JP3182255B2 - Non-aqueous electrolyte battery - Google Patents
Non-aqueous electrolyte batteryInfo
- Publication number
- JP3182255B2 JP3182255B2 JP14687993A JP14687993A JP3182255B2 JP 3182255 B2 JP3182255 B2 JP 3182255B2 JP 14687993 A JP14687993 A JP 14687993A JP 14687993 A JP14687993 A JP 14687993A JP 3182255 B2 JP3182255 B2 JP 3182255B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- aqueous electrolyte
- present
- positive electrode
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Primary Cells (AREA)
- Secondary Cells (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は非水系電解質電池に係わ
り、詳しくは正極側における非水系電解質中の溶媒の分
解劣化に起因する、保存特性、サイクル特性などの低下
を防止することを目的とした当該非水系電解質の改良に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly, to prevent deterioration of storage characteristics and cycle characteristics due to degradation of a solvent in a non-aqueous electrolyte on a positive electrode side. And improvement of the non-aqueous electrolyte.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】近年、
リチウム電池等の非水系電解質電池が、ニッケル・カド
ミウム電池の如き含水電解液を使用した電池と異なり、
水の分解電圧を考慮する必要がないため通常3V以上の
高電圧設計が可能であるなどの理由から、脚光を浴びつ
つある。2. Description of the Related Art In recent years,
Non-aqueous electrolyte batteries such as lithium batteries are different from batteries that use aqueous electrolytes such as nickel-cadmium batteries,
Since it is not necessary to consider the decomposition voltage of water, a high voltage design of usually 3 V or more is possible, which is attracting attention.
【0003】而して、かかる高電圧型の非水系電解質電
池の正極活物質としては、一般にマンガン、コバルト、
ニッケル、バナジウム、ニオブなどの金属の酸化物又は
これらの金属を二種以上含有する複合酸化物が使用され
ている。[0003] As the positive electrode active material of such a high-voltage nonaqueous electrolyte battery, manganese, cobalt, and the like are generally used.
Oxides of metals such as nickel, vanadium, and niobium or composite oxides containing two or more of these metals have been used.
【0004】しかしながら、上記金属酸化物又は複合酸
化物は、非水系電解質と反応し易く、このため電池を保
存している間に非水系電解質中の溶媒が分解し、その分
解生成物(重合物など)が電極上に付着し、その結果保
存後の電池の内部抵抗(内部インピーダンス)が上昇し
て放電特性が低下したり、二次電池の場合には、さらに
サイクル特性が低下したりするという問題があった。因
みに、このような溶媒の分解反応は、正極が高電位とあ
る充電時に顕著に起こる。However, the above-mentioned metal oxide or composite oxide easily reacts with the non-aqueous electrolyte, so that the solvent in the non-aqueous electrolyte is decomposed during storage of the battery, and the decomposition product (polymer) Etc.) adhere to the electrodes, and as a result, the internal resistance (internal impedance) of the battery after storage increases and the discharge characteristics decrease, and in the case of a secondary battery, the cycle characteristics further decrease. There was a problem. Incidentally, such a decomposition reaction of the solvent occurs remarkably when the positive electrode is charged at a high potential.
【0005】ところで、上述の溶媒の分解反応を抑制し
て保存特性やサイクル特性の向上を図る試みは従来にお
いても行われており、例えばテトラヒドロフラン(TH
F)、1,3−ジオキソラン(DOXL)等の環状エー
テルの水素原子の一部をアルキル基などで置換して安定
化させ、分解劣化し難くする試みが提案されている(J.
L. Goldman, R. M. Mank, J. H. Young and V. R. Koc
h: J. Electrochem. Soc., 127,1461(1980) )。[0005] By the way, attempts to improve the storage characteristics and the cycle characteristics by suppressing the above-mentioned decomposition reaction of the solvent have been made in the past. For example, tetrahydrofuran (TH
F), attempts have been made to substitute a part of hydrogen atoms of a cyclic ether such as 1,3-dioxolane (DOXL) with an alkyl group and the like to stabilize the hydrogen atom and to make it difficult to decompose and degrade (J.
L. Goldman, RM Mank, JH Young and VR Koc
h: J. Electrochem. Soc., 127,1461 (1980)).
【0006】しかしながら、このような環状エーテルの
アルキル化による改質によっても、非水系電解質を充分
に安定化させることは難しく、高電位の正極側における
非水系電解質の分解反応を有効に抑制するには至ってい
ないのが実情である。特に、二次電池の場合、過充電時
に、正極上で炭酸ガスなどの発生を伴った溶媒の分解反
応が急激に進行し、電池特性が著しく低下するという問
題が指摘されていた。However, it is difficult to stabilize the non-aqueous electrolyte sufficiently even by such modification of the cyclic ether by alkylation, and it is necessary to effectively suppress the decomposition reaction of the non-aqueous electrolyte on the high potential positive electrode side. The fact is that it has not been reached. In particular, in the case of a secondary battery, it has been pointed out that during overcharging, a decomposition reaction of a solvent accompanied by generation of carbon dioxide gas or the like proceeds rapidly on the positive electrode, and the battery characteristics are significantly deteriorated.
【0007】本発明は、上述の問題を解決するべくなさ
れたものであって、その目的とするところは、保存特
性、サイクル特性等の電池特性に優れた非水系電解質電
池を提供するにある。The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a non-aqueous electrolyte battery having excellent battery characteristics such as storage characteristics and cycle characteristics.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水系電解質電池(以下、「本発明電
池」と称する。)は、金属リチウム又はリチウムを吸蔵
放出可能な物質を負極材料とする負極と、正極と、非水
系電解質とを備えた非水系電解質電池において、前記非
水系電解質に下記化2で表されるアゾ化合物が添加され
てなる。In order to achieve the above object, a non-aqueous electrolyte battery according to the present invention (hereinafter, referred to as "battery of the present invention") comprises a metal lithium or a substance capable of occluding and releasing lithium. In a non-aqueous electrolyte battery including a negative electrode as a material, a positive electrode, and a non-aqueous electrolyte, an azo compound represented by the following formula (2) is added to the non-aqueous electrolyte.
【0009】[0009]
【化2】 Embedded image
【0010】但し、R1 、R2 、R3 、R4 は各独立し
て、水素原子又は炭化水素基である。However, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group.
【0011】本発明におけるアゾ化合物の具体例として
は、4,4’−テトラメチルジアミノアゾベンゼン、
4,4’−テトラエチルジアミノアゾベンゼン、4,
4’−テトラプロピルジアミノアゾベンゼン、4,4’
−テトラブチルジアミノアゾベンゼン及び4,4’−テ
トラフェニルジアミノアゾベンゼンが挙げられる。これ
らのアゾ化合物は、一種単独を添加してもよく、必要に
応じて二種以上を併用して添加してもよい。Specific examples of the azo compound in the present invention include 4,4'-tetramethyldiaminoazobenzene,
4,4′-tetraethyldiaminoazobenzene, 4,
4'-tetrapropyldiaminoazobenzene, 4,4 '
-Tetrabutyldiaminoazobenzene and 4,4'-tetraphenyldiaminoazobenzene. These azo compounds may be used alone or in combination of two or more as needed.
【0012】本発明におけるアゾ化合物は、その酸化電
位が電池の充電電圧よりも貴であり、且つ、非水系電解
質の分解電圧よりも卑である物質でなければならない。
酸化電位が充電電圧より低いと充電不能となり、また非
水系電解質の分解電圧よりも貴であると非水系電解質の
分解を抑制することができなくなるからである。The azo compound in the present invention must be a substance whose oxidation potential is more noble than the charge voltage of the battery and lower than the decomposition voltage of the non-aqueous electrolyte.
This is because if the oxidation potential is lower than the charging voltage, charging becomes impossible, and if the oxidation potential is higher than the decomposition voltage of the non-aqueous electrolyte, the decomposition of the non-aqueous electrolyte cannot be suppressed.
【0013】アゾ化合物の非水系電解質中への添加割合
は、電池内の非水系電解質の総量によっても若干異なる
が、有意な添加効果を挙げる上で通常1×10-3モル/
リットル以上添加する必要がある。0.01〜1モル/
リットルの範囲で添加することが好ましい。添加割合が
0.01モル/リットル未満の場合は添加効果が充分に
発現されず、また1モル/リットルを越えた場合は電解
質の量が相対的に減少することに起因して電導度が低下
したり、過剰のアゾ化合物が正極又は負極と徐々に反応
することに起因して保存特性やサイクル特性が低下した
りする傾向があるからである。[0013] The addition ratio of the non-aqueous electrolyte solution of the azo compound varies slightly by the total amount of non-aqueous electrolyte in the battery, usually 1 × 10 -3 mol on include a significant effect of adding /
It is necessary to add more than 1 liter. 0.01 to 1 mol /
It is preferable to add in the range of liter. When the addition ratio is less than 0.01 mol / l, the effect of addition is not sufficiently exhibited, and when it exceeds 1 mol / l, the conductivity decreases due to the relative decrease in the amount of the electrolyte. This is because the storage characteristics and the cycle characteristics tend to decrease due to the excessive azo compound reacting with the positive electrode or the negative electrode gradually.
【0014】本発明においては、負極材料として金属リ
チウム又はリチウムを吸蔵放出可能な物質が使用され
る。リチウムを吸蔵放出可能な物質としては、リチウム
合金や、黒鉛、コークス等の炭素材料が例示されるが、
リチウムの吸蔵放出量(容量)が多い点で黒鉛が特に好
ましい。In the present invention, lithium metal or a substance capable of inserting and extracting lithium is used as the negative electrode material. Examples of the substance capable of inserting and extracting lithium include lithium alloys, graphite, and carbon materials such as coke.
Graphite is particularly preferred in that it has a large lithium storage / release amount (capacity).
【0015】本発明における正極材料(活物質)として
は、例えば、3V以上の電池電圧を有する非水系電解質
電池において従来使用されている、マンガン、コバル
ト、ニッケル、バナジウム、ニオブなどの金属の酸化物
(LiMn2 O4 、LiCoO2 、LiNiO2 など)
又はこれらの金属を二種以上含有する複合酸化物(Li
Nix Co1-x O2 (但し、0<x<1)など)が挙げ
られる。As the positive electrode material (active material) in the present invention, for example, oxides of metals such as manganese, cobalt, nickel, vanadium and niobium which are conventionally used in non-aqueous electrolyte batteries having a battery voltage of 3 V or more. (LiMn 2 O 4 , LiCoO 2 , LiNiO 2 etc.)
Alternatively, a composite oxide containing two or more of these metals (Li
Ni x Co 1-x O 2 (however, 0 <x <1) or the like.
【0016】本発明の効果は、電位が高く非水系電解質
の分解劣化を誘起し易い高電位型の正極材料を使用した
場合に顕著に発現されるが、正極活物質への添加剤とし
て使用されるアゾ化合物は、過充電時の非水系電解質の
分解劣化を抑制する機能も有するので、本発明における
正極材料は常態時(保存時又は通常の充電時)において
3V以上の高電位を示す上述した材料に必ずしも限定さ
れない。The effect of the present invention is remarkably exhibited when a high potential type positive electrode material which has a high potential and easily induces decomposition and degradation of the non-aqueous electrolyte is used, but is used as an additive to the positive electrode active material. The azo compound also has a function of suppressing the decomposition and degradation of the non-aqueous electrolyte during overcharging, so that the positive electrode material of the present invention exhibits a high potential of 3 V or more in a normal state (during storage or normal charging). It is not necessarily limited to the material.
【0017】本発明は、保存特性、サイクル特性等の電
池特性に優れた非水系電解質電池を得るために非水系電
解質にアゾ化合物を添加して分解劣化し難くした点に特
徴を有する。それゆえ、非水系電解質などの電池を構成
する他の部材については特に制限されず、非水系電解質
電池用として従来使用され、或いは提案されている種々
の材料を特に制限無く使用することが可能である。The present invention is characterized in that an azo compound is added to a non-aqueous electrolyte to make it less likely to decompose and deteriorate in order to obtain a non-aqueous electrolyte battery having excellent battery characteristics such as storage characteristics and cycle characteristics. Therefore, other members constituting the battery such as the non-aqueous electrolyte are not particularly limited, and various materials conventionally used or proposed for non-aqueous electrolyte batteries can be used without any particular limitation. is there.
【0018】例えば、非水系電解液の溶媒としては、エ
チレンカーボネート、ビニレンカーボネート、プロピレ
ンカーボネートなどの有機溶媒や、これらとジメチルカ
ーボネート、ジエチルカーボネート、1,2−ジメトキ
シエタン、1,2−ジエトキシエタン、エトキシメトキ
シエタンなどの低沸点溶媒との混合溶媒が挙げられる。For example, as the solvent of the non-aqueous electrolyte, organic solvents such as ethylene carbonate, vinylene carbonate and propylene carbonate, and dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc. And a low-boiling solvent such as ethoxymethoxyethane.
【0019】また、非水系電解液の溶質としては、過塩
素酸リチウム(LiClO4 )、トリフルオロメタンス
ルホン酸リチウム(LiCF3 SO3 )、ヘキサフルオ
ロリン酸リチウム(LiPF6 )、テトラフルオロホウ
酸リチウム(LiBF4 )、ヘキサフルオロヒ酸リチウ
ム(LiAsF6 )、ヘキサフルオロアンチモン酸リチ
ウム(LiSbF6 )が例示される。The solutes of the nonaqueous electrolyte include lithium perchlorate (LiClO 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium hexafluorophosphate (LiPF 6 ), and lithium tetrafluoroborate. (LiBF 4), lithium hexafluoroarsenate (LiAsF 6), lithium hexafluoroantimonate (LiSbF 6) are exemplified.
【0020】なお、本発明における非水系電解質とし
て、上述の液体電解質に代えて固体電解質を使用するこ
とも可能である。Incidentally, as the non-aqueous electrolyte in the present invention, it is possible to use a solid electrolyte instead of the above-mentioned liquid electrolyte.
【0021】[0021]
【作用】本発明電池においては、非水系電解質に少なく
とも一種のアゾ化合物が添加されているので、長期間保
存したり過充電したりしても、正極活物質と非水系電解
質との反応が起こり難く、非水系電解質が分解劣化し難
い。この理由は、次のように推察される。In the battery of the present invention, since at least one azo compound is added to the non-aqueous electrolyte, a reaction between the positive electrode active material and the non-aqueous electrolyte occurs even when the battery is stored for a long time or overcharged. It is difficult to decompose and degrade the non-aqueous electrolyte. The reason is presumed as follows.
【0022】すなわち、アゾ化合物は分子中に共役二重
結合を有するため分子の共鳴安定効果が高く、このため
充電などにより正極電位が高くなると正極側で酸化され
て、下記の化3に示すようにカチオン(陽イオン)を生
成する。そして、このアゾ化合物の酸化電位が非水系電
解質の酸化電位よりも卑であると、化3に示すアゾ化合
物の酸化反応が非水系電解質の酸化反応に優先して起こ
る。換言すれば、アゾ化合物が犠牲(ダミー)となって
酸化され非水系電解質中の溶媒の分解を抑制するのであ
る。なお、アゾ化合物は酸化還元反応の可逆性に優れる
ため、生成したカチオンは非水系電解質中を拡散し、下
記の化4に示すように負極側で還元されて、再びもとの
アゾ化合物に戻り、正極側における酸化反応のダミーと
して繰り返し利用される。That is, since the azo compound has a conjugated double bond in the molecule, the resonance stabilizing effect of the molecule is high. Therefore, when the positive electrode potential is increased by charging or the like, the azo compound is oxidized on the positive electrode side, as shown in the following chemical formula 3. To generate cations (cations). When the oxidation potential of the azo compound is lower than the oxidation potential of the non-aqueous electrolyte, the oxidation reaction of the azo compound shown in Chemical Formula 3 occurs in preference to the oxidation reaction of the non-aqueous electrolyte. In other words, the azo compound is sacrificed (dummy) and oxidized to suppress the decomposition of the solvent in the non-aqueous electrolyte. Since the azo compound has excellent reversibility of the oxidation-reduction reaction, the generated cation diffuses in the non-aqueous electrolyte, and is reduced on the negative electrode side as shown in the following chemical formula 4, and returns to the original azo compound again. , Is repeatedly used as a dummy for an oxidation reaction on the positive electrode side.
【0023】[0023]
【化3】 Embedded image
【0024】[0024]
【化4】 Embedded image
【0025】[0025]
【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples, and may be carried out by appropriately changing the scope of the present invention. Is possible.
【0026】(実施例1)扁平型の非水系電解質二次電
池を作製した。Example 1 A flat nonaqueous electrolyte secondary battery was manufactured.
【0027】〔正極〕正極活物質として、二酸化マンガ
ンを375°Cで加熱処理したものを使用し、これと、
導電剤としてのカーボン粉末と、結着剤としてのフッ素
樹脂粉末とを重量比85:10:5で混合し、次いでこ
の混合物を加圧成形した後、250°Cで加熱処理して
円板状の正極を作製した。[Positive Electrode] As a positive electrode active material, manganese dioxide heated at 375 ° C. was used.
A carbon powder as a conductive agent and a fluororesin powder as a binder are mixed at a weight ratio of 85: 10: 5, and then this mixture is pressed and then heated at 250 ° C. to form a disc. Was produced.
【0028】〔負極〕リチウム圧延板を所定寸法に打ち
抜いて円板状の負極を作製した。[Negative Electrode] A disc-shaped negative electrode was prepared by punching a rolled lithium plate into a predetermined size.
【0029】〔電解液〕エチレンカーボネート(EC)
とプロピレンカーボネート(PC)と1,2−ジメトキ
シエタン(DME)との体積比5:3:2の混合溶媒
に、トリフルオロメタンスルホン酸リチウム(LiCF
3 SO3 )を1Mの割合で溶かした溶液に、さらに4,
4’−テトラメチルジアミノアゾベンゼンを0.01モ
ル/リットルの割合で添加して電解液を調製した。[Electrolyte] Ethylene carbonate (EC)
In a mixed solvent of propylene carbonate (PC) and 1,2-dimethoxyethane (DME) in a volume ratio of 5: 3: 2, lithium trifluoromethanesulfonate (LiCF
3 SO 3 ) was further dissolved in a 1 M solution.
4′-Tetramethyldiaminoazobenzene was added at a rate of 0.01 mol / liter to prepare an electrolytic solution.
【0030】〔電池の作製〕以上の正負両極及び電解液
を用いて扁平型の本発明電池BA1(外径:20mm、
厚み:2.5mm)を作製した。なお、セパレータとし
ては、ポリプロピレン製の微多孔膜(セラニーズ社製、
商品名「セルガード」)を使用し、これに先の電解液を
含浸させた。[Preparation of Battery] A flat type battery BA1 (outer diameter: 20 mm,
(Thickness: 2.5 mm). In addition, as a separator, a polypropylene microporous membrane (manufactured by Celanese Corporation,
(Trade name "Celgard"), which was impregnated with the electrolytic solution.
【0031】図1は作製した本発明電池BA1を模式的
に示す断面図であり、同図に示す本発明電池BA1は、
正極1、負極2、これら両電極1,2を互いに離間する
セパレータ3、正極缶4、負極缶5、正極集電体6、負
極集電体7及びポリプロピレン製の絶縁パッキング8な
どからなる。FIG. 1 is a cross-sectional view schematically showing the produced battery BA1 of the present invention. The battery BA1 of the present invention shown in FIG.
It comprises a positive electrode 1, a negative electrode 2, a separator 3 for separating the electrodes 1 and 2 from each other, a positive electrode can 4, a negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7, an insulating packing 8 made of polypropylene, and the like.
【0032】正極1及び負極2は、電解液を含浸したセ
パレータ3を介して対向して正負両極缶4、5が形成す
る電池ケース内に収納されており、正極1は正極集電体
6を介して正極缶4に、また負極2は負極集電体7を介
して負極缶5に接続され、電池内部で生じた化学エネル
ギーを正極缶4及び負極缶5の両端子から電気エネルギ
ーとして外部へ取り出し得るようになっている。The positive electrode 1 and the negative electrode 2 are housed in a battery case formed with positive and negative bipolar cans 4 and 5 facing each other via a separator 3 impregnated with an electrolytic solution. The negative electrode 2 is connected to the negative electrode can 5 via the negative electrode current collector 7 and the negative electrode 2 is connected to the negative electrode can 5 by passing chemical energy generated inside the battery as electric energy from both terminals of the positive electrode can 4 and the negative electrode can 5. It can be taken out.
【0033】(実施例2)電解液の溶質として、トリフ
ルオロメタンスルホン酸リチウムに代えてヘキサフルオ
ロリン酸リチウムを使用したこと以外は実施例1と同様
にして、本発明電池BA2を作製した。Example 2 A battery BA2 of the present invention was produced in the same manner as in Example 1 except that lithium hexafluorophosphate was used instead of lithium trifluoromethanesulfonate as a solute of the electrolytic solution.
【0034】(実施例3)電解液の溶媒として、エチレ
ンカーボネートとプロピレンカーボネートと1,2−ジ
メトキシエタンとの体積比5:3:2の混合溶媒に代え
て、エチレンカーボネートとプロピレンカーボネートと
エトキシメトキシエタン(EME)との体積比5:3:
2の混合溶媒を使用したこと以外は実施例2と同様にし
て、本発明電池BA3を作製した。Example 3 As the solvent for the electrolytic solution, ethylene carbonate, propylene carbonate and ethoxymethoxy were used instead of a mixed solvent of ethylene carbonate, propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 5: 3: 2. Volume ratio with ethane (EME) 5: 3:
Battery BA3 of the present invention was produced in the same manner as in Example 2, except that the mixed solvent of No. 2 was used.
【0035】(比較例1)電解液の調製において、4,
4’−テトラメチルジアミノアゾベンゼンを添加しなか
ったこと以外は実施例1と同様にして、比較電池BC1
を作製した。(Comparative Example 1) In the preparation of the electrolytic solution,
Comparative battery BC1 was prepared in the same manner as in Example 1 except that 4′-tetramethyldiaminoazobenzene was not added.
Was prepared.
【0036】(比較例2)電解液の溶質として、トリフ
ルオロメタンスルホン酸リチウムに代えてヘキサフルオ
ロリン酸リチウムを使用したこと以外は比較例1と同様
にして、比較電池BC2を作製した。Comparative Example 2 A comparative battery BC2 was produced in the same manner as in Comparative Example 1 except that lithium hexafluorophosphate was used instead of lithium trifluoromethanesulfonate as a solute of the electrolytic solution.
【0037】(比較例3)電解液の溶媒として、エチレ
ンカーボネートとプロピレンカーボネートと1,2−ジ
メトキシエタンとの体積比5:3:2の混合溶媒に代え
て、エチレンカーボネートとプロピレンカーボネートと
エトキシメトキシエタン(EME)との体積比5:3:
2の混合溶媒を使用したこと以外は比較例2と同様にし
て、比較電池BC3を作製した。(Comparative Example 3) As the solvent for the electrolytic solution, ethylene carbonate, propylene carbonate and ethoxy methoxy Volume ratio with ethane (EME) 5: 3:
Comparative Battery BC3 was made in the same manner as Comparative Example 2 except that the mixed solvent of No. 2 was used.
【0038】〔サイクル特性〕常温(25°C)下、2
mAで充電終止電圧3.5Vまで充電した後、2mAで
4時間放電する工程を1サイクルとする充放電サイクル
試験を行い、各電池のサイクル特性を調べた。なお、放
電時間内に放電電圧が2.4Vに達した時点を各電池の
寿命と決め、その時点で充放電サイクル試験を終了し
た。結果を図2、図3及び図4に示す。[Cycle characteristics] At room temperature (25 ° C.)
A charge / discharge cycle test was performed in which a charge-discharge cycle test was performed in which a step of discharging at 4 mA for 2 hours at 1 mA was performed after charging at a charge end voltage of 3.5 V at mA, and the cycle characteristics of each battery were examined. The time when the discharge voltage reached 2.4 V within the discharge time was determined as the life of each battery, and the charge / discharge cycle test was terminated at that time. The results are shown in FIGS. 2, 3 and 4.
【0039】図2〜図4は、各電池のサイクル特性を、
縦軸に各サイクルにおける放電終止電圧(V)を、また
横軸にサイクル数(回)をとって示したグラフであり、
これらの図より、電解液に4,4’−テトラメチルジア
ミノアゾベンゼンを添加した本発明電池BA1〜BA3
は、それを添加しなかった比較電池BC1〜BC3に比
し、電解液の分解劣化が小さいためサイクル寿命が長
く、サイクル特性に優れていることが分かる。FIGS. 2 to 4 show cycle characteristics of each battery.
The vertical axis represents the discharge end voltage (V) in each cycle, and the horizontal axis represents the number of cycles (times).
From these figures, it can be seen that the batteries BA1 to BA3 of the present invention in which 4,4′-tetramethyldiaminoazobenzene was added to the electrolytic solution.
It can be seen that, compared to the comparative batteries BC1 to BC3 which did not add it, the cycle life was longer and the cycle characteristics were excellent because the degradation of the electrolytic solution was small.
【0040】〔過充電特性〕本発明電池BA1及び比較
電池BC2をそれぞれ10個づつ作製し、各電池の電池
電圧を通常の充電終止電圧よりも高電圧である4Vに2
0日間保持し(過充電状態)、そのときの各電池の内部
インピーダンス及び電池厚みの変化を調べた。結果を表
1に示す。[Overcharge Characteristics] Ten batteries each of the battery BA1 of the present invention and the comparative battery BC2 were prepared, and the battery voltage of each battery was reduced to 4V, which is higher than the normal charge end voltage.
The battery was held for 0 days (overcharged state), and changes in the internal impedance and the battery thickness of each battery at that time were examined. Table 1 shows the results.
【0041】[0041]
【表1】 [Table 1]
【0042】表1に示すように、本発明電池BA1は、
比較電池BC2に比し、電解液の分解劣化が小さいため
過充電状態での内部インピーダンスの上昇や電池厚みの
増加が総じて小さく、信頼性が高いことが分かる。As shown in Table 1, the battery BA1 of the present invention
As compared with the comparative battery BC2, the degradation of the electrolytic solution is small, so that the increase in the internal impedance and the increase in the thickness of the battery in the overcharged state are generally small and the reliability is high.
【0043】(実施例4〜7)4,4’−テトラメチル
ジアミノアゾベンゼン0.01モル/リットルに代え
て、4,4’−テトラエチルジアミノアゾベンゼン、
4,4’−テトラプロピルジアミノアゾベンゼン、4,
4’−テトラブチルジアミノアゾベンゼン又は4,4’
−テトラフェニルジアミノアゾベンゼンを同割合で使用
したこと以外は実施例1と同様にして、順に本発明電池
BA4〜BA7を作製した。(Examples 4 to 7) In place of 0.01 mol / l of 4,4'-tetramethyldiaminoazobenzene, 4,4'-tetraethyldiaminoazobenzene,
4,4′-tetrapropyldiaminoazobenzene, 4,
4'-tetrabutyldiaminoazobenzene or 4,4 '
-Batteries BA4 to BA7 of the present invention were produced in the same manner as in Example 1 except that tetraphenyldiaminoazobenzene was used in the same ratio.
【0044】〔サイクル特性〕先と同じ条件で充放電サ
イクル試験を行い、各電池のサイクル特性を調べた。結
果を図2〜図4と同じ座標系のグラフである図5に示
す。図中には、比較のために、先の比較電池BC1のサ
イクル特性も示してある。同図より、電解液にアゾ化合
物が添加されている本発明電池BA4〜BA7は、何も
添加されていない比較電池BC1に比し、サイクル寿命
が長く、サイクル特性に優れていることが分かる。[Cycle Characteristics] A charge / discharge cycle test was performed under the same conditions as above, and the cycle characteristics of each battery were examined. The results are shown in FIG. 5, which is a graph in the same coordinate system as in FIGS. In the figure, the cycle characteristics of the comparative battery BC1 are also shown for comparison. From the figure, it is understood that the batteries BA4 to BA7 of the present invention in which the azo compound was added to the electrolytic solution had a longer cycle life and were superior in cycle characteristics as compared with the comparative battery BC1 in which nothing was added.
【0045】叙上の実施例では、本発明を扁平角型の非
水系電解質電池に適用する場合を例に挙げて説明した
が、電池の形状は特に限定されず、円筒型、角型など種
々の形状の非水系電解質電池に適用し得るものである。In the embodiments described above, the case where the present invention is applied to a flat prismatic type non-aqueous electrolyte battery has been described as an example. However, the shape of the battery is not particularly limited, and various shapes such as a cylindrical type and a square type are available. The present invention can be applied to a non-aqueous electrolyte battery having the following shape.
【0046】また、上記実施例では、本発明を二次電池
に適用する場合について説明したが、本発明電池は過充
電状態での内部インピーダンスの上昇や電池厚みの増加
が小さいことから、本発明は過充電状態で保存されるメ
モリーバクアップ用の一次電池などにも好適に適用し得
るものである。In the above embodiment, the case where the present invention is applied to a secondary battery has been described. However, since the present invention battery has a small increase in internal impedance and a small increase in battery thickness in an overcharged state, the present invention is not limited to this. Can be suitably applied to a primary battery for memory backup stored in an overcharged state.
【0047】[0047]
【発明の効果】本発明電池は、非水系電解質にアゾ化合
物が添加されているので、非水系電解質の分解劣化が起
こりにくく、このため保存特性、サイクル特性等の電池
特性に優れるなど、本発明は優れた特有の効果を奏す
る。According to the battery of the present invention, since the azo compound is added to the non-aqueous electrolyte, the non-aqueous electrolyte is hardly decomposed and degraded, and thus has excellent battery characteristics such as storage characteristics and cycle characteristics. Has an excellent specific effect.
【図1】扁平型の非水系電解質電池(本発明電池BA
1)の断面図である。FIG. 1 shows a flat nonaqueous electrolyte battery (battery BA of the present invention).
It is sectional drawing of 1).
【図2】実施例で作製した本発明電池BA1及び比較電
池BC1のサイクル特性を示したグラフである。FIG. 2 is a graph showing cycle characteristics of a battery BA1 of the present invention and a comparative battery BC1 manufactured in Examples.
【図3】実施例で作製した本発明電池BA2及び比較電
池BC2のサイクル特性を示したグラフである。FIG. 3 is a graph showing cycle characteristics of a battery BA2 of the present invention and a comparative battery BC2 produced in Examples.
【図4】実施例で作製した本発明電池BA3及び比較電
池BC3のサイクル特性を示したグラフである。FIG. 4 is a graph showing cycle characteristics of a battery BA3 of the present invention and a comparative battery BC3 produced in Examples.
【図5】実施例で作製した本発明電池BA4〜BA7及
び比較電池BC1のサイクル特性を示したグラフであ
る。FIG. 5 is a graph showing cycle characteristics of batteries BA4 to BA7 of the present invention and a comparative battery BC1 manufactured in Examples.
BA1 非水系電解質電池(本発明電池) 1 正極 2 負極 3 セパレータ BA1 Non-aqueous electrolyte battery (battery of the present invention) 1 Positive electrode 2 Negative electrode 3 Separator
───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 平6−223875(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 6/16 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Toshihiko Saito 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-6-223875 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) H01M 10/40 H01M 6/16
Claims (2)
な物質を負極材料とする負極と、正極と、非水系電解質
とを備えた非水系電解質電池において、前記非水系電解
質に下記化1で表されるアゾ化合物が添加されているこ
とを特徴とする非水系電解質電池。 【化1】 (但し、R1 、R2 、R3 、R4 は各独立して、水素原
子又は炭化水素基である。)1. A non-aqueous electrolyte battery comprising a negative electrode using metal lithium or a substance capable of inserting and extracting lithium as a negative electrode material, a positive electrode, and a non-aqueous electrolyte, wherein the non-aqueous electrolyte is represented by the following formula 1. A non-aqueous electrolyte battery characterized by adding an azo compound. Embedded image (However, R 1 , R 2 , R 3 , and R 4 are each independently a hydrogen atom or a hydrocarbon group.)
ルジアミノアゾベンゼン、4,4’−テトラエチルジア
ミノアゾベンゼン、4,4’−テトラプロピルジアミノ
アゾベンゼン、4,4’−テトラブチルジアミノアゾベ
ンゼン及び4,4’−テトラフェニルジアミノアゾベン
ゼンよりなる群から選ばれた少なくとも一種のアゾベン
ゼン誘導体である請求項1記載の非水系電解質電池。2. The method of claim 1, wherein the azo compound is 4,4'-tetramethyldiaminoazobenzene, 4,4'-tetraethyldiaminoazobenzene, 4,4'-tetrapropyldiaminoazobenzene, 4,4'-tetrabutyldiaminoazobenzene, and The non-aqueous electrolyte battery according to claim 1, wherein the non-aqueous electrolyte battery is at least one azobenzene derivative selected from the group consisting of 4,4'-tetraphenyldiaminoazobenzene.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14687993A JP3182255B2 (en) | 1993-05-25 | 1993-05-25 | Non-aqueous electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14687993A JP3182255B2 (en) | 1993-05-25 | 1993-05-25 | Non-aqueous electrolyte battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06333596A JPH06333596A (en) | 1994-12-02 |
JP3182255B2 true JP3182255B2 (en) | 2001-07-03 |
Family
ID=15417639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14687993A Expired - Fee Related JP3182255B2 (en) | 1993-05-25 | 1993-05-25 | Non-aqueous electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3182255B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100326461B1 (en) | 2000-01-21 | 2002-02-28 | 김순택 | A electrolyte for a lithium secondary battery |
US8252465B2 (en) | 2001-01-19 | 2012-08-28 | Samsung Sdi Co., Ltd. | Electrolyte for lithium secondary battery and lithium secondary battery comprising same |
KR100467435B1 (en) | 2002-09-06 | 2005-01-24 | 삼성에스디아이 주식회사 | An electrolyte for a lithium battery and a lithium battery comprising the same |
KR100898284B1 (en) | 2002-09-17 | 2009-05-18 | 삼성에스디아이 주식회사 | A lithium secondary battery |
KR100471973B1 (en) | 2003-04-03 | 2005-03-10 | 삼성에스디아이 주식회사 | A non-aqueous electrolyte and a lithium secondary battery comprising the same |
KR100515331B1 (en) | 2003-04-28 | 2005-09-15 | 삼성에스디아이 주식회사 | Electrolyte for lithium secondary battery and lithium secondary battery comprising same |
KR100536196B1 (en) | 2003-05-13 | 2005-12-12 | 삼성에스디아이 주식회사 | A non-aqueous electrolyte and a lithium secondary battery comprising the same |
KR100508923B1 (en) * | 2003-06-27 | 2005-08-17 | 삼성에스디아이 주식회사 | A non-aqueous electrolyte and a lithium secondary battery comprising the same |
EP1528616B1 (en) | 2003-10-31 | 2017-03-08 | Samsung SDI Co., Ltd. | Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same |
KR100683666B1 (en) | 2004-02-04 | 2007-02-20 | 삼성에스디아이 주식회사 | Organic electrolytic solution and lithium battery employing the same |
KR100709838B1 (en) | 2005-07-07 | 2007-04-23 | 삼성에스디아이 주식회사 | Electrolyte for lithium rechargeable battery and a lithium rechargeable battery comprising it |
KR101733739B1 (en) | 2012-11-13 | 2017-05-08 | 삼성에스디아이 주식회사 | Electrolyte additive and electrolyte and lithium rechargeable battery including the same |
-
1993
- 1993-05-25 JP JP14687993A patent/JP3182255B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06333596A (en) | 1994-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7416813B2 (en) | Lithium secondary battery | |
US5352548A (en) | Secondary battery | |
CN101188313B (en) | Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including same | |
JP4543085B2 (en) | Additive for lithium secondary battery | |
EP0482287B1 (en) | A non-aqueous secondary electrochemical battery | |
US5521027A (en) | Non-aqueous secondary electrochemical battery | |
US7378190B2 (en) | Non-aqueous electrolyte secondary battery | |
EP1936731B1 (en) | Rechargeable lithium battery | |
KR20190058134A (en) | Electrolytes for lithium metal secondary battery | |
JP2012169253A (en) | Electrolyte for lithium secondary battery and lithium secondary battery including the same | |
JPH07320779A (en) | Nonaqueous electrolytic battery | |
JPH07122296A (en) | Non-aqueous electrolyte secondary battery | |
US6746804B2 (en) | Nonaqueous organic electrolytes for low temperature discharge of rechargeable electrochemical cells | |
JPH11224675A (en) | Nonaqueous electrolyte battery | |
JP3182255B2 (en) | Non-aqueous electrolyte battery | |
JP3199426B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2005183384A (en) | Electrochemical active material for positive electrode of lithium rechargeable electrochemical cell | |
KR100408085B1 (en) | Non-aqueous electrolyte secondary battery and method for producing the same | |
JP5117649B2 (en) | Non-aqueous electrolyte secondary battery and manufacturing method thereof | |
JP3208226B2 (en) | Non-aqueous electrolyte battery | |
JPH07320778A (en) | Nonaqueous electrolytic battery | |
JP3123780B2 (en) | Non-aqueous electrolyte battery | |
JP4974316B2 (en) | Non-aqueous secondary battery | |
JP3596225B2 (en) | Non-aqueous secondary battery and method of manufacturing the same | |
JPH08162154A (en) | Secondary battery having nonaqueous solvent electrolyt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090420 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090420 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100420 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110420 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120420 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |