JP3176389B2 - Method of manufacturing waterproof fiber-reinforced thermosetting resin twisted structure for optical cable - Google Patents
Method of manufacturing waterproof fiber-reinforced thermosetting resin twisted structure for optical cableInfo
- Publication number
- JP3176389B2 JP3176389B2 JP12186191A JP12186191A JP3176389B2 JP 3176389 B2 JP3176389 B2 JP 3176389B2 JP 12186191 A JP12186191 A JP 12186191A JP 12186191 A JP12186191 A JP 12186191A JP 3176389 B2 JP3176389 B2 JP 3176389B2
- Authority
- JP
- Japan
- Prior art keywords
- thermosetting resin
- fiber
- uncured
- strand
- twisted structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920005989 resin Polymers 0.000 title claims description 27
- 239000011347 resin Substances 0.000 title claims description 27
- 229920001187 thermosetting polymer Polymers 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 230000003287 optical effect Effects 0.000 title claims description 7
- 239000002131 composite material Substances 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 239000000835 fiber Substances 0.000 claims description 19
- 239000011358 absorbing material Substances 0.000 claims description 10
- 239000013307 optical fiber Substances 0.000 claims description 7
- 229920005992 thermoplastic resin Polymers 0.000 claims description 7
- 239000012783 reinforcing fiber Substances 0.000 claims description 6
- 239000000155 melt Substances 0.000 claims description 5
- 239000011247 coating layer Substances 0.000 claims description 3
- 239000002250 absorbent Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229920000092 linear low density polyethylene Polymers 0.000 description 2
- 239000004707 linear low-density polyethylene Substances 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920001567 vinyl ester resin Polymers 0.000 description 2
- 238000004078 waterproofing Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 229920003369 Kevlar® 49 Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005678 polyethylene based resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 239000002345 surface coating layer Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/14—Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/02—Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/16—Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
- D07B1/165—Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber inlay
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/10—Rope or cable structures
- D07B2201/1012—Rope or cable structures characterised by their internal structure
- D07B2201/102—Rope or cable structures characterised by their internal structure including a core
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2041—Strands characterised by the materials used
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2042—Strands characterised by a coating
- D07B2201/2044—Strands characterised by a coating comprising polymers
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2075—Fillers
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2083—Jackets or coverings
- D07B2201/2087—Jackets or coverings being of the coated type
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2401/00—Aspects related to the problem to be solved or advantage
- D07B2401/20—Aspects related to the problem to be solved or advantage related to ropes or cables
- D07B2401/202—Environmental resistance
- D07B2401/204—Moisture handling
Landscapes
- Ropes Or Cables (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、電気無誘導タイプ光フ
ァイバーケーブル用テンションメンバーとして使用され
る、防水性能を有する繊維強化熱硬化性樹脂製撚構造体
の製造方法に関する。The present invention relates are used as a tension member for an electric unguided type optical fiber cable, fiber reinforced thermosetting resin twisted structure with a waterproof
And a method for producing the same.
【0002】[0002]
【従来の技術】近年、通信用ケーブルの無誘導化や、軽
量化が重要視され、メタリック型のケーブルからノンメ
タリック型のケーブルへの移行の動きが大きく、繊維強
化熱硬化性樹脂製(以下FRPと称す)棒状物が使用さ
れるようになっている。2. Description of the Related Art In recent years, there has been an emphasis on non-induction and weight reduction of communication cables, and there has been a great shift from metallic cables to non-metallic cables. Rods (referred to as FRP) have been used.
【0003】この種の棒状物において、高い抗張力が要
求される場合は、可撓性との関係からFRP製撚構造体
が望ましく、本出願人は、かかるテンションメンバーと
して好適なFRP製撚構造体及びその製造方法について
既に特開平2−259178号により提供している。[0003] When a high tensile strength is required in this kind of rod-like material, a twisted structure made of FRP is desirable in view of flexibility, and the present applicant has proposed a twisted structure made of FRP suitable as such a tension member. And a method for producing the same has already been provided in JP-A-2-259178.
【0004】しかし、撚構造体を光ファイバケーブルの
テンションメンバーとして使用すると、ストランド間に
若干の空間が形成され、テンションメンバーの外周の熱
可塑性樹脂被覆等が破損すると、水がテンションメンバ
ーに沿って移行するいわゆる水走り現象の発生が懸念さ
れ、万一、水が侵入した場合でも、その移行を阻止でき
る構造のものが望ましい。However, when the twisted structure is used as a tension member of an optical fiber cable, a slight space is formed between the strands, and when the thermoplastic resin coating or the like on the outer periphery of the tension member is damaged, water flows along the tension member. There is a concern about the occurrence of a so-called water running phenomenon that causes migration, and a structure that can prevent the migration even if water intrudes is desirable.
【0005】一方、光ケーブルの防水対策としては、光
ファイバテープ心線等を収納する溝には、吸水物質を含
有するテープを巻回するか、吸水剤を含むジェリー状物
を充填する方法などが公知である。ところが、前記本出
願人のFRP製撚構造体にこのような公知の防水手段を
採用すると、以下に説明する技術的課題があった。On the other hand, as a waterproof measure for an optical cable, a method of winding a tape containing a water-absorbing substance or filling a jelly-like material containing a water-absorbing agent in a groove for accommodating an optical fiber tape core wire or the like is available. It is known. However, when such a known waterproofing means is adopted for the FRP twisted structure of the present applicant, there are technical problems described below.
【0006】[0006]
【発明が解決しようとする課題】すなわち、上記公開公
報に示されている撚構造体に、防水のためのテープを巻
回すると、外径の増大を余儀なくされ、また、ジェリー
状物を充填しようとする芯ストランドと外周ストランド
により形成される内部の空間迄十分に充填することは困
難で、完全な防水を達成することはできず、また、ジェ
リーの塗布量の均一化などの点で連続操業上の問題があ
る。そこで、本発明者らは、撚構造体の外径を増大する
ことなく、防水性を達成できる構成についての連続的な
製造方法につき鋭意検討して本願発明を完成した。That is, if a waterproof tape is wound around the twisted structure disclosed in the above-mentioned publication, the outer diameter must be increased and the jelly-like material must be filled. It is difficult to sufficiently fill the inner space formed by the core strand and the outer strand, and it is not possible to achieve perfect waterproofing. There is a problem above. Then, the present inventors diligently studied a continuous manufacturing method for a configuration that can achieve waterproofness without increasing the outer diameter of the twisted structure, and completed the present invention.
【0007】[0007]
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、光ケーブル用防水性繊維強化熱硬化性樹
脂製撚構造体の製造方法として 、連続状補強繊維の所要
本数にそれぞれ未硬化状の熱硬化性樹脂を含浸し、これ
を所定形状に成形して未硬化状線条物とし、この後に、
得られた前記未硬化状線条物を溶融押出機のダイ部に挿
通して、該未硬化状線条物の各々の外周を熱可塑性樹脂
で環状に被覆し、しかる後、該被覆層を直ちに冷却して
内部が未硬化状の複合ストランドとなし、引続いて、該
複合ストランドのうちの1本を芯ストランドとして中心
に配置し、その外周に残余の前記複合ストランドを撚合
せるに際し、各複合ストランド間の内側の間隙に繊維状
吸水材を介在させつつ撚合せた後、複合ストランド同士
により形成される凹部に別の繊維状吸水材を充填しつつ
撚合せ、これらを溶融押出機のダイ部に挿通して熱可塑
性樹脂により環状に被覆し、表面の被覆層を直ちに冷却
固化した後、硬化槽に導き複合ストランド内部の未硬化
状樹脂を硬化することを特徴とする。 [MEANS FOR SOLVING THE PROBLEMS] To achieve the above object
In addition, the present invention provides a waterproof fiber-reinforced thermosetting resin for optical cables.
As a method of manufacturing a twisted structure made of oil, a required number of continuous reinforcing fibers are each impregnated with an uncured thermosetting resin, molded into a predetermined shape to form an uncured filament, and thereafter,
The obtained uncured filaments are inserted through a die portion of a melt extruder, and the outer periphery of each of the uncured filaments is annularly coated with a thermoplastic resin. Immediately after cooling, the inside becomes an uncured composite strand, and subsequently, one of the composite strands is disposed at the center as a core strand, and when the remaining composite strand is twisted around its outer periphery, after combined twisted while interposing a fibrous water absorbing material inside the gaps between the composite strands, while filling another fibrous water absorbing material into the recess formed by the composite strand What happened <br/> Yoawase, these It is inserted into the die of the melt extruder and is coated with a thermoplastic resin in an annular shape.The surface coating layer is immediately cooled and solidified, and then guided to a curing tank to cure the uncured resin inside the composite strand. .
【0009】この撚構造体の製造方法には、撚構造体の
中心に配置される芯ストランドに、未硬化状複合ストラ
ンドに代えて撚合せ前に硬化されてなる繊維強化熱硬化
性樹脂製棒状物又はパイプ状物、繊維強化熱硬化性樹脂
被覆光ファイバーを配置することができる。The method for producing a twisted structure includes a fiber-reinforced thermosetting resin rod formed by curing a core strand disposed at the center of the twisted structure before twisting in place of an uncured composite strand. Objects, pipe-like objects, and fiber-reinforced thermosetting resin-coated optical fibers can be arranged.
【0010】本発明に使用できる連続状補強繊維は、抗
張力性を有するものであれば特にその種類を問わない
が、ガラス繊維,芳香族ポリアミド繊維,カーボン繊維
などや、ナイロン,ポリエステル,ビニロンなどの合成
繊維があげられる。繊維の含有率は、概ね50〜75vo
l %、より好ましくは55〜70vol %である。The continuous reinforcing fiber usable in the present invention is not particularly limited as long as it has tensile strength. Examples thereof include glass fiber, aromatic polyamide fiber, carbon fiber and the like, and nylon, polyester, vinylon and the like. Synthetic fibers. The fiber content is approximately 50-75 vo
l%, more preferably 55 to 70 vol%.
【0011】また、熱硬化性樹脂としては、不飽和ポリ
エステル樹脂,ビニルエステル樹脂が一般的であるが、
エポキシ樹脂,フェノール樹脂等であってもよい。As the thermosetting resin, unsaturated polyester resin and vinyl ester resin are generally used.
An epoxy resin, a phenol resin or the like may be used.
【0012】複合ストランドの外周及び全体を被覆する
熱可塑性樹脂は、溶融押出による被覆が容易なものであ
れば特にその種類を問わないが、一般的には、柔軟性,
耐低温物性,経済性などからポリエチレン系の樹脂や、
柔軟性の樹脂としてポリアミド樹脂が推奨される。The thermoplastic resin which covers the outer periphery and the whole of the composite strand is not particularly limited as long as it can be easily coated by melt extrusion.
Polyethylene-based resin or
A polyamide resin is recommended as a flexible resin.
【0013】本発明に使用する繊維状吸水材は、連続状
の繊維自身が吸水性を有するもの、あるいは繊維の表面
に吸水性物質をコーティング(被覆)したもの、繊維間
に防水性コンパウンドを抱持させたもの、さらにはジェ
リー状の防水性コンパウンドを含浸したものがあげられ
る。繊維状吸水材の使用量は、該繊維状吸水材の吸水性
能より異なり、一般に、光ケーブルとして要求される止
水性能に応じて該繊維状吸水材の空隙充填率が決定され
る。[0013] The fibrous water-absorbing material used in the present invention is a material in which continuous fibers themselves have water absorbency, or those in which the surface of fibers is coated with a water-absorbing substance, and a waterproof compound is interposed between the fibers. And those impregnated with a jelly-like waterproof compound. The amount of the fibrous water-absorbing material used differs from the water-absorbing performance of the fibrous water-absorbing material, and the void filling rate of the fibrous water-absorbing material is generally determined according to the water stopping performance required for an optical cable.
【0014】[0014]
【作用効果】本発明により製造される光ケーブル用防水
性繊維強化熱硬化性樹脂製撚構造体は、各複合ストラン
ドの間隙に繊維状吸水材を充填しているので、万が一被
覆破れ等で撚構造体の部分迄水が侵入しても、その部位
で水を吸収して水走りを防止するので、光ファイバケー
ブル用テンションメンバーとして好適に使用できる。In the twisted structure made of waterproof fiber reinforced thermosetting resin for optical cables manufactured according to the present invention, the fibrous water absorbing material is filled in the gaps between the composite strands, so that the twisted structure may be broken due to coating breakage or the like. Even if water penetrates into the body part, it absorbs water at that part and prevents water running, so that it can be suitably used as a tension member for an optical fiber cable.
【0015】また、本発明の方法は、複合ストランドを
撚合せるに際して繊維状吸水材を充填するので、撚構造
体の内部空間に有効に充填できる。In the method of the present invention, the fibrous water-absorbing material is filled when the composite strand is twisted, so that the internal space of the twisted structure can be effectively filled.
【0016】[0016]
【実施例】以下本発明の好適な実施例について添付図面
を参照にして詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
【0017】実施例1 図3に示すような断面形状を有する1×7のFRP撚構
造体Aを得るため、補強繊維a1として芳香族ポリアミ
ド繊維(デュポン社製:ケブラー49)2840d×1
1本,1420d×1本を1複合ストランドに使用し、
これに、ビニルエステル樹脂(三井東圧化学製:エスタ
ー2000Hr)、アクリル系モノマー,過酸化物系触
媒を添加した熱硬化性樹脂a2が収容された層1に導入
して、熱硬化製樹脂a2を含浸した後、絞りノズル2に
挿通して、外径2.3mmに絞り成形した後、これを溶融
押出機3のヘッド部に挿通して、直鎖状の低密度ポリエ
チレン(以下LLDPE)a3で環状に被覆し、直ちに
表面のLLDPEa3の被覆を冷却槽4で冷却し、外径
2.7mmの未硬化状複合ストランドを7本同時に作製
し、このうち1本を芯ストランドとし、他の6本を外周
ストランドとすべく、図2(A)にその詳細を示す、第
1ガイド5の7つの大径透孔5aに挿通配置した。Example 1 In order to obtain a 1 × 7 FRP twisted structure A having a cross-sectional shape as shown in FIG. 3, an aromatic polyamide fiber (manufactured by DuPont: Kevlar 49) 2840 d × 1 was used as the reinforcing fiber a1.
One, using a single 1420 d × 1 complex strands,
Then, a vinyl ester resin (Ester 2000Hr, manufactured by Mitsui Toatsu Chemicals Co., Ltd.), an acrylic monomer, and a thermosetting resin a2 added with a peroxide catalyst are introduced into the layer 1 containing the thermosetting resin a2. After being impregnated with the squeezed resin, the stencil is passed through a squeezing nozzle 2 and squeezed into an outer diameter of 2.3 mm. The coating of LLDPEa3 on the surface is immediately cooled in the cooling bath 4 to simultaneously produce seven uncured composite strands having an outer diameter of 2.7 mm, one of which is used as a core strand and the other is used as a core strand. In order to use the book as an outer circumferential strand, the book was inserted through seven large-diameter through-holes 5a of the first guide 5, whose details are shown in FIG.
【0018】この時、撚構造体形成後において芯ストラ
ンドと外周ストランド間に形成される空隙を充填するた
めの110テクスの吸水性繊維(日本エクスラン製:ラ
ンシールHT24)a4を6本使用し、これを前記の第
1ガイド5の内側小径透孔5bに挿通配置した。次い
で、前記複合ストランドと吸水性繊維a3とを、後方に
配置された回転引取機の回転により撚合せた後、図2
(B)にその詳細を示す、第2のガイド6の中心孔6a
に挿通した。そしてこの時、複合ストランドの外周に配
置される吸水性繊維a5として330テクス(同社製:
ランシールHT23)のものを6本、第1および第2ガ
イド5,6の外側小径透孔5c,6bに挿通して、撚合
わされた複合ストランドの凹部を充填するように撚合せ
た。At this time, six 110-tex water-absorbing fibers (Lansil HT24, manufactured by Nippon Xlan) for filling voids formed between the core strand and the outer strand after the formation of the twisted structure are used. Is inserted and arranged in the small-diameter through-hole 5 b inside the first guide 5. Next, after twisting the composite strand and the water-absorbing fiber a3 by the rotation of a rotary take-off machine disposed at the rear, FIG.
(B) shows the details, the center hole 6a of the second guide 6
Penetrated. At this time, 330 tex (made by the company:
Six run seals HT23) were inserted into the outer small-diameter through-holes 5c and 6b of the first and second guides 5 and 6, and twisted so as to fill the recesses of the twisted composite strand.
【0019】この吸水性繊維a4,a5を含む未硬化状
撚構造体を溶融押出機7のヘッド部に通して、前記と同
じLLDPEa6に黒色顔料を添加した樹脂により減圧
下で外径9.0mmに被覆した後、冷却水槽8に通して表
面の被覆層を冷却し、続いて、100℃の熱湯を満した
硬化槽9に通して、複合ストランドの熱硬化性樹脂を硬
化し、回転引取機10を介して回転巻取機11により巻
取った。The uncured twisted structure containing the water-absorbent fibers a4 and a5 is passed through the head of the melt extruder 7, and the same LLDPEa6 as above with a black pigment added resin under reduced pressure of 9.0 mm in outer diameter. After cooling, the coating layer on the surface is cooled by passing through a cooling water tank 8 and then passed through a curing tank 9 filled with hot water at 100 ° C. to cure the thermosetting resin of the composite strand, The film was wound up by a rotary winder 11 through 10.
【0020】得られた撚構造体Aは、補強繊維a1のケ
ブラー繊維含有率が55vol %の複合ストランドと、複
合ストランド間に吸水性繊維a4,a5を20vol %で
充填したものであって、0.2%伸度時の強力が400
kg,引張弾性率が6900kg/mm2 の物性を有してい
た。The obtained twisted structure A is a composite strand in which the Kevlar fiber content of the reinforcing fiber a1 is 55 vol%, and the absorbent strands a4 and a5 are filled with 20 vol% between the composite strands. 400% strength at 2% elongation
kg and a tensile modulus of 6900 kg / mm 2 .
【0021】この撚構造体Aについて、次の方法により
防水性のテストを行なった。長さ1mの本実施例の撚構
造体Aを準備し、これを台上に水平に載置してその一端
にホースを接続し、水頭長1mの位置に蒸留水を満した
分液ロートを保持して、ロート及びホースを開栓し、他
端側から水滴が出る迄の時間を観測した。The twisted structure A was tested for waterproofness by the following method. A 1 m long twisted structure A of the present example is prepared, placed horizontally on a table, connected to a hose at one end thereof, and a separation funnel filled with distilled water is placed at a position of 1 m head. While holding, the funnel and hose were opened, and the time until water droplets came out from the other end side was observed.
【0022】その結果、本実施例の撚構造体Aは、24
時間での走水長が50mmであり、十分な防水性能を有し
ている。As a result, the twisted structure A of the present embodiment
The running water length per hour is 50 mm, and it has sufficient waterproof performance.
【0023】なお、比較のため、本実施例と同一の複合
ストランドを使用し、吸水性繊維を充填することなく構
成した撚構造体についての防水性能テストでは開栓後1
分間で片端より水が出た。For comparison, in a waterproof performance test of a twisted structure using the same composite strand as in the present example and without filling with water-absorbing fibers, 1 hour after opening was performed.
Water came out from one end in a minute.
【0024】実施例2 実施例1の吸水性繊維ランシールに代えて、平均10μ
m径に粉砕されたポリアクリル酸ソーダ系の吸水性樹脂
(三菱油化製:ダイヤウェット)をポリエチレンワック
スで分散させてポリプロピレンと混合した原料を紡糸
し、所定倍率に延伸した、吸水性樹脂を28.5重量%
含む単糸4.2デニール,トータルデニール2650d
の吸水性繊維a5及びトータルデニール880dの吸水
性繊維a4を得た。Example 2 An average of 10 μm was used instead of the water-absorbent fiber run seal of Example 1.
A raw material obtained by dispersing a sodium polyacrylate-based water-absorbent resin (manufactured by Mitsubishi Yuka: DiaWet) crushed to m diameter with polyethylene wax and mixing with polypropylene is spun and stretched to a predetermined magnification. 28.5% by weight
Includes single denier 4.2 denier, total denier 2650 d
Water-absorbing fiber a5 and total denier 880 d of water-absorbing fiber a4 were obtained.
【0025】この吸水性繊維a4を芯ストランドと外周
ストランドとの空隙部に、同a5を外周側に使用した撚
構造体Aを実施例1と同様にして得た。得られた実施例
2による撚構造体Aの防水性能は、24時間での走水長
が50mmで、十分な防水性能を備えていることが確認さ
れた。A twisted structure A was obtained in the same manner as in Example 1 using the water-absorbing fiber a4 in the gap between the core strand and the outer peripheral strand and using the same a5 on the outer peripheral side. As for the waterproof performance of the obtained twisted structure A according to Example 2, it was confirmed that the water running length in 24 hours was 50 mm, and the waterproof performance was sufficient.
【0026】なお、上記実施例では、芯ストランドとし
て外周ストランドと同じ構成のものを使用した場合を例
示したが、この発明の実施はこれに限られることはな
く、撚合せ前に硬化されてなる繊維強化熱硬化性樹脂製
棒状物又はパイプ状物、繊維強化熱硬化性樹脂被覆光フ
ァイバー等のいずれかを選択することができる。In the above embodiment, the case where the core strand having the same configuration as the outer strand is used is exemplified. However, the present invention is not limited to this, and the strand is hardened before twisting. Any of a fiber-reinforced thermosetting resin rod or pipe, a fiber-reinforced thermosetting resin-coated optical fiber, and the like can be selected.
【図1】本発明の製造方法の工程を順に示す説明図であ
る。FIG. 1 is an explanatory view showing steps of a manufacturing method of the present invention in order.
【図2】本発明の製造方法で用いるガイドの説明図であ
る。FIG. 2 is an explanatory diagram of a guide used in the manufacturing method of the present invention.
【図3】本発明の製造方法で得られる撚構造体の断面説
明図である。FIG. 3 is an explanatory sectional view of a twisted structure obtained by the production method of the present invention.
A 撚構造体 a1 補強繊維 a2 熱硬化性樹脂 a3 LLDPE(熱可塑性樹脂) a4,a5 吸水性繊維 a6 LLDPE(外周被覆層) A Twisted structure a1 Reinforcing fiber a2 Thermosetting resin a3 LLDPE (thermoplastic resin) a4, a5 Water absorbing fiber a6 LLDPE (peripheral coating layer)
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−259178(JP,A) 特開 平2−244014(JP,A) 特開 平3−51384(JP,A) 実開 平1−67612(JP,U) (58)調査した分野(Int.Cl.7,DB名) G02B 6/44 D07B 1/16 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-259178 (JP, A) JP-A-2-244014 (JP, A) JP-A-3-51384 (JP, A) 67612 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) G02B 6/44 D07B 1/16
Claims (2)
硬化状の熱硬化性樹脂を含浸し、これを所定形状に成形
して未硬化状線条物とし、この後に、得られた前記未硬
化状線条物を溶融押出機のダイ部に挿通して、該未硬化
状線条物の各々の外周を熱可塑性樹脂で環状に被覆し、
しかる後、該被覆層を直ちに冷却して内部が未硬化状の
複合ストランドとなし、引続いて、該複合ストランドの
うちの1本を芯ストランドとして中心に配置し、その外
周に残余の前記複合ストランドを撚合せるに際し、各複
合ストランド間の内側の間隙に繊維状吸水材を介在させ
つつ撚合せた後、複合ストランド同士により形成される
凹部に別の繊維状吸水材を充填しつつ撚合せ、これらを
溶融押出機のダイ部に挿通して熱可塑性樹脂により環状
に被覆し、表面の被覆層を直ちに冷却固化した後、硬化
槽に導き複合ストランド内部の未硬化状樹脂を硬化する
ことを特徴とする光ケーブル用防水性繊維強化熱硬化性
樹脂製撚構造体の製造方法。1. An uncured thermosetting resin is impregnated into a required number of continuous reinforcing fibers, and the impregnated thermosetting resin is molded into a predetermined shape to obtain an uncured filament. The cured filament is inserted through the die of the melt extruder, and the outer periphery of each of the uncured filaments is annularly coated with a thermoplastic resin,
Thereafter, the coating layer is immediately cooled to form an uncured composite strand inside, and one of the composite strands is subsequently disposed at the center as a core strand, and the remaining composite strand is placed around its outer periphery. upon aligned twisted strands, after combined twisted while interposing a fibrous water absorbing material inside the gaps between the composite strands, while filling another fibrous water absorbing material into the recess formed by the composite strand same workers Yoawase These are inserted into the die of the melt extruder, coated in a ring with a thermoplastic resin, and immediately cooled and solidified on the surface, and then guided to a curing tank to cure the uncured resin inside the composite strand. A method for producing a twisted structure made of a waterproof fiber-reinforced thermosetting resin for an optical cable.
ドに、未硬化状複合ストランドに代えて撚合せ前に硬化
されてなる繊維強化熱硬化性樹脂製棒状物又はパイプ状
物、繊維強化熱硬化性樹脂被覆光ファイバーを配置する
ことを特徴とする請求項1に記載の光ケーブル用防水性
繊維強化撚構造体の製造方法。2. A fiber-reinforced thermosetting resin rod or pipe made by curing a core strand disposed at the center of a twisted structure before twisting in place of an uncured composite strand, fiber-reinforced The method for producing a waterproof fiber reinforced twisted structure for an optical cable according to claim 1, wherein a thermosetting resin-coated optical fiber is disposed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12186191A JP3176389B2 (en) | 1991-04-25 | 1991-04-25 | Method of manufacturing waterproof fiber-reinforced thermosetting resin twisted structure for optical cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12186191A JP3176389B2 (en) | 1991-04-25 | 1991-04-25 | Method of manufacturing waterproof fiber-reinforced thermosetting resin twisted structure for optical cable |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04324805A JPH04324805A (en) | 1992-11-13 |
JP3176389B2 true JP3176389B2 (en) | 2001-06-18 |
Family
ID=14821750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12186191A Expired - Fee Related JP3176389B2 (en) | 1991-04-25 | 1991-04-25 | Method of manufacturing waterproof fiber-reinforced thermosetting resin twisted structure for optical cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3176389B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101555038B1 (en) * | 2015-04-30 | 2015-10-06 | 주식회사 유니코닝 | Glass fiber yarn coated with color additives and manufacturing method thereof |
-
1991
- 1991-04-25 JP JP12186191A patent/JP3176389B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101555038B1 (en) * | 2015-04-30 | 2015-10-06 | 주식회사 유니코닝 | Glass fiber yarn coated with color additives and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH04324805A (en) | 1992-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5126167A (en) | Process of manufacturing a fiber reinforced plastic armored cable | |
CA1302674C (en) | Method and apparatus of manufacturing a cable-like plastic composite body | |
US5084221A (en) | Process for manufacturing a twisted frp structure | |
US4677818A (en) | Composite rope and manufacture thereof | |
WO2020253158A1 (en) | Binding-yarn-layer-free stranded optical cable and manufacturing method therefor | |
US5157752A (en) | Optical fiber cable with intermingled water blocking means and method of making same | |
GB2262996A (en) | Optical waveguide cable having reinforced covering formed by coextrusion | |
FI58410C (en) | FOERFARANDE FOER FRAMSTAELLNING AV EN DRAGFOERSTAERKT ELEKTRISK KABEL | |
US4984869A (en) | Optical fibre cable and method of making same | |
JP3176389B2 (en) | Method of manufacturing waterproof fiber-reinforced thermosetting resin twisted structure for optical cable | |
CN113866922A (en) | Outdoor optical cable with large-core-number micro-beam tube and process manufacturing method thereof | |
JP2984021B2 (en) | Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same | |
JPH0660471B2 (en) | Compound striatum | |
JP2869116B2 (en) | Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same | |
DE2522849A1 (en) | High tensile flexible cable - having primed core plus deposit of fibres plus outer sprayed polyethylene coating | |
JP3482252B2 (en) | Fiber composite linear body and method for producing the same | |
CN115657242B (en) | Small-diameter fiber reinforced optical cable and manufacturing process thereof | |
JP3502287B2 (en) | Manufacturing method of spacer for optical fiber cable | |
CN117031655A (en) | Large-core-number impact-resistant optical cable and preparation method thereof | |
CN115877529B (en) | Fiber reinforced optical cable and manufacturing method | |
JP3472149B2 (en) | Spacer for optical fiber cable and method of manufacturing the same | |
JPH0414731Y2 (en) | ||
JPS60170810A (en) | Optical transmission bundled fiber | |
JP2005283624A (en) | Optical fiber cable and method of manufacturing the same | |
JPH0445405A (en) | Production of frp armored optical cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |