen.
過去の先行技術調査の結果、繊維から編み上げた紐状の強化材を中空糸膜の補強材として利用する技術が一般的である。 紐を利用する限り伸びの比較的大きな膜素材であるポリフッ化ビニリデン(PVDF)やポリサルフォン(PSF)など一般的な限外ろ過膜や精密ろ過膜の機械的物性などに比べて弾性や伸びが少ない紐状の補強材との間で伸び率の違いによる剥離問題は避けることができない。また紐を編む工程は複雑な工程であり特開2006-114180にあるように最大でも生産速度を3m/分以上に上げることは困難である。 また不織布テープをスパイラル状に巻き付けて超音波溶着装置で溶接することでチューブ状の芯材を成形することも可能であるが中空糸膜のような2,3mmの外径にすることは技術面で困難であり現状最小径でも4mmから5mmが限界である。 またこのスパイラル状の溶接を行うと溶接部がフィルム化して溶着されることになるためこの場所は製膜液の含浸ができずにこの部分を起点にした剥離が生じ易く、また小径になるほどフィルム化される面積が増加するので有効膜面積の減少につながる。 また小径のスパイラル製管設備は製造速度も3m/分以下となり生産性も大幅に低下する。 As a result of past prior art investigations, a technique of using a string-like reinforcing material knitted from fibers as a reinforcing material for a hollow fiber membrane is common. As long as the string is used, it has less elasticity and elongation compared to the mechanical properties of general ultrafiltration membranes and microfiltration membranes such as polyvinylidene fluoride (PVDF) and polysulfone (PSF), which are relatively large membrane materials. The peeling problem due to the difference in the elongation rate between the string-like reinforcing materials cannot be avoided. Further, the process of knitting the string is a complicated process, and as disclosed in JP-A-2006-114180, it is difficult to increase the production speed to 3 m / min or more at the maximum. It is also possible to form a tube-like core material by winding a nonwoven fabric tape in a spiral shape and welding with an ultrasonic welding device. It is difficult, and the current minimum diameter is 4 to 5 mm. Also, when this spiral welding is performed, the welded part is formed into a film and welded, so this place cannot be impregnated with the film-forming solution, and is easily peeled off starting from this part. As the area to be converted increases, the effective membrane area decreases. In addition, the small-diameter spiral pipe manufacturing facility also has a production rate of 3 m / min or less, which greatly reduces productivity.
中空糸膜の強度を上げるために繊維から編み上げた丸紐を使用する代わりに近年急速に進歩しているポリオレフィン系の不織布素材を使用することで膜素材との含浸性を向上し、膜素材の物性に近い、伸びの大きな中空の芯材を成形し、膜の剥離問題を解決することができるとともに、従来3m/分が限界であった製造速度を最低でも15mから30m/分に上げることが可能となり製膜工程との同期が可能となり生産性が飛躍的に向上できる。
不織布はミクロン単位前後の非常に極細径の繊維を連続的に多数のノズルから押出し空気や水などの流体を利用して不織布繊維同士を絡めることによって不織布シート全体の強度を上げる。 この不織布シートを圧縮したり、再加熱して融点に近くすることで不織布全体の剛性や伸びなどの機械的強度を変化させることが可能である。
単繊維や複数の繊維を編み上げた構造の紐や丸紐は繊維同士が織物のように最初からしっかりと絡み合っているために引張り力を加えても大きく変形することは不可能である。
不織布の特質を利用して膜素材の機械的な物性に近い不織布の中空の芯材、芯管をつくることで従来からの課題を解決することができた。
また外圧式の中空糸膜であるため外部から最大1atmの外圧に耐えることと、外周の膜を透過
した透過液を軸方向(縦方向)にできるだけ少ない抵抗で移動する必要がある。このための
手段として中空の芯材の中央に縦糸フィラメントを配置し縦方向に透過水が容易に移動できるよう
な溝を備えた構造とした。縦糸フィラメントの断面形状は透過水流路が確保された異形断面で
あれば色々な形状が提案できる。
この縦糸フィラメントの周囲に中空の芯材、芯管を同時に成形することは容易である。
In order to increase the strength of the hollow fiber membrane, instead of using a round string knitted from fibers, the use of a polyolefin-based non-woven fabric material, which has been making rapid progress in recent years, has improved the impregnation property with the membrane material. Forming a hollow core material with large elongation close to the physical properties to solve the problem of peeling of the membrane, and at the same time, increase the production speed from 3m / min to 15m to 30m / min. It becomes possible to synchronize with the film forming process, and productivity can be dramatically improved.
Nonwoven fabrics are made by extruding very fine fibers in the order of micron units continuously from a large number of nozzles, and entangle the nonwoven fabric fibers using fluids such as air and water, thereby increasing the strength of the entire nonwoven fabric sheet. It is possible to change the mechanical strength such as rigidity and elongation of the entire nonwoven fabric by compressing or reheating the nonwoven fabric sheet to bring it close to the melting point.
A string or a round string having a structure in which a single fiber or a plurality of fibers are knitted are intertwined firmly like a woven fabric from the beginning, and thus cannot be greatly deformed even if a tensile force is applied.
By utilizing the properties of nonwoven fabrics, we were able to solve the conventional problems by creating a hollow core material and a core tube of nonwoven fabrics that are close to the mechanical properties of membrane materials.
Further, since it is an external pressure type hollow fiber membrane, it is necessary to withstand an external pressure of 1 atm at the maximum from the outside, and to move the permeate that has permeated the outer peripheral membrane in the axial direction (vertical direction) with as little resistance as possible. As a means for this purpose, a warp filament is arranged in the center of the hollow core material, and a structure is provided with a groove that allows permeate to easily move in the longitudinal direction. Various shapes can be proposed as long as the cross-sectional shape of the warp filament is an irregular cross-section in which a permeate passage is secured.
It is easy to simultaneously form a hollow core material and a core tube around the warp filament.
不織布は編み上げた紐に比べて機械的な物性値の幅をを大幅に広げることが可能である。 不織布繊維の充填密度を大きくしたり、溶融温度を高くすることで伸びは少なく、引張り強さは上げることができる。 反対に不織布繊維の充填密度を小さくしたり溶融温度を低くすることで伸びが大きく、引張り強度も下げることが可能である。 また膜素材との親和性や含浸性も考慮して充填量、溶融温度、繊維の絡まり具合を調整することも可能である。
この機能を利用して膜素材の機械的な物性に合わせた不織布繊維を選定することができる。 また不織布は紐の繊維に比べて空隙率が高いので膜素材である製膜液(ドープ)が不織布繊維の間に容易に含浸するために水や溶剤などで凝固したあとには不織布は膜素材と一体となることができ、膜剥離力が大幅に向上する。
生産速度、製造コストも大きな問題であり従来の繊維を編み上げていく補強材では最大でも3m/分の速度しかできないが今回の不織布を連続的に溶着していく方式では30m/分も可能である。
このため不織布チューブ外層に製膜液を塗布しながらゲル化水槽中で凝固させることで通常の製膜速度20~30m/分と同期させることが可能となるため生産性の大幅な向上が期待できる。
また異形断面形状の縦糸フィラメントを中空芯材の中央に配置することで中空糸膜全体の引張り
強度を大幅に向上させることができる。また断面形状の面積を調整することで中空の芯材と外周
の膜の伸び率と縦糸フィラメントの伸び率を合わせたり、剥離を防止できるように調整すること
が可能となった。
また縦糸フィラメントの異形断面形状を工夫することで透過水側の流路抵抗を調整することも
可能となり、不織布の繊維が縦糸フィラメントの透過水流路へ落ち込むことで生じる透過水側の
流路抵抗も大きく減らすことが可能となった。
Nonwoven fabrics can greatly expand the range of mechanical properties compared to braided strings. By increasing the packing density of the nonwoven fabric fibers or increasing the melting temperature, the elongation is small and the tensile strength can be increased. On the contrary, the elongation can be increased and the tensile strength can be lowered by reducing the packing density of the nonwoven fabric fibers or lowering the melting temperature. It is also possible to adjust the filling amount, melting temperature, and fiber entanglement in consideration of the affinity with the membrane material and the impregnation property.
Using this function, it is possible to select a nonwoven fabric fiber that matches the mechanical properties of the membrane material. In addition, since the nonwoven fabric has a higher porosity than the string fibers, the nonwoven fabric becomes a membrane material after it is solidified with water or a solvent so that the membrane forming solution (dope) can be easily impregnated between the nonwoven fabric fibers. And the membrane peeling force is greatly improved.
The production speed and manufacturing cost are also big problems, and the conventional reinforcing material knitting fibers can only be 3 m / min at the maximum, but with this method of continuously welding nonwoven fabric, it can be 30 m / min. .
For this reason, it is possible to synchronize with a normal film-forming speed of 20 ~ 30 m / min by solidifying it in a gelled water tank while applying a film-forming solution to the outer layer of the non-woven tube. I can expect.
Moreover, the tensile strength of the whole hollow fiber membrane can be significantly improved by disposing a warp filament having an irregular cross-sectional shape in the center of the hollow core material. Moreover, by adjusting the area of the cross-sectional shape, it became possible to adjust the elongation rate of the hollow core material and the outer peripheral membrane and the elongation rate of the warp filaments, or to prevent peeling.
It is also possible to adjust the flow resistance on the permeate side by devising an irregular cross-sectional shape of the warp filament, and the flow resistance on the permeate side that occurs when the nonwoven fabric fibers fall into the permeate flow path of the warp filament. It became possible to greatly reduce.
ポリオレフィン系素材を原料としたメルトブローン不織布製造装置を用いて低融点ポリマー不織布と高融点ポリマー不織布が交じり合ったシート状の不織布を成形する。
このシート状の不織布をスリッターで5mmから15mm程度の連続不織布テープをリールに巻き取る。この連続不織布リールから溶融ヘッド又はダイスにテープを供給して低融点ポリマーが溶融する温度まで溶融ヘッド内部で加熱することで高融点ポリマー不織布が溶融した低融点ポリマーにより固着するため溶融ヘッドから出てきた不織布チューブは剛性が高くなっている。
なお、シート状の不織布を成形せずに不織布を中空状形態のままでノズルより押し出すことも可能
であり、この時にノズル中央には後述の芯材を配置しその周囲に直接不織布を成形していくことも
可能である。
この不織布チューブの物性は以下のパラメータを変更することで容易に調整することが可能である。
1)高融点ポリマーと低融点ポリマーの重量比
2)溶融ヘッドの温度
3)不織布チューブの引抜き速度
不織布チューブを製造する際に芯材を利用して芯材の周囲にシート状のスリットされた不織布テープをスパイラルに巻付けながら成形したり、不織布を芯材の周囲にノズルより直接押し出すことも
可能である。
芯材を利用することで不織布チューブの縦方向の強度を大幅に向上させることができるとともに芯材と不織布チューブの原料を同じにすることで芯材との融着性能も高くすることができる。
長繊維糸を使用する目的は中空糸膜の内面を流れる透過水の抵抗を低減することである。
長繊維糸同士は密着していても互いに空隙ができるため中空糸膜からろ過された水は少ない抵抗で内部を移動することができる。 より有利な形状としては長繊維の断面形状を異形断面の形状を用いることで半透膜と不織布層を透過してきた透過水を縦方向に容易に移動できるように単数もしくは複数の溝を設けることが可能である.
A sheet-shaped nonwoven fabric in which a low-melting polymer nonwoven fabric and a high-melting polymer nonwoven fabric are mixed is formed using a melt blown nonwoven fabric manufacturing apparatus made of a polyolefin-based material.
The sheet-like nonwoven fabric is wound around a reel with a slitter by a continuous nonwoven fabric tape of about 5 mm to 15 mm. By feeding the tape from this continuous nonwoven fabric reel to the melting head or die and heating inside the melting head to a temperature at which the low melting point polymer melts, the high melting point polymer nonwoven fabric is fixed by the molten low melting point polymer and comes out of the melting head. The non-woven tube has high rigidity.
It is also possible to extrude the non-woven fabric from the nozzle without forming the non-woven fabric in the form of a sheet. At this time, a core material described later is placed in the center of the nozzle and the non-woven fabric is directly molded around the core. It is also possible to go.
The physical properties of this nonwoven fabric tube can be easily adjusted by changing the following parameters.
1) Weight ratio of high-melting polymer and low-melting polymer 2) Melting head temperature 3) Pull-out speed of non-woven tube When a non-woven tube is manufactured, a non-woven fabric having a sheet-like slit around the core using the core It is also possible to form the tape while it is wound around a spiral, or to extrude the nonwoven fabric directly around the core from a nozzle.
By using the core material, the strength in the longitudinal direction of the nonwoven fabric tube can be greatly improved, and by making the raw materials of the core material and the nonwoven fabric tube the same, the fusion performance with the core material can be enhanced.
The purpose of using long fiber yarns is to reduce the resistance of permeate flowing through the inner surface of the hollow fiber membrane.
Even if the long fiber yarns are in close contact with each other, a gap is formed between them, so that the water filtered from the hollow fiber membrane can move inside with little resistance. As a more advantageous shape, a single or a plurality of grooves are provided so that the permeated water that has permeated through the semipermeable membrane and the nonwoven fabric layer can be easily moved in the vertical direction by using a cross-sectional shape of the long fiber as a cross-sectional shape. Is possible.
以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。
図4の写真は本新案の補強された中空糸膜の具体的なサンプル写真である。
図4は断面が米型形状の外径1.2mmの芯材の周囲に芯材外径2.0mm内径1.2mmの不織布チューブを熱融着により成形したものの外表面にPVDF製膜液を塗布したものでありPVDF製膜液は染料により着色されており不織布外表面からの含浸状況をわかりやすくしている。
ポリフッ化ビニリデン(呉羽化学工業社製KFポリマーW#1100)、ジメチルアセトアミド、グリセリンを加熱溶解し、均一な製膜溶液を得たものを製膜液とし、青色の染料で製膜液を着色したものを環状ノズルより押出すことで不織布チューブの外表面に均一に塗布した。 塗布した後直ちに
水中に浸漬して凝固、溶剤抽出、乾燥したものを写真用のサンプルとした。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
The photograph of FIG. 4 is a specific sample photograph of the reinforced hollow fiber membrane of the new model.
Fig. 4 shows a PVDF film formed on the outer surface of a non-woven tube having a core outer diameter of 2.0 mm and an inner diameter of 1.2 mm formed by heat sealing around a core having an outer diameter of 1.2 mm and a rice-shaped cross section. The PVDF film-forming solution that has been applied is colored with a dye, making it easy to understand the impregnation from the outer surface of the nonwoven fabric.
Polyvinylidene fluoride (KF Polymer W # 1100 manufactured by Kureha Chemical Industry Co., Ltd.), dimethylacetamide, and glycerin were heated and dissolved to obtain a uniform film-forming solution, and the film-forming solution was colored with a blue dye. The product was uniformly applied to the outer surface of the nonwoven tube by extruding it from an annular nozzle. Immediately after application, the sample was immersed in water, solidified, extracted with a solvent, and dried to obtain a sample for photography.
本発明の不織布チューブを中空糸膜の補強材として利用することにより従来長繊維で紐状に
編み上げて製造していた補強材を押出し成形法により10倍近い高速で補強材を成形することが
可能となった。
このため補強材の製造工程と製膜液の塗布工程を同期させることが可能となり不織布チューブを
製造しながら完成品を製膜液塗布用ノズルに連続して供給することにより二つの工程を連続した
工程とすることができ大幅に製造工程の簡略化、合理化が図れることになる。
また長繊維を編み上げて紐状にする従来の補強材と異なり本発明の補強材は不織布を使用して
いるためにその物理的引張り強度や伸び率などを製膜液の物性に合わせて柔軟に調整することが可能となるため課題となっている補強材と製膜層間の剥離問題を解消できる。
By using the nonwoven fabric tube of the present invention as a reinforcing material for a hollow fiber membrane, it is possible to form a reinforcing material at a high speed nearly 10 times by extrusion molding of a reinforcing material that has been knitted into a string with long fibers. It became.
For this reason, it becomes possible to synchronize the manufacturing process of the reinforcing material and the coating process of the film forming liquid, and the two processes were continuously performed by continuously supplying the finished product to the nozzle for coating the film forming liquid while manufacturing the nonwoven fabric tube. Therefore, the manufacturing process can be greatly simplified and rationalized.
Also, unlike the conventional reinforcing material that braids long fibers into a string shape, the reinforcing material of the present invention uses a non-woven fabric, so its physical tensile strength and elongation rate can be flexibly matched to the physical properties of the film-forming solution. Since it becomes possible to adjust, the peeling problem between the reinforcing material and the film-forming layer, which is a problem, can be solved.
図1: 11:不織布チューブ 12:中空糸膜 13:異形断面芯材
図2: 21:補強用丸紐 22:中空糸膜
図3: 各種の異形断面芯材の形状
図4: 異形断面芯材の周囲に不織布チューブと中空糸膜を成形した写真
Fig. 1: 11: Non-woven tube 12: Hollow fiber membrane 13: Modified cross-section core material Fig. 2: 21: Round string for reinforcement 22: Hollow fiber membrane Fig. 3: Shapes of various irregular cross-section core materials 4: Modified cross-section core material Of a non-woven tube and hollow fiber membrane formed around
Claims (3)
または複数の高分子からなる縦糸フィラメントを配置し、その外側にはポリオレ
フィン系高分子からなる不織布を熱融着した外層を形成し、最外層部には半透膜を
含浸塗布したことを特徴とする補強された外圧式中空糸膜の構造。
In hollow fiber membranes with ultrafiltration and microfiltration functions, a warp filament made of one or more polymers is placed in the center of the circular cross section, and a nonwoven fabric made of polyolefin polymer is heat-sealed on the outside. A structure of a reinforced external pressure type hollow fiber membrane, wherein the outer layer is formed and a semipermeable membrane is impregnated and applied to the outermost layer portion.
透過水流路が確保されていることを特徴とする請求項1に記載の補強された外圧式
中空糸膜の構造。
The cross-sectional shape of the warp filament is circular or irregular, and in the warp direction
The reinforced external pressure type according to claim 1, wherein a permeate flow path is secured.
Structure of hollow fiber membrane.
などの異形断面であり、縦糸方向に透過水流路が確保されていることを特徴とする
請求項1又は2に記載の補強された外圧式中空糸膜の構造。
The warp filament is singular and the cross-sectional shape is star-shaped, saddle-shaped, V-shaped, W-shaped
It has a cross section with a different shape, and a permeate flow path is secured in the warp direction.
The structure of the reinforced external pressure type hollow fiber membrane according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015002827U JP3199601U (en) | 2015-06-04 | 2015-06-04 | Structure of external pressure hollow fiber membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015002827U JP3199601U (en) | 2015-06-04 | 2015-06-04 | Structure of external pressure hollow fiber membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JP3199601U true JP3199601U (en) | 2015-09-03 |
Family
ID=54188199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015002827U Active JP3199601U (en) | 2015-06-04 | 2015-06-04 | Structure of external pressure hollow fiber membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3199601U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107988641A (en) * | 2017-10-12 | 2018-05-04 | 天津膜天膜科技股份有限公司 | The spinneret of more endoporus runners and its application |
CN111111462A (en) * | 2020-01-06 | 2020-05-08 | 浙江长兴求是膜技术有限公司 | Fiber-reinforced hollow fiber multi-core membrane and preparation method thereof |
-
2015
- 2015-06-04 JP JP2015002827U patent/JP3199601U/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107988641A (en) * | 2017-10-12 | 2018-05-04 | 天津膜天膜科技股份有限公司 | The spinneret of more endoporus runners and its application |
CN111111462A (en) * | 2020-01-06 | 2020-05-08 | 浙江长兴求是膜技术有限公司 | Fiber-reinforced hollow fiber multi-core membrane and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101179687B1 (en) | Monofilament-reinforced hollow fiber membrane and method for preparing the same | |
EP2448658B1 (en) | Non-braided, textile-reinforced hollow fiber membrane | |
EP2616167B1 (en) | Method to make yarn-reinforced hollow fibre membranes around a soluble core | |
EP2411127B1 (en) | Non-braided reinforced hollow fibre membrane | |
US8827085B2 (en) | Monofilament-reinforced hollow fiber membrane | |
JP2008114180A (en) | Support for hollow porous membrane, hollow porous membrane and manufacturing method of them | |
EP3433008B1 (en) | Method, spinneret and system for fabricating multilayer membranes | |
US9643129B2 (en) | Non-braided, textile-reinforced hollow fiber membrane | |
JP3199601U (en) | Structure of external pressure hollow fiber membrane | |
JP3183331U (en) | Structure of external pressure hollow fiber membrane | |
CN105056773B (en) | The preparation method of the embedded hollow composite membrane of enhancing in original position | |
JP5637176B2 (en) | Method for producing support for hollow porous membrane, hollow porous membrane and method for producing the same | |
JP2023049700A (en) | Porous composite hollow fiber membrane, production method of the same and production method of core-sheath type composite fiber compact |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150610 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150618 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20150619 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3199601 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |