JP3181345B2 - Superconducting current lead - Google Patents
Superconducting current leadInfo
- Publication number
- JP3181345B2 JP3181345B2 JP745492A JP745492A JP3181345B2 JP 3181345 B2 JP3181345 B2 JP 3181345B2 JP 745492 A JP745492 A JP 745492A JP 745492 A JP745492 A JP 745492A JP 3181345 B2 JP3181345 B2 JP 3181345B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- lead
- oxide superconductor
- current lead
- superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、超電導電流リードに係
り、さらに詳しくは機械的衝撃などに対する耐久性を付
与したセラミックス系の超電導電流リードに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting current lead, and more particularly, to a ceramic superconducting current lead having durability against mechanical shocks and the like.
【0002】[0002]
【従来の技術】近年、超電導マグネットを用いて、MR
I装置や磁気浮上列車など超電導機器が実用化されてい
る。しかし、これら実用されている機器においても、室
温に置かれた電源から極低温に置かれた超電導マグネッ
トに電流を供給する電流リードを介して、前記極低温領
域に熱が進入することが問題となっている。たとえば、
1 Wの発熱量で蒸発した液体ヘリウムを再液化するため
に必要な冷凍機電力は、500〜1000 Wに達することか
ら、前記電流リードを介しての熱進入量が多いと、コス
トアップを招来するばかりでなく、再液化のための冷凍
機構(冷凍機など)が大型化して、低消費電力化・小型
軽量化という超電導のメリットを充分に活かせなくなる
という問題がある。そこで、超電導マグネットを永久電
流モードで用いる医療用MRI装置では、電流リードを
超電導マグネットの励消磁時のみ超電導マグネットに接
続し、定常運転時には電流リードを液体ヘリウム中から
引き抜くことによって熱侵入の低減を図る構成を採って
いる。しかし、超電導化に向けて研究・開発中の変圧
器,発電機,限流器など、定常的に電源からの電流供給
が必要で電流リードとマグネットの分離が不可能な電力
機器の場合は、熱進入量の少ない電流リードの開発が特
に重要な課題となっている。2. Description of the Related Art In recent years, MR has been developed using superconducting magnets.
Superconducting devices such as I devices and magnetic levitation trains have been put to practical use. However, even in these practical devices, there is a problem that heat enters the cryogenic region through a current lead that supplies a current from a power source placed at room temperature to a superconducting magnet placed at cryogenic temperature. Has become. For example,
The refrigerating machine power required to reliquefy liquid helium evaporated with a heating value of 1 W reaches 500 to 1000 W.Therefore, a large amount of heat entering through the current lead leads to an increase in cost. In addition, there is a problem that the size of a refrigerating mechanism (such as a refrigerator) for reliquefaction becomes large, and the advantages of superconductivity such as low power consumption and small size and light weight cannot be fully utilized. Therefore, in a medical MRI apparatus that uses a superconducting magnet in the permanent current mode, the current lead is connected to the superconducting magnet only when the superconducting magnet is deenergized, and during normal operation, the current lead is pulled out of the liquid helium to reduce heat penetration. It has a configuration to aim for. However, in the case of power equipment such as transformers, generators, current limiters, etc., which are under research and development for superconductivity, current supply from the power supply is required constantly and current leads and magnets cannot be separated. The development of current leads with low heat penetration is a particularly important issue.
【0003】[0003]
【発明が解決しようとする課題】ところで、従来の金属
製電流リードを介しての熱進入には、電流リード自身の
ジュール発熱によるものと、高温端すなわち極低温領域
(クライオスタット)外からの熱伝導によるものとがあ
る。前者は電流リード材の抵抗率の低減によって、また
後者は電流リード材の熱伝導率の低減によって、それぞ
れ熱進入量の低減を図り得る。しかし、一般の金属では
抵抗率と熱伝導率とは反比例の関係にあるため、両者を
同時に低減することはできず、従来の銅リード(電流リ
ード)では、約 1 W/kA が熱進入量の下限となってい
る。一方、1986年に発見された酸化物超電導体、いわゆ
る高温超電導体の場合は、熱伝導率が銅より一桁以上も
小さいばかりでなく、臨界温度以下に冷却すればジュー
ル熱も発生しないため、従来の銅リードに代わる次世代
の電流リード材として注目されている。つまり、前記熱
伝導率低い特性を利用し、酸化物超電導体製電流リード
で、極低温領域にある超電導線と常温中にある電流リー
ド端子間とを繋ぐことにより、常温中にある電流リード
端子からの極低温にある超電導線に熱が進入するのを防
止しながら所要の電流を供給しようとするものである。
そして、このような酸化物超電導体製電流リードの使用
態様においては、その径が細い程、熱進入が低減される
ので、可及的に細い酸化物超電導体線の使用が望まれ
る。The heat intrusion through the conventional metal current lead is caused by the Joule heat generated by the current lead itself and by the heat conduction from the high temperature end, that is, from outside the cryogenic region (cryostat). There are things. The former can reduce the amount of heat entering by reducing the resistivity of the current lead material, and the latter can reduce the amount of heat entering by reducing the thermal conductivity of the current lead material. However, in general metals, the resistivity and the thermal conductivity are inversely proportional, so it is not possible to reduce both at the same time. With a conventional copper lead (current lead), the heat penetration is about 1 W / kA. Is the lower limit. On the other hand, in the case of an oxide superconductor discovered in 1986, a so-called high-temperature superconductor, the thermal conductivity is not less than one order of magnitude lower than copper, and since it does not generate Joule heat when cooled below the critical temperature, It is attracting attention as a next-generation current lead material that replaces conventional copper leads. In other words, by utilizing the characteristic of low thermal conductivity, a current lead made of an oxide superconductor is used to connect a superconducting wire in a cryogenic region to a current lead terminal at room temperature, thereby forming a current lead terminal at room temperature. It is intended to supply a required current while preventing heat from entering a superconducting wire at an extremely low temperature.
In the usage mode of such a current lead made of an oxide superconductor, the smaller the diameter is, the more the heat penetration is reduced. Therefore, it is desired to use an oxide superconductor wire as thin as possible.
【0004】しかしながら、酸化物超電導体は一般に脆
く、僅かな機械的衝撃に対しても破損する危険性があ
り、特に細径化した酸化物超電導体線の場合は、前記機
械的衝撃や熱的衝撃によって破損する恐れが顕著であ
り、電流リードとしての利用を阻害しているが、未だ効
果的な手段は開発されていない。[0004] However, oxide superconductors are generally brittle and may be damaged by a slight mechanical impact. Particularly, in the case of an oxide superconductor wire having a reduced diameter, the above-described mechanical impact or thermal shock may occur. The possibility of damage due to impact is remarkable, hindering use as a current lead, but no effective means has yet been developed.
【0005】本発明は上記事情に対処してなされたもの
で、熱的な絶縁性を付与した形で補強することにより、
信頼性の高い電流通電機能を常に呈し得る酸化物超電導
系電流リードの提供を目的とする。[0005] The present invention has been made in view of the above circumstances, and by reinforcing in a form having thermal insulation,
An object of the present invention is to provide an oxide superconducting current lead that can always exhibit a highly reliable current carrying function.
【0006】[0006]
【課題を解決するための手段】 本発明に係る超電導電
流リードは、電流通電用の酸化物超電導体リード本体
と、前記電流通電用の酸化物超電導体リード本体の軸方
向に一部を重複させた形でほぼ全長に亘り、かつ互いに
離隔させて一体的に配設した複数の補強体とからなり、
これらの補強体の熱膨張率を酸化物超電導体リード本体
の熱膨張率とほぼ同じにしたことを特徴とする。A superconducting current lead according to the present invention has an oxide superconductor lead body for passing a current and a part of the oxide superconductor lead body for passing a current axially partially overlapped with each other. It consists of a plurality of reinforcements that are arranged integrally over the entire length in the form and separated from each other ,
The thermal expansion coefficient of these reinforcements is determined by the oxide superconductor lead body.
Is characterized by having a coefficient of thermal expansion substantially equal to that of the above.
【0007】すなわち、本発明は、電流通電用の酸化物
超電導体リード本体内に、その軸方向のほぼ全長に及ぶ
よう部分的には重複する形で、熱的なユーテリティを採
り得る状態に互いに離隔(実質的には不連続)させて、
超硬質性の補強体(たとえば線もしくはリボンなど)を
埋め込むか、あるいは周面部に一体的に配設して、所要
の熱絶縁を図りながら、電流通電用の酸化物超電導体リ
ードとしての機械的,熱的に強化したことを骨子とす
る。そして、ここで超硬質性補強体としては、たとえば
コバルワイヤ(商品名)など、酸化物超電導体と熱膨張
率がほぼ等しくて、機械的強度の高いものが望ましい。That is, according to the present invention, the oxide superconductor lead body for current conduction is partially overlapped so as to cover almost the entire length in the axial direction, so that the two parts are in a state where a thermal utility can be taken. Separated (substantially discontinuous)
A super-hard reinforcing body (for example, a wire or a ribbon) is embedded or provided integrally on the peripheral surface to achieve the required thermal insulation, while maintaining the required mechanical insulation as an oxide superconductor lead for current flow. The main point is that it has been thermally strengthened. Here, as the super-hard reinforcing member, a material having a thermal expansion coefficient substantially equal to that of the oxide superconductor and high mechanical strength, such as Kovar wire (trade name), is desirable.
【0008】[0008]
【作用】上記のように本発明によれば、電流通電用の酸
化物超電導体を電流リード本体としたことにより、超電
導マグネットを浸漬している液体ヘリウム(極低温領
域)への熱侵入量を低減する。一方、この電流リード本
体は、その軸方向のほぼ全長に及んで部分的には重複す
る形で、熱的なユーテリティを採り得る状態に、互いに
離隔(実質的には不連続)して、超硬質性補強体が配置
・一体化し、補強した構成を成している。つまり、電流
リードは基本的に低熱伝導率を有する酸化物超電導体で
構成されているため、極低温領域への熱侵入量が大幅に
低減ないし削減されるとともに、一方では熱絶縁性を損
なうことのないよう考慮しながら補強されているので、
細径化された状態でもすぐれた耐機械的衝撃性や耐熱的
衝撃性など保持し、常にすぐれた信頼性の高い超電導電
流リードとして機能することが可能である。According to the present invention, as described above, the amount of heat entering the liquid helium (ultra-low temperature region) in which the superconducting magnet is immersed can be reduced by using the oxide superconductor for current conduction as the current lead body. Reduce. On the other hand, the current lead main bodies are separated from each other (substantially discontinuous) so as to be able to take a thermal utility so as to partially overlap almost the entire length in the axial direction, and A rigid reinforcing body is arranged and integrated to form a reinforced structure. In other words, the current leads are basically composed of oxide superconductors with low thermal conductivity, so that the amount of heat entering the cryogenic region is significantly reduced or reduced, and on the other hand, thermal insulation is impaired. Because it is reinforced while considering that there is no
Even when the diameter is reduced, it retains excellent mechanical shock resistance and thermal shock resistance, and can always function as an excellent and highly reliable superconducting current lead.
【0009】[0009]
【実施例】以下、添付図を参照して本発明の実施例を説
明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings.
【0010】図1は本発明に係る超電導電流リードの構
成例を、軸方向に断面的に示したもので、1はたとえば
直径20mm程度,長さ10cm程度の電流通電用の酸化物超電
導体リード本体、2a,2b, 2cは前記リード本体1内に、
軸方向にそれぞれ一体的に埋め込まれた超硬質性の補強
体、たとえばコバルワイヤから成る直径 1.5mm程度,長
さ 5cm程度の線(ワイヤ)である。ただし、電流リード
本体1の径や長さなどは、流す電流の大きさや、その他
の設計条件によりいろいろ変わるものであり、幅広い態
様があるが、超硬質性の補強体の径としては、リード本
体1の径に対し1/10〜1/20程度の径のものが好ましい。
そして、前記超硬質性補強体2a,2b, 2cは、図示のよう
に相互に離隔して、部分的に(一部が)軸方向に重なり
合って、酸化物超電導体リード本体1の全長に亘って一
体的に埋め込まれた構成を成している。つまり、酸化物
超電導体リード本体1内には、両端側に超硬質ワイヤ2
a,2bが配設され、中央部に超硬質ワイヤ2cが前記超硬
質ワイヤ2a,2bと一部で重複する形で配設され、実質的
に全長に亘って機械的に補強するように、一体的に埋め
込まれた構成を成している。ここで、超硬質性補強体2
a,2b, 2cに分割して、しかもこれらが互いに接触しな
い(離隔ないし不連続)状態で、実質的に全長に亘って
一体的に埋め込み機械的に補強するのは、前記相互を離
隔ないし不連続とすることにより、この離隔領域(不連
続領域)3で熱的な絶縁性を持たせ、酸化物超電導体リ
ード4について所要の低熱伝導性(率)を維持ないし保
持させるためである。FIG. 1 shows an example of the configuration of a superconducting current lead according to the present invention in a sectional view in the axial direction. Reference numeral 1 denotes, for example, an oxide superconductor lead for passing a current having a diameter of about 20 mm and a length of about 10 cm. The main bodies 2a, 2b, and 2c are inside the lead main body 1,
It is a super-hard reinforcement body integrally embedded in the axial direction, for example, a wire (wire) made of Kovar wire having a diameter of about 1.5 mm and a length of about 5 cm. However, the diameter and length of the current lead body 1 are variously changed according to the magnitude of the current to be passed and other design conditions, and there are a wide variety of modes. A diameter of about 1/10 to 1/20 of the diameter of 1 is preferable.
The super-hardened reinforcing members 2a, 2b, 2c are separated from each other as shown in the drawing and partially (partly) overlap with each other in the axial direction so as to extend over the entire length of the oxide superconductor lead body 1. And is integrally embedded. In other words, inside the oxide superconductor lead body 1, super hard wires 2 are provided at both ends.
a, 2b are disposed, and a super-hard wire 2c is disposed at a central portion so as to partially overlap with the super-hard wires 2a, 2b, so as to mechanically reinforce substantially the entire length. It has an integrally embedded configuration. Here, the super-hard reinforcement 2
a, 2b, and 2c, which are not embedded (separated or discontinuous) in a state where they are substantially in contact with each other (substantially or discontinuously), are embedded and mechanically reinforced substantially over their entire length. This is because, by being continuous, the insulating region (discontinuous region) 3 has thermal insulation and the oxide superconductor lead 4 maintains or maintains a required low thermal conductivity (rate).
【0011】上記のごとく、構成・補強された酸化物超
電導体リード4は、たとえば図2に断面的に示すような
曲成に対しても、十分耐えるので取扱い易くなるばかり
でなく、外部からの機械的な衝撃あるいは熱的な衝撃を
受けても破損したりすることが全面的に解消される。つ
まり、実用過程で機械的な衝撃や熱的な衝撃を受けても
破断など起こさずに、極低温領域にある超電導線と常温
中にある電流リード端子間を繋ぐ酸化物超電導体リード
4として、信頼性の高い機能を常に保持・発揮すること
が可能となる。つまり、超電導体リード4として所要の
電流容量を確保し得る限度に、その線径を細く設定して
外部からの、極低温領域への熱進入を低減させ得るの
で、液体ヘリウムを再液化するための冷凍機構(冷凍機
など)の大型化、低消費電力化・小型軽量化など超電導
のメリットを充分に活かせことが可能となる。As described above, the structured and reinforced oxide superconductor lead 4 sufficiently withstands bending, for example, as shown in cross section in FIG. Damage caused by mechanical or thermal shock is completely eliminated. In other words, the oxide superconductor lead 4 that connects the superconducting wire in the cryogenic region and the current lead terminal in normal temperature without breaking even if subjected to a mechanical shock or a thermal shock in a practical process, It is possible to always maintain and demonstrate highly reliable functions. In other words, the wire diameter can be set as thin as possible to the extent that the required current capacity as the superconductor lead 4 can be secured, so that heat intrusion from the outside into the cryogenic region can be reduced. It is possible to make full use of the advantages of superconductivity, such as increasing the size of refrigeration mechanisms (such as refrigerators), reducing power consumption, and reducing size and weight.
【0012】なお、酸化物超電導体リード4は、必要と
する電流容量に応じた断面積が確保されていればよく、
その断面形状は円形に限られず任意に選択・設定し得
る。しかし、極低温領域への熱進入量を極力小さくする
ために、酸化物超電導体リード本体1内に配置(配設)
する超硬質補強体2a,2b,2cなどの断面積は、所要の機械
的補強効果を得られるかぎり可及的に細径(小径)で、
かつ熱絶縁性を有するとともに熱膨脹率が酸化物超電導
体リード本体1と近似していることが望ましい。また、
この超硬質補強体2a,2b,2cなどは、線状(ワイヤ)以外
の形状、たとえばリボン状など平板であってもよい。It is sufficient that the oxide superconductor lead 4 has a sectional area corresponding to a required current capacity.
The cross-sectional shape is not limited to a circle, but can be arbitrarily selected and set. However, in order to minimize the amount of heat entering the cryogenic region, it is disposed (arranged) in the oxide superconductor lead body 1.
The cross-sectional area of the super-hard reinforcements 2a, 2b, 2c, etc. is as small as possible (small diameter) as long as the required mechanical reinforcement effect can be obtained.
In addition, it is desirable that the oxide superconductor lead body 1 has thermal insulation and a coefficient of thermal expansion close to that of the oxide superconductor lead body 1. Also,
The super-hardened reinforcements 2a, 2b, 2c and the like may have a shape other than a linear shape (wire), for example, a flat plate such as a ribbon shape.
【0013】[0013]
【発明の効果】以上記述したごとく、本発明に係る超電
導電流リードによれば、電流通電用の酸化物超電導体リ
ード本体は、その超電導体リード本体内に軸方向に沿わ
せて配設させた補強体によって、機械的強度に脆弱な酸
化物超電導体リード本体が保護されている。つまり、電
流を通電する酸化物超電導体リード本体は、長さ方向に
に対する垂直方向からの機械的な外力を補強されている
ため、機械的な衝撃や熱衝撃によって破損する恐れも解
消される。しかも、外部からの熱進入も低減し得るの
で、極低温維持(保持)に要する冷却機構の低消費電力
化などにも大きく寄与し得る。As described above, according to the superconducting current lead according to the present invention, the oxide superconductor lead body for passing a current is disposed in the superconductor lead body along the axial direction. The reinforcing member protects the oxide superconductor lead body, which is weak in mechanical strength. In other words, the oxide superconductor lead body through which a current flows is reinforced with a mechanical external force in a direction perpendicular to the length direction, so that the possibility of breakage due to mechanical shock or thermal shock is also eliminated. In addition, since the intrusion of heat from the outside can be reduced, it can greatly contribute to lower power consumption of the cooling mechanism required for maintaining (holding) the cryogenic temperature.
【図1】本発明に係る超電導電流リードの構成例を示す
軸(長さ)方向の断面図。FIG. 1 is a sectional view in the axial (length) direction showing a configuration example of a superconducting current lead according to the present invention.
【図2】本発明に係る超電導電流リードを曲成した状態
例を示す軸(長さ)方向の断面図。FIG. 2 is a cross-sectional view in the axial (length) direction showing a state in which a superconducting current lead according to the present invention is bent.
1…酸化物超電導体製リード本体 2a,2b,2c…超硬
質性の補強体 3…超硬質補強体の離隔(不連続)領
域 4…電流通電用の酸化物超電導体製リードDESCRIPTION OF SYMBOLS 1 ... Lead body made of oxide superconductor 2a, 2b, 2c ... Super-hard reinforcement body 3 ... Separation (discontinuous) area of super-hard reinforcement body 4 ... Lead made of oxide superconductor for passing current
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−161810(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 6/00 ZAA ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-161810 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01F 6/00 ZAA
Claims (1)
と、前記電流通電用の酸化物超電導体リード本体の軸方
向に一部を重複させた形でほぼ全長に亘り、かつ互いに
離隔させて一体的に配設した複数の補強体とからなり、
これらの補強体の熱膨張率を酸化物超電導体リード本体
の熱膨張率とほぼ同じにしたことを特徴とする超電導電
流リード。1. An oxide superconductor lead body for supplying a current and an oxide superconductor lead body for supplying a current are formed so as to partially overlap each other in an axial direction over substantially the entire length and are separated from each other. It consists of a plurality of reinforcements that are arranged integrally ,
The thermal expansion coefficient of these reinforcements is determined by the oxide superconductor lead body.
A superconducting current lead having a coefficient of thermal expansion substantially equal to that of the superconducting current lead.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP745492A JP3181345B2 (en) | 1992-01-20 | 1992-01-20 | Superconducting current lead |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP745492A JP3181345B2 (en) | 1992-01-20 | 1992-01-20 | Superconducting current lead |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05198431A JPH05198431A (en) | 1993-08-06 |
JP3181345B2 true JP3181345B2 (en) | 2001-07-03 |
Family
ID=11666274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP745492A Expired - Fee Related JP3181345B2 (en) | 1992-01-20 | 1992-01-20 | Superconducting current lead |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3181345B2 (en) |
-
1992
- 1992-01-20 JP JP745492A patent/JP3181345B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05198431A (en) | 1993-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010140398A1 (en) | Refrigerator cooling-type superconducting magnet | |
JPH07142237A (en) | Superconducting magnet device | |
JPS60189207A (en) | Superconductive magnet device | |
JP2001244109A (en) | High-temperature superconducting coil device | |
JP5022279B2 (en) | Oxide superconducting current lead | |
US6153825A (en) | Superconducting current lead | |
JP3541123B2 (en) | Superconducting current lead | |
JP3181345B2 (en) | Superconducting current lead | |
JPS6350844B2 (en) | ||
JP5011181B2 (en) | Oxide superconducting current lead | |
US5387889A (en) | Superconducting magnet apparatus | |
JP2001126916A (en) | High-temperature superconducting coil and high- temperature superconducting magnet using the same | |
JP3701985B2 (en) | Oxide superconducting current lead | |
JPS63292610A (en) | Current supply lead for superconducting device | |
JP2889485B2 (en) | Superconducting wire connection method and device, and superconducting coil device | |
JPH01312299A (en) | Transfer tube | |
Kato et al. | Development of high-Tc superconducting magnet using Ag-sheathed Bi2223 tapes | |
JPH05121236A (en) | Superconductive current lead | |
Yokoyama et al. | Cryogen free conduction cooled NbTi superconducting magnet for a X-band klystron | |
Urata et al. | A 10 T cryo-cooled superconducting magnet with 100 mm room temperature bore | |
US3562685A (en) | Foil wrapped superconducting magnet | |
JP4012422B2 (en) | Oxide superconductor current lead | |
JPH04137571A (en) | Permanent current switch | |
JPH03283678A (en) | Current lead of superconducting magnet apparatus | |
JPH06314612A (en) | Oxide superconducting current lead |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010403 |
|
LAPS | Cancellation because of no payment of annual fees |