Nothing Special   »   [go: up one dir, main page]

JP3182009B2 - Binocular stereoscopic device - Google Patents

Binocular stereoscopic device

Info

Publication number
JP3182009B2
JP3182009B2 JP34368592A JP34368592A JP3182009B2 JP 3182009 B2 JP3182009 B2 JP 3182009B2 JP 34368592 A JP34368592 A JP 34368592A JP 34368592 A JP34368592 A JP 34368592A JP 3182009 B2 JP3182009 B2 JP 3182009B2
Authority
JP
Japan
Prior art keywords
eye image
eye
parallax
value
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34368592A
Other languages
Japanese (ja)
Other versions
JPH06194602A (en
Inventor
節之 本郷
勇 鎧沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP34368592A priority Critical patent/JP3182009B2/en
Publication of JPH06194602A publication Critical patent/JPH06194602A/en
Application granted granted Critical
Publication of JP3182009B2 publication Critical patent/JP3182009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Processing Or Creating Images (AREA)
  • Digital Computer Display Output (AREA)
  • Image Generation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,左眼と右眼とにそれぞ
れ左眼画像と右眼画像とを呈示し,対象を立体的に見せ
る両眼立体視装置に関するものである。ステレオ映像通
信や遠隔作業用映像伝送,立体映像放送,遠隔監視,立
体映像記録再生,人工立体画像生成など,ステレオ画像
の表示を行う広範囲の分野で利用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a binocular stereoscopic apparatus which presents a left-eye image and a right-eye image to a left eye and a right eye, respectively, and makes an object look three-dimensional. It can be used in a wide range of fields for displaying stereo images, such as stereo video communication, video transmission for remote work, stereo video broadcasting, remote monitoring, stereo video recording and playback, and artificial stereo image generation.

【0002】[0002]

【従来の技術】従来の両眼立体視装置では,左眼画像と
右眼画像との画像位置のズレ(以下,視差と呼ぶ)の大
きさに関係なく,画面全体にわたって一様に明瞭な画像
を呈示していた。このため,立体映像を観察する際に
は,観察位置から特定の距離にある表示画面に目の焦点
を合わせつつ,左眼の視線と右眼の視線とがなす角(以
下,輻輳角と呼ぶ)のみが,画像中の注視する位置によ
って異なるという事態が頻繁に生じ,輻輳角の制御(以
下,輻輳制御と呼ぶ)と,眼球内部でレンズの役割を果
たす水晶体の調節(以下,焦点調節と呼ぶ)との間に矛
盾が発生し,その矛盾が,両眼立体視装置を使用する際
に疲労をもたらす大きな要因となっていた。
2. Description of the Related Art In a conventional binocular stereoscopic apparatus, a clear image is uniformly formed over the entire screen irrespective of the size of the image position deviation (hereinafter referred to as parallax) between a left-eye image and a right-eye image. Was presented. Therefore, when observing a stereoscopic image, the angle between the line of sight of the left eye and the line of sight of the right eye (hereinafter referred to as the convergence angle) while focusing the eye on the display screen at a specific distance from the observation position ) Often differs depending on the gaze position in the image, and the control of the convergence angle (hereinafter referred to as convergence control) and the adjustment of the crystalline lens that plays the role of a lens inside the eyeball (hereinafter referred to as focus adjustment) Contradiction), and the contradiction is a major factor that causes fatigue when using the binocular stereoscopic device.

【0003】〔参考文献〕 [1]:山崎,上條,福住“二眼式時分割立体表示装置
における人間の視覚機能評価”,1992年テレビジョン学
会技術報告,Vol.14, No.20, pp.61-66 (1990). [2]:畑田:“疲れない立体ディスプレイを探る”,
日経エレクトロニクス,No.444, pp.205-223 (1988). こうした問題を克服する目的で,従来は,レンズによる
補正の試みが行われていた。
[References] [1]: Yamazaki, Kamijo, Fukuzumi "Evaluation of human visual function in a binocular time-division stereoscopic display device", 1992 Technical Report of the Institute of Television Engineers of Japan, Vol. 14, No. 20, pp. .61-66 (1990). [2]: Hatada: "Finding a 3D display that won't get tired",
Nikkei Electronics, No.444, pp.205-223 (1988). In order to overcome these problems, lens correction has been attempted in the past.

【0004】〔参考文献〕 [3]:Tachi, Tanie, Komoriya & Kaneko:“Tele-exi
stence(I): Design andEvaluation of a Visual Displa
y with Sensation of Presence”, Proc. RoManSy '84:
The Fifth CISMIFToMM Symposium, pp.245-254 (198
4). しかし,このような従来の方法では,注視位置に応じて
レンズを動かして補正量を調整する必要があり,極めて
高い精度の眼球運動の検出,注視位置の推定,および眼
球運動に追従する高速なレンズ制御が必要であった。
[References] [3]: Tachi, Tanie, Komoriya & Kaneko: “Tele-exi
stence (I): Design and Evaluation of a Visual Displa
y with Sensation of Presence ”, Proc. RoManSy '84:
The Fifth CISMIFToMM Symposium, pp.245-254 (198
4). However, in such a conventional method, it is necessary to adjust the correction amount by moving the lens according to the gaze position, and to detect the eye movement with very high accuracy, estimate the gaze position, and follow the eye movement. High-speed lens control was required.

【0005】このため,装置が大規模かつ複雑になるこ
と,眼球運動を検出するために一定重量のマスクを装着
するので観察者にとって煩わしいこと,眼球運動検出誤
差に起因する焦点距離補正量の誤差が相当に生じるこ
と,レンズを物理的に移動させるために時間的に大きな
遅延があることなどの問題点があり,従来技術は,疲労
の緩和にはあまり効果がなかった。
For this reason, the apparatus becomes large-scale and complicated, a mask of a constant weight is worn to detect eye movement, which is troublesome for an observer, and an error in the focal length correction amount caused by an eye movement detection error. However, the prior art has not been very effective in alleviating fatigue due to problems such as considerable occurrence of aging and a large delay in time for physically moving the lens.

【0006】[0006]

【発明が解決しようとする課題】本発明は,上記従来技
術の問題点の解決を図り,輻輳制御と焦点調節との間の
矛盾を発生させないよう,視差が大きく異なる複数の位
置で焦点が合う事態を避ける処理を,簡単な画像処理技
術を用いて実現することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and focuses on a plurality of positions having greatly different parallaxes so as not to cause inconsistency between convergence control and focus adjustment. An object of the present invention is to realize a process for avoiding a situation by using a simple image processing technique.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め,本発明では,観察者から画面までの距離に対して矛
盾の生じない輻輳角となるように左眼画像表示用および
右眼画像表示用の画面を配置し,左眼画像と右眼画像と
の間で対応する画素同士の相対的なズレの大きさに応じ
て異なる程度のボカシ処理を施した左眼画像および右眼
画像を表示するという手段を用いる。具体的には,本発
明の両眼立体視装置は,前記左眼画像と前記右眼画像の
それぞれについて,各画素位置ごとに対応する点を検出
して視差を求める手段と,前記左眼画像および前記右眼
画像の各画素を処理対象として,前記視差の値に応じた
大きさの前記各画素の近傍範囲にわたって画素値を平均
化し,その平均化した画素値を前記処理対象とした各画
素にそれぞれ表示する手段を備える。
In order to solve the above-mentioned problems, according to the present invention, the left-eye image display and the right-eye image display are performed so that the convergence angle does not cause inconsistency with respect to the distance from the observer to the screen. Display screens and display left- and right-eye images that have been blurred to different degrees depending on the relative displacement between the corresponding pixels between the left- and right-eye images Is used. Specifically, the binocular stereoscopic apparatus according to the present invention comprises: means for detecting a point corresponding to each pixel position for each of the left-eye image and the right-eye image to obtain a parallax; And the right eye
Each pixel of the image is a processing target, and is set according to the value of the parallax.
Average pixel values over the neighborhood of each pixel of size
And the averaged pixel values are processed
Means for displaying each element .

【0008】[0008]

【作用】上記手段により生ずる作用について説明する。
左眼画像表示用および右眼画像表示用の画面は,観察者
からの距離(すなわち焦点調節)に対して矛盾の生じな
い輻輳角となるように予め配置されているため,視差が
ゼロ付近となる領域では,輻輳制御と焦点調節との間に
矛盾が生じない。一方,大きな視差を持つ位置では,ボ
ケにより焦点が合わないことから,ここでも輻輳制御と
焦点調節との間の矛盾が生じない。しかも,これらの処
理は,対応点検出および平滑化という基本的な画像処理
で実現することができる。
The operation of the above means will be described.
The screens for displaying the left-eye image and the right-eye image are arranged in advance so that the convergence angle does not cause inconsistency with respect to the distance from the observer (that is, focus adjustment). In an area, there is no contradiction between the convergence control and the focus adjustment. On the other hand, at a position having a large parallax, since the image is out of focus due to blur, there is no contradiction between the convergence control and the focus adjustment. Moreover, these processes can be realized by basic image processing such as corresponding point detection and smoothing.

【0009】以上述べたように,画面の全領域にわたっ
て輻輳制御と焦点調節との間に矛盾が生じにくい両眼画
像を,簡単な画像処理を用いて生成することができると
いう作用効果がある。
As described above, there is an operational effect that a binocular image in which inconsistency between convergence control and focus adjustment does not easily occur over the entire area of the screen can be generated using simple image processing.

【0010】[0010]

【実施例】以下に,本発明の実施例について,図面を用
いて説明する。本発明に基づく両眼立体視装置の構成例
を図1に示す。図中の番号1は左眼画像入力部,2は右
眼画像入力部,3は視差検出部,4は左眼画像フィルタ
部,5は右眼画像フィルタ部,6は左眼画像表示部,7
は右眼画像表示部をそれぞれ表す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration example of a binocular stereoscopic device according to the present invention. In the figure, number 1 is a left-eye image input unit, 2 is a right-eye image input unit, 3 is a parallax detection unit, 4 is a left-eye image filter unit, 5 is a right-eye image filter unit, 6 is a left-eye image display unit, 7
Represents a right-eye image display unit.

【0011】左眼画像入力部1および右眼画像入力部2
から入力された左眼画像および右眼画像は,視差検出部
3,左眼画像フィルタ部4,および右眼画像フィルタ部
5へ送られる。視差検出部3は,左眼画像入力部1から
の左眼画像,および右眼画像入力部2からの右眼画像の
それぞれについて,各画素位置ごとに,対応する点を検
出して視差を求め,左眼画像の各画素位置に対する視差
の値を左眼画像フィルタ部4へ,また,右眼画像の各画
素位置に対する視差の値を右眼画像フィルタ部5へ出力
する。
Left eye image input unit 1 and right eye image input unit 2
Are sent to the parallax detection unit 3, the left-eye image filter unit 4, and the right-eye image filter unit 5. The parallax detection unit 3 detects a corresponding point for each pixel position of each of the left-eye image from the left-eye image input unit 1 and the right-eye image from the right-eye image input unit 2 to obtain parallax. , The parallax value for each pixel position of the left-eye image to the left-eye image filter unit 4, and the parallax value for each pixel position of the right-eye image to the right-eye image filter unit 5.

【0012】左眼画像フィルタ部4は,視差検出部3で
求めた視差の値に応じた大きさの近傍にある画素の平均
値を左眼画像表示部6へ出力する。この平均化操作によ
り,ボケを発生させることができる。ある画素位置(x
i ,yi )における視差の大きさ(絶対値)をd
(xi ,yi )とすると,その近傍を表す座標(x,
y)の範囲は,例えば,xi −{K×d(xi
i )}≦x≦xi +{K×d(xi,yi )}かつ,
i −{K×d(xi ,yi )}≦y≦yi +{K×d
(xi,yi )}なる正方領域となる。Kは,ボケの度
合いを制御する正の定数である。
[0012] The left-eye image filter unit 4 outputs to the left-eye image display unit 6 an average value of pixels near the size corresponding to the parallax value obtained by the parallax detection unit 3. This averaging operation can cause blur. A pixel position (x
i , y i ) is the magnitude (absolute value) of the disparity
Let (x i , y i ) be the coordinates (x,
The range of y) is, for example, x i − {K × d (x i ,
y i )} ≦ x ≦ x i + {K × d (x i , y i )} and
y i − {K × d (x i , y i )} ≦ y ≦ y i + ΔK × d
( Xi , yi )}. K is a positive constant that controls the degree of blur.

【0013】一方,右眼画像フィルタ部5は,視差検出
部3で求めた視差の値に応じた大きさの近傍にある画素
の平均値を右眼画像表示部7へ出力する。ある画素位置
(x i ,yi )における視差の大きさがd(xi
i )であるとき,その近傍を表す座標(x,y)の範
囲は,左眼画像と同様にして求めることができる。
On the other hand, the right-eye image filter unit 5 performs parallax detection.
Pixels near the size corresponding to the parallax value obtained by the unit 3
Is output to the right-eye image display unit 7. A certain pixel position
(X i, Yi) Is d (xi,
yi), The range of coordinates (x, y) representing the neighborhood
The surrounding can be obtained in the same manner as the left eye image.

【0014】左眼画像表示部6,および右眼画像表示部
7は,それぞれ,観察者の左眼,および観察者の右眼
へ,処理結果の画像を呈示する。視差検出部3の処理例
を図2に示す。図中において,d(x,y)は座標
(x,y)における視差の大きさ,L(x,y)は左眼
画像の座標(x,y)における画素値,R(x,y)は
右眼画像の座標(x,y)における画素値,IthはL
(xi ,yi )とR(xj ,yj )が同じ値であるとみ
なす閾値,Dmax は対象とする視差の最大値をそれぞれ
表す。ここでは,左眼画像中における特定の画素位置に
対する視差の求め方を例にとって説明する。 (イ)まず処理21により,視差の値d(x,y)を0
とする。 (ロ)次に処理22により,左眼画像の画素値L(x,
y),および座標(x,y)に対してd(x,y)だけ
正方向にずれた位置における右眼画像の画素値R(x+
d,y)の差が,Ithよりも大きいか否かを調べる。差
がIthよりも大きい場合には,対応点ではないものとみ
なし,処理を続行する。差がIthよりも大きくない場合
には,対応点であるとみなし,この画素位置における処
理を終了して,次の画素位置での処理に移る。 (ハ)次に処理23により,左眼画像の画素値L(x,
y),および座標(x,y)に対してd(x,y)だけ
負方向にずれた位置における右眼画像の画素値R(x−
d,y)の差が,Ithよりも大きいか否かを調べる。差
がIthよりも大きい場合には,対応点ではないものとみ
なし,処理を続行する。差がIthよりも大きくない場合
には,対応点であるとみなし,この画素位置における処
理を終了して,次の画素位置での処理に移る。 (ニ)次に処理24により,d(x,y)の値を1だけ
増す。 (ホ)次に処理25により,d(x,y)の値がDmax
よりも小さいか否かを調べる。d(x,y)の値がD
max よりも小さい場合には,d(x,y)の値が許容範
囲内とみなし,上記(ロ)から,同様の処理を継続す
る。d(x,y)の値がDmax よりも小さくない場合に
は,d(x,y)の値が許容範囲外とみなし,この画素
位置における処理を終了して,次の画素位置での処理に
移る。 (ヘ)処理を終了した時点におけるd(x,y)の値
が,左眼画像の画素位置(x,y)に対する視差の大き
さとして,左眼画像フィルタ部4へ出力される。
The left-eye image display unit 6 and the right-eye image display unit 7 present the images of the processing results to the left eye of the observer and the right eye of the observer, respectively. FIG. 2 shows a processing example of the parallax detection unit 3. In the figure, d (x, y) is the magnitude of parallax at coordinates (x, y), L (x, y) is the pixel value at coordinates (x, y) of the left eye image, and R (x, y) Is the pixel value at the coordinates (x, y) of the right eye image, and I th is L
(X i, y i) and R (x j, y j) threshold regarding that the same value, D max respectively represent the maximum value of the disparity of interest. Here, a method of obtaining parallax for a specific pixel position in the left eye image will be described as an example. (A) First, the parallax value d (x, y) is set to 0
And (B) Next, in process 22, the pixel value L (x,
y) and the pixel value R (x ++) of the right-eye image at a position shifted in the positive direction by d (x, y) with respect to the coordinates (x, y).
d, the difference in y) checks whether or not greater than I th. If the difference is larger than I th , it is regarded as not a corresponding point, and the processing is continued. If the difference is not larger than I th , it is regarded as a corresponding point, the processing at this pixel position is terminated, and the processing is shifted to the next pixel position. (C) Next, in step 23, the pixel value L (x,
y) and the pixel value R (x−x) of the right eye image at a position shifted in the negative direction by d (x, y) with respect to the coordinates (x, y).
d, the difference in y) checks whether or not greater than I th. If the difference is larger than I th , it is regarded as not a corresponding point, and the processing is continued. If the difference is not larger than I th , it is regarded as a corresponding point, the processing at this pixel position is terminated, and the processing is shifted to the next pixel position. (D) Next, in step 24, the value of d (x, y) is increased by one. (E) Next, in step 25, the value of d (x, y) becomes D max
Check if it is less than. If the value of d (x, y) is D
If it is smaller than max , the value of d (x, y) is considered to be within the allowable range, and the same processing is continued from (b). If the value of d (x, y) is not smaller than Dmax , the value of d (x, y) is considered to be out of the allowable range, the processing at this pixel position is terminated, and the value at the next pixel position is Move on to processing. (F) The value of d (x, y) at the time when the processing is completed is output to the left-eye image filter unit 4 as the magnitude of parallax with respect to the pixel position (x, y) of the left-eye image.

【0015】以上の処理を,左眼画像の全ての画素位置
について行う。また,右眼画像についても,これと同様
の処理を行う。本両眼立体視装置へ入力される左眼画像
および右眼画像の概念図を,それぞれ,図3の(A)お
よび(B)に示す。これらの画像において,外側の斜め
格子模様の領域,および中央の縦横格子模様の領域に
は,僅かに視差がある。両者の中間にある市松模様の領
域には,視差が無く,視差の大きさが0となっている。
The above processing is performed for all pixel positions of the left eye image. The same processing is performed for the right eye image. FIGS. 3A and 3B are conceptual diagrams of a left-eye image and a right-eye image input to the binocular stereoscopic device, respectively. In these images, there is a slight parallax in the outer oblique lattice pattern area and the central vertical and horizontal lattice pattern area. There is no parallax in the checkered pattern area between the two, and the magnitude of the parallax is zero.

【0016】本両眼立体視装置により表示される左眼画
像および右眼画像概念図を,それぞれ,図4の(A)お
よび(B)に示す。これらの画像において,視差がある
領域,すなわち,外側の斜め格子模様の領域,および中
央の縦横格子模様の領域は,平滑化処理が施され,目の
焦点が合いにくくなる。一方,視差のない領域,すなわ
ち,中間にある市松模様の領域は入力画像のままであ
り,容易に目の焦点を合わせることができる。
FIGS. 4A and 4B show conceptual diagrams of a left-eye image and a right-eye image displayed by the binocular stereoscopic apparatus, respectively. In these images, a region having parallax, that is, a region with an oblique lattice pattern on the outside and a region with a vertical and horizontal lattice pattern at the center are subjected to smoothing processing, so that it is difficult to focus the eyes. On the other hand, an area without parallax, that is, a checkered area in the middle remains the input image, and the eye can be easily focused.

【0017】[0017]

【発明の効果】以上説明したように,本発明によれば,
画面の全領域にわたって輻輳制御と焦点調節との間に矛
盾が生じる事態を回避し,両眼立体視装置を使用する際
に伴う疲労を低減または解消する処理を,簡単な画像処
理を用いて実現することが可能となる。
As described above, according to the present invention,
Simple image processing is used to avoid inconsistency between convergence control and focus adjustment over the entire area of the screen, and to reduce or eliminate the fatigue associated with using binocular stereovision. It is possible to do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に基づく両眼立体視装置の構成例を示す
図である。
FIG. 1 is a diagram illustrating a configuration example of a binocular stereoscopic device according to the present invention.

【図2】本発明の実施例における視差検出部の処理例を
示す図である。
FIG. 2 is a diagram illustrating a processing example of a parallax detection unit according to the embodiment of the present invention.

【図3】両眼立体視装置へ入力される左眼画像および右
眼画像の概念図である。
FIG. 3 is a conceptual diagram of a left-eye image and a right-eye image input to a binocular stereoscopic device.

【図4】表示される左眼画像および右眼画像の概念図で
ある。
FIG. 4 is a conceptual diagram of a displayed left-eye image and a right-eye image.

【符号の説明】[Explanation of symbols]

1 左眼画像入力部 2 右眼画像入力部 3 視差検出部 4 左眼画像フィルタ部 5 右眼画像フィルタ部 6 左眼画像表示部 7 右眼画像表示部 Reference Signs List 1 left eye image input unit 2 right eye image input unit 3 parallax detection unit 4 left eye image filter unit 5 right eye image filter unit 6 left eye image display unit 7 right eye image display unit

フロントページの続き (56)参考文献 特開 平4−6590(JP,A) 電子情報通信学会技術研究報告、N o.91、Vol.523(3月.1992)長 田昌次郎、「両眼視融合機能に及ぼす画 像条件」pp.65−71 (58)調査した分野(Int.Cl.7,DB名) G02B 27/22 G06F 3/153 320 G06T 15/00 - 17/00 H04N 13/00 Continuation of front page (56) References JP-A-4-6590 (JP, A) IEICE Technical Report, No. 91, Vol. 523 (March. 1992) Chojiro Sada, “Image Conditions Affecting Binocular Fusion Function,” pp. 65-71 (58) Fields investigated (Int.Cl. 7 , DB name) G02B 27/22 G06F 3/153 320 G06T 15/00-17/00 H04N 13/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 左眼と右眼とにそれぞれ左眼画像と右眼
画像とを呈示し,対象を立体的に見せる両眼立体視装置
において, 前記左眼画像と前記右眼画像のそれぞれについて,各画
素位置ごとに対応する点を検出して視差を求める手段
と, 前記左眼画像および前記右眼画像の各画素を処理対象と
して,前記視差の値に応じた大きさの前記各画素の近傍
範囲にわたって画素値を平均化し,その平均化した画素
値を前記処理対象とした各画素にそれぞれ表示する手段
と, を具備することを特徴とする両眼立体視装置。
1. A binocular stereoscopic apparatus that presents a left-eye image and a right-eye image to a left eye and a right eye, respectively, and makes a subject look three-dimensionally, wherein each of the left-eye image and the right-eye image is Means for detecting a point corresponding to each pixel position to obtain parallax; and processing each pixel of the left-eye image and the right-eye image as a processing target.
The vicinity of each pixel having a size corresponding to the value of the parallax
Averages pixel values over a range and averages the pixels.
And b. Means for displaying a value on each of the pixels to be processed .
JP34368592A 1992-12-24 1992-12-24 Binocular stereoscopic device Expired - Fee Related JP3182009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34368592A JP3182009B2 (en) 1992-12-24 1992-12-24 Binocular stereoscopic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34368592A JP3182009B2 (en) 1992-12-24 1992-12-24 Binocular stereoscopic device

Publications (2)

Publication Number Publication Date
JPH06194602A JPH06194602A (en) 1994-07-15
JP3182009B2 true JP3182009B2 (en) 2001-07-03

Family

ID=18363461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34368592A Expired - Fee Related JP3182009B2 (en) 1992-12-24 1992-12-24 Binocular stereoscopic device

Country Status (1)

Country Link
JP (1) JP3182009B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2475162A2 (en) 2011-01-06 2012-07-11 Sony Corporation Image pickup apparatus and image processing method
KR102053920B1 (en) * 2017-09-05 2019-12-09 이상호 Stand for display of merchandise

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439341B1 (en) * 2002-08-27 2004-07-07 한국전자통신연구원 Depth of field adjustment apparatus and method of stereo image for reduction of visual fatigue
KR20110015452A (en) * 2008-06-06 2011-02-15 리얼디 인크. Blur enhancement of stereoscopic images
JP5347717B2 (en) 2008-08-06 2013-11-20 ソニー株式会社 Image processing apparatus, image processing method, and program
JP2010062695A (en) 2008-09-02 2010-03-18 Sony Corp Image processing apparatus, image processing method, and program
JP4636149B2 (en) 2008-09-09 2011-02-23 ソニー株式会社 Image data analysis apparatus, image data analysis method, and program
JP5238664B2 (en) * 2009-10-16 2013-07-17 株式会社コナミデジタルエンタテインメント Stereoscopic image generating apparatus, stereoscopic image generating method, and program
JP5521913B2 (en) 2009-10-28 2014-06-18 ソニー株式会社 Image processing apparatus, image processing method, and program
JP5387377B2 (en) 2009-12-14 2014-01-15 ソニー株式会社 Image processing apparatus, image processing method, and program
JP4875762B2 (en) 2010-05-26 2012-02-15 シャープ株式会社 Image processing apparatus, image display apparatus, and image pickup apparatus
WO2011158573A1 (en) * 2010-06-17 2011-12-22 富士フイルム株式会社 Stereoscopic image display control device and operation control method of same
WO2012001970A1 (en) * 2010-06-30 2012-01-05 富士フイルム株式会社 Image processing device, method, and program
JP5660818B2 (en) * 2010-07-21 2015-01-28 任天堂株式会社 Image processing program, image processing apparatus, image processing system, and image processing method
JP2012100116A (en) * 2010-11-02 2012-05-24 Sony Corp Display processing device, display processing method, and program
JP2012120057A (en) 2010-12-02 2012-06-21 Sony Corp Image processing device, image processing method, and program
JP5599063B2 (en) * 2010-12-14 2014-10-01 キヤノン株式会社 Display control apparatus, display control method, and program
WO2012086120A1 (en) * 2010-12-24 2012-06-28 パナソニック株式会社 Image processing apparatus, image pickup apparatus, image processing method, and program
JP5656676B2 (en) * 2011-02-08 2015-01-21 キヤノン株式会社 Video display device, video display method and program
WO2012108187A1 (en) * 2011-02-08 2012-08-16 富士フイルム株式会社 Device and method for generation of image for 3d vision, and programme
EP2712197B1 (en) * 2011-05-16 2017-11-08 FUJIFILM Corporation Parallax image display device, parallax image generation method, parallax image print
JP5603370B2 (en) * 2011-05-16 2014-10-08 富士フイルム株式会社 Parallax image display device, parallax image generation method, and parallax image print
JP5753439B2 (en) * 2011-05-16 2015-07-22 富士フイルム株式会社 Parallax image display device, parallax image generation method, and parallax image print
JP6459482B2 (en) * 2014-12-18 2019-01-30 株式会社リコー Parallax value deriving apparatus, device control system, moving body, robot, parallax value deriving method, and program
JP2016225811A (en) * 2015-05-29 2016-12-28 キヤノン株式会社 Image processing apparatus, image processing method, and program
CN106931906A (en) * 2017-03-03 2017-07-07 浙江理工大学 A kind of object dimensional size simple measurement method based on binocular stereo vision

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
電子情報通信学会技術研究報告、No.91、Vol.523(3月.1992)長田昌次郎、「両眼視融合機能に及ぼす画像条件」pp.65−71

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2475162A2 (en) 2011-01-06 2012-07-11 Sony Corporation Image pickup apparatus and image processing method
US8842201B2 (en) 2011-01-06 2014-09-23 Sony Corporation Image capturing device including lens array and processing
US9432656B2 (en) 2011-01-06 2016-08-30 Sony Corporation Image capturing device including lens array and processing
KR102053920B1 (en) * 2017-09-05 2019-12-09 이상호 Stand for display of merchandise

Also Published As

Publication number Publication date
JPH06194602A (en) 1994-07-15

Similar Documents

Publication Publication Date Title
JP3182009B2 (en) Binocular stereoscopic device
JP3653790B2 (en) 3D electronic zoom device and 3D image quality control device
US6417880B1 (en) Stereoscopic CG image generating apparatus and stereoscopic TV apparatus
JP6308513B2 (en) Stereoscopic image display apparatus, image processing apparatus, and stereoscopic image processing method
US8482598B2 (en) Stereoscopic image display apparatus, stereoscopic image displaying method and computer program product
JP3089306B2 (en) Stereoscopic imaging and display device
US20110228051A1 (en) Stereoscopic Viewing Comfort Through Gaze Estimation
JP2016529764A (en) Control of light source of directional backlight
US20130050187A1 (en) Method and Apparatus for Generating Multiple Image Views for a Multiview Autosteroscopic Display Device
US7308111B2 (en) Apparatus and method for displaying three-dimensional image
JPH08115439A (en) Picture data processor and picture reproduction device
JP3452244B2 (en) Three-dimensional display method and apparatus
KR100439341B1 (en) Depth of field adjustment apparatus and method of stereo image for reduction of visual fatigue
JPH08126034A (en) Method and device for displaying stereoscopic image
KR100392381B1 (en) Method and apparatus controlling the disparity of objects in images and a parallel-axis stereo camera system using the apparatus
KR101634225B1 (en) Device and Method for Multi-view image Calibration
Mangiat et al. Disparity remapping for handheld 3D video communications
JPH03236698A (en) Picture generating device for both eye stereoscopic view
KR101747929B1 (en) Apparatus and method for improving image quality of stereoscopic images
KR20120133710A (en) Apparatus and method for generating 3d image using asymmetrical dual camera module
KR100597587B1 (en) The apparatus and method for vergence control of a parallel-axis stereo camera system using compensated image signal processing
US9888222B2 (en) Method and device for generating stereoscopic video pair
JP5838775B2 (en) Image processing method, image processing system, and image processing program
KR20040018858A (en) Depth of field adjustment apparatus and method of stereo image for reduction of visual fatigue
JP3357754B2 (en) Pseudo-stereo image generation method and pseudo-stereo image generation device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees