JP3156428B2 - Scanning electron microscope - Google Patents
Scanning electron microscopeInfo
- Publication number
- JP3156428B2 JP3156428B2 JP05357093A JP5357093A JP3156428B2 JP 3156428 B2 JP3156428 B2 JP 3156428B2 JP 05357093 A JP05357093 A JP 05357093A JP 5357093 A JP5357093 A JP 5357093A JP 3156428 B2 JP3156428 B2 JP 3156428B2
- Authority
- JP
- Japan
- Prior art keywords
- deflection
- sample
- deflector
- electron beam
- fulcrum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Description
【0001】[0001]
【産業上の利用分野】本発明は電子線装置に係り、特に
極低倍率像を得るのに好適な走査電子顕微鏡及びその類
似装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam apparatus, and more particularly to a scanning electron microscope suitable for obtaining an extremely low magnification image and a similar apparatus.
【0002】[0002]
【従来の技術】従来、走査電子顕微鏡では低倍率観察に
おける像の歪を防ぐために、対物レンズの上部(電子源
側)に二段の偏向コイルを配置して、一次電子線の偏向
支点が対物レンズ主面近傍になるように二段偏向コイル
の巻き数比(偏向比)を設定している。一般に、走査電
子顕微鏡における像倍率は、試料上での一次電子線の偏
向量に反比例する。したがって、試料上での一次電子線
偏向量が大きい程、低倍率観察ができる。しかし、偏向
支点を対物レンズ主面近傍に設定しているため、偏向量
は対物レンズの主面から試料までの距離、即ち、対物レ
ンズの焦点距離で決まってしまう。そのため、例えば、
数十倍以下の極低倍率の像を表示するには、試料と対物
レンズの距離(ワーキングディスタンス)を30mm〜4
0mmと、かなり長くして使用する必要があった。一方、
試料をレンズ磁界中に配置する、いわゆるインレンズ方
式の走査電子顕微鏡では、Scanning Microscopy(Vol.
1,No.3,1987年,901−909頁)に記載
のように、対物レンズの焦点距離が非常に短いため、通
常の二段偏向方式では、250倍以下の低倍率が得られ
ない。そのため、低倍率像を表示するときには、対物レ
ンズの励磁をOFFまたは、弱励磁状態にして、偏向コ
イルを一段で用いて試料上での偏向量を大きくしてい
た。しかし、この場合においても、対物レンズの磁極の
穴で視野が制限され、極低倍が得られない問題があっ
た。2. Description of the Related Art Conventionally, in a scanning electron microscope, in order to prevent image distortion during low-magnification observation, a two-stage deflection coil is arranged above an objective lens (on the side of an electron source), and a deflection fulcrum of a primary electron beam is used as an objective. The winding ratio (deflection ratio) of the two-stage deflection coil is set so as to be near the lens main surface. Generally, the image magnification in a scanning electron microscope is inversely proportional to the amount of deflection of a primary electron beam on a sample. Therefore, the lower the magnification of the primary electron beam on the sample, the lower the magnification of the observation. However, since the deflection fulcrum is set near the main surface of the objective lens, the amount of deflection is determined by the distance from the main surface of the objective lens to the sample, that is, the focal length of the objective lens. So, for example,
In order to display an image at an extremely low magnification of several tens of times or less, the distance (working distance) between the sample and the objective lens should be 30 mm to 4 mm.
It had to be used considerably longer, 0 mm. on the other hand,
In a so-called in-lens type scanning electron microscope in which a sample is placed in a lens magnetic field, a scanning microscopy (Vol.
1, No. 3, 1987, pp. 901-909), the focal length of the objective lens is very short, and a low magnification of 250 times or less cannot be obtained by the ordinary two-stage deflection method. For this reason, when displaying a low-magnification image, the excitation of the objective lens is turned off or weakly excited, and the deflection amount on the sample is increased by using a deflection coil in one stage. However, also in this case, there is a problem that the field of view is limited by the hole of the magnetic pole of the objective lens, and an extremely low magnification cannot be obtained.
【0003】[0003]
【発明が解決しようとする課題】本発明の目的は上述し
た従来技術の欠点をなくし、対物レンズの磁極の穴等で
視野を制限されることなく、極低倍率像観察を容易に実
現できる走査電子顕微鏡を提供することにある。SUMMARY OF THE INVENTION It is an object of the present invention to eliminate the above-mentioned disadvantages of the prior art, and to provide a hole in a magnetic pole of an objective lens.
Easy observation of ultra-low magnification images without restricting the field of view
And to provide a current can scanning electron microscope.
【0004】[0004]
【課題を解決するための手段】上記目的を達成するため
に、本発明では通常の高倍率で使用するときと極低倍率
で使用するときとで偏向支点の位置を変えて、極低倍率
を得るときには、偏向支点を通常の使用位置(対物レン
ズの主面近傍)より電子源側に移動させた最適条件にす
る。偏向支点を変えるには、二段偏向器の偏向比を変え
る必要があるが、このために、二段偏向器のいずれか一
方の偏向器に補助偏向器を付加するか、あるいは、二段
偏向器の駆動回路を独立にして、各偏向器の偏向信号比
を可変にしている。前述の如く偏向支点を電気的に変更
できる手段を有することで、通常の高分解能観察に適し
た偏向支点と、極低倍率に適した偏向支点を電気的に容
易に切り換えることができる。一方、極低倍率を得るた
めの偏向支点の位置は対物レンズの主面近傍でないた
め、対物レンズが通常の励磁状態(試料にフォーカスで
きる励磁状態)では、像歪を生じてしまう。そのため、
極低倍観察を行う条件では、対物レンズを弱励磁状態に
するか、または、OFF状態にする。このとき、一次電
子線のフォーカスに、対物レンズ上部(電子源側)に配
置した集束レンズを用いる。In order to achieve the above-mentioned object, the present invention changes the position of the deflection fulcrum between normal use at a high magnification and use at a very low magnification so as to reduce the very low magnification. To obtain the optimum condition, the deflection fulcrum is moved from the normal use position (near the main surface of the objective lens) to the electron source side. To change the deflection fulcrum, it is necessary to change the deflection ratio of the two-stage deflector. For this purpose, an auxiliary deflector is added to one of the two-stage deflectors, or the two-stage deflector is deflected. The drive circuits of the deflectors are made independent, and the deflection signal ratio of each deflector is made variable. By providing means for electrically changing the deflection fulcrum as described above, the deflection fulcrum suitable for normal high-resolution observation and the deflection fulcrum suitable for extremely low magnification can be electrically easily switched. On the other hand, since the position of the deflection fulcrum for obtaining the extremely low magnification is not near the main surface of the objective lens, image distortion occurs when the objective lens is in a normal excitation state (an excitation state in which a sample can be focused). for that reason,
Under ultra-low magnification conditions, the objective lens is set to a weakly excited state or an OFF state. At this time, a focusing lens arranged above the objective lens (on the side of the electron source) is used to focus the primary electron beam.
【0005】[0005]
【作用】上記した本発明の特徴的構成によれば、次のよ
うな作用効果が得られる。すなわち、極低倍率を必要と
しない通常の高分解能観察では、図2に示す軌道で一次
電子線を偏向する。このときの偏向支点は、対物レンズ
の主面近傍に設定されているため、対物レンズで通常の
フォーカス作用をさせても像に歪が生じない。極低倍率
観察時には、対物レンズの励磁をOFF状態にして、図
3に示す軌道で一次電子線を偏向すると、通常の観察に
おける最低倍率よりさらに低い極低倍率を容易に実現で
きる。極低倍率に最適な偏向支点の位置は、対物レンズ
の上下磁極の穴径と偏向コイルの位置とから作図で容易
に求めることができる。図3の例では、下部偏向コイル
の内壁と対物レンズ下部磁極の内壁とを結んだ直線が、
光軸と交わる点を偏向支点にすれば最も低い倍率が実現
できる。さらに、一次電子線を集束レンズで試料上にフ
ォーカスするため、集束角が非常に小さくなり、深い焦
点深度で観察できる効果がある。According to the above-described characteristic configuration of the present invention, the following operation and effect can be obtained. That is, in ordinary high-resolution observation that does not require an extremely low magnification, the primary electron beam is deflected in the orbit shown in FIG. Since the deflection fulcrum at this time is set in the vicinity of the main surface of the objective lens, no distortion occurs in the image even when a normal focusing operation is performed by the objective lens. At the time of ultra-low magnification observation, when the excitation of the objective lens is turned off and the primary electron beam is deflected in the orbit shown in FIG. 3, an extremely low magnification lower than the lowest magnification in normal observation can be easily realized. The optimum position of the deflection fulcrum for extremely low magnification can be easily obtained by drawing from the hole diameters of the upper and lower magnetic poles of the objective lens and the position of the deflection coil. In the example of FIG. 3, a straight line connecting the inner wall of the lower deflection coil and the inner wall of the lower magnetic pole of the objective lens,
The lowest magnification can be realized if the point of intersection with the optical axis is set as the deflection fulcrum. Further, since the primary electron beam is focused on the sample by the focusing lens, the focusing angle becomes very small, and there is an effect that observation can be performed at a deep depth of focus.
【0006】[0006]
【実施例】図1は本発明の一実施例の概略断面図であ
る。陰極1と第一陽極2に印加される電圧V1により陰
極1から放射された一次電子線4は、第二陽極3に印加
される電圧Vacc に加速されて後段のレンズ系に進行す
る。この一次電子線4は、レンズ制御電源15で制御さ
れた集束レンズ5と対物レンズ6により試料7に微小ス
ポットとして集束され、二段の偏向コイル8および9で
試料上を二次元的に走査される。偏向コイル8,9の走
査信号は、観察倍率に応じて偏向制御回路14により制
御される。一方、試料7の一次電子線照射点から発生し
た二次電子11は、二次電子検出器12で検出されて電
気信号(二次電子信号)に変換される。この二次電子信
号と偏向制御回路14の走査信号は、像表示装置18に
入力され、試料の拡大像(二次電子像)が表示される。FIG. 1 is a schematic sectional view of an embodiment of the present invention. The primary electron beam 4 emitted from the cathode 1 by the voltage V1 applied to the cathode 1 and the first anode 2 is accelerated by the voltage Vacc applied to the second anode 3 and proceeds to the subsequent lens system. The primary electron beam 4 is focused as a minute spot on the sample 7 by the focusing lens 5 and the objective lens 6 controlled by the lens control power supply 15, and is scanned two-dimensionally on the sample by the two-stage deflection coils 8 and 9. You. The scanning signals of the deflection coils 8 and 9 are controlled by the deflection control circuit 14 according to the observation magnification. On the other hand, the secondary electrons 11 generated from the primary electron beam irradiation point of the sample 7 are detected by the secondary electron detector 12 and converted into an electric signal (secondary electron signal). The secondary electron signal and the scanning signal of the deflection control circuit 14 are input to the image display device 18, and an enlarged image (secondary electron image) of the sample is displayed.
【0007】偏向コイル8と9の巻き数比は、偏向制御
回路14の走査信号が両偏向コイルに同じ電流で流れた
ときに、一次電子線の偏向支点が対物レンズ6のレンズ
主面になるように設定されている。一方、補助偏向コイ
ル10が偏向コイル9と同位置に巻かれており、偏向支
点切換スイッチ16で偏向信号のON/OFFができる
ようになっている。さらに、対物レンズ6も励磁電流切
換スイッチ17でON/OFFができる構成になってい
る。The winding ratio of the deflection coils 8 and 9 is such that when the scanning signal of the deflection control circuit 14 flows through both deflection coils with the same current, the deflection fulcrum of the primary electron beam becomes the lens principal surface of the objective lens 6. It is set as follows. On the other hand, the auxiliary deflecting coil 10 is wound at the same position as the deflecting coil 9, and the deflection signal can be turned on / off by the deflecting fulcrum switch 16. Further, the objective lens 6 is also configured to be able to be turned on / off by the exciting current switch 17.
【0008】図2は、通常の高分解能観察条件における
切換スイッチ16および17の状態と、一次電子線4の
偏向軌道(実線および点線)を表している。通常の観察
条件では、切換スイッチ16がOFF状態であるため、
補助偏向コイル10は動作しない状態にある。したがっ
て、一次電子線4は、図2の如く、対物レンズの主面を
支点として偏向される。また、切換スイッチ17はON
状態であり、対物レンズには一次電子線を試料にフォー
カスするに適した励磁電流が流される。FIG. 2 shows the states of the changeover switches 16 and 17 under normal high-resolution observation conditions, and the deflection trajectory (solid line and dotted line) of the primary electron beam 4. Under normal observation conditions, since the changeover switch 16 is in the OFF state,
The auxiliary deflection coil 10 is not operating. Therefore, the primary electron beam 4 is deflected around the main surface of the objective lens as a fulcrum, as shown in FIG. The changeover switch 17 is ON
In this state, an exciting current suitable for focusing the primary electron beam on the sample flows through the objective lens.
【0009】図3は、極低倍観察を行うときの切換スイ
ッチ16および17の状態と一次電子線の偏向軌道(実
線および点線)を表している。極低倍率での観察を行う
場合には切換スイッチ16がON状態となり、補助偏向
コイル10が励磁状態になる。したがって、偏向コイル
9および10の合成作用により、下側偏向コイルによる
一次電子線の偏向量は、通常の条件(図2の条件)より
大きくなる。その結果、偏向支点が図2の状態よりも上
部に移動するため、図3から明らかなように、試料上で
の偏向量が通常の偏向(図2の状態)よりも大きくな
り、より低倍率の表示が可能になる。また、対物レンズ
6の励磁がOFF(切換スイッチ17がOFF状態)で
あるため、偏向支点が対物レンズ主面位置からずれてい
ても歪が発生しない。このとき、一次電子線は集束レン
ズ5で試料上にフォーカスされる。FIG. 3 shows the states of the changeover switches 16 and 17 and the deflection trajectory (solid line and dotted line) of the primary electron beam when performing ultra-low magnification observation. When performing observation at an extremely low magnification, the changeover switch 16 is turned on, and the auxiliary deflection coil 10 is excited. Therefore, due to the combined action of the deflection coils 9 and 10, the amount of deflection of the primary electron beam by the lower deflection coil becomes larger than the normal condition (the condition in FIG. 2). As a result, the deflection fulcrum moves above the state shown in FIG. 2, so that the amount of deflection on the sample becomes larger than the normal deflection (the state shown in FIG. 2), as is clear from FIG. Can be displayed. Further, since the excitation of the objective lens 6 is OFF (the switch 17 is in the OFF state), no distortion occurs even if the deflection fulcrum is displaced from the position of the main surface of the objective lens. At this time, the primary electron beam is focused on the sample by the focusing lens 5.
【0010】図4は、本発明の他の実施例を表す概略断
面図である。本実施例では、補助偏向コイルを用いる代
わりに、偏向コイル8、および9をそれぞれ独立の駆動
回路19および20で制御している。駆動回路20は、
その利得が可変設定できる構成であり、極低倍率の条件
にしたいときと通常の観察条件のときとで偏向支点の切
り換えができる。図4の構成によれば、偏向コイルの代
わりに静電形の偏向器を用いても、駆動回路(この場合
は、電圧制御回路)の利得変更によって偏向支点を任意
に変えることができるため、極低倍率の観察が可能にな
る。FIG. 4 is a schematic sectional view showing another embodiment of the present invention. In this embodiment, the deflection coils 8 and 9 are controlled by independent driving circuits 19 and 20, respectively, instead of using the auxiliary deflection coils. The drive circuit 20
The gain can be variably set, and the deflection fulcrum can be switched between when a very low magnification condition is desired and when a normal observation condition is set. According to the configuration of FIG. 4, even if an electrostatic deflector is used instead of the deflection coil, the deflection fulcrum can be arbitrarily changed by changing the gain of the drive circuit (in this case, the voltage control circuit). Observation at extremely low magnification becomes possible.
【0011】[0011]
【発明の効果】本発明の特徴的構成によれば、通常の偏
向で得られる最低倍率よりも更に低い、極低倍率像の観
察を容易に実現することが可能になる。According to the characteristic structure of the present invention, it is possible to easily realize the observation of an extremely low magnification image which is lower than the minimum magnification obtained by ordinary deflection.
【図1】本発明の一実施例の概略断面図である。FIG. 1 is a schematic sectional view of one embodiment of the present invention.
【図2】通常の偏向条件における各偏向コイルの状態と
一次電子線の偏向軌道を示す図である。FIG. 2 is a diagram showing a state of each deflection coil and a deflection trajectory of a primary electron beam under normal deflection conditions.
【図3】極低倍率の偏向条件における各偏向コイルの状
態と一次電子線の偏向軌道を示す図である。FIG. 3 is a diagram showing the state of each deflection coil and the deflection trajectory of a primary electron beam under extremely low magnification deflection conditions.
【図4】本発明の他の実施例の概略断面図である。FIG. 4 is a schematic sectional view of another embodiment of the present invention.
1…陰極、2…第一陽極、3…第二陽極、4…一次電子
線、5…集束レンズ、6…対物レンズ、7…試料、8…
上側偏向コイル、9…下側偏向コイル、10…補助偏向
コイル、11…二次電子、12…二次電子検出器、13
…対物レンズ絞り、14…偏向制御回路、15…レンズ
制御回路、16…極低倍率切換スイッチ、17…対物レ
ンズ励磁遮断スイッチ、18…像表示装置、19…上側
偏向器用駆動回路、20…下側偏向器用可変駆動回路。DESCRIPTION OF SYMBOLS 1 ... Cathode, 2 ... First anode, 3 ... Second anode, 4 ... Primary electron beam, 5 ... Focusing lens, 6 ... Objective lens, 7 ... Sample, 8 ...
Upper deflection coil, 9 Lower deflection coil, 10 Auxiliary deflection coil, 11 Secondary electrons, 12 Secondary electron detector, 13
... Objective aperture, 14 deflection control circuit, 15 lens control circuit, 16 ultra-low magnification changeover switch, 17 objective lens excitation cutoff switch, 18 image display device, 19 upper side deflector drive circuit, 20 lower side Variable drive circuit for side deflector.
Claims (5)
って試料に照射するための集束レンズ系と、該一次電子
線を二段階に偏向し試料上で二次元的に走査する二段偏
向器と、試料より放出された電子を検出する検出器を備
えた走査形電子顕微鏡において、前記一次電子線の偏向支点を、少なくともレンズ主面近
傍、及びレンズ主面より前記電子源側の2個所に位置づ
けられるように、前記二段偏向器の少なくとも1段の偏
向器を制御する手段を備えた ことを特徴とする走査形電
子顕微鏡。1. A electron source focusing lens system for irradiating the sample with finely focused primary electron beam emitted from, you two-dimensionally scanning the primary electron beam on the sample is deflected in two stages two Step deviation
And a detector to detect electrons emitted from the sample.
In the scanning electron microscope obtained, the deflection fulcrum of the primary electron beam is moved at least near the lens main surface.
Near the electron source from the lens main surface.
At least one stage of the two-stage deflector so that
A scanning electron microscope comprising means for controlling a director.
とも一方の偏向器に偏向支点切り換え用の補助偏向器を
設けていることを特徴とする走査形電子顕微鏡。2. A have you to claim 1, for switching the deflection fulcrum, Scanning, characterized in that is provided an auxiliary deflector for deflecting fulcrum switched to at least one of the deflector of the two-stage deflector electronic microscope.
立回路とし、二段偏向器への供給電流、または供給電圧
の比を切り換えることにより、二段偏向器の偏向支点を
切り換えることを特徴とする走査形電子顕微鏡。3. A have you to claim 1, wherein the independently circuitry driving circuit for driving the respective two-stage deflector, by switching the ratio of the supply current or supply voltage, to the two-stage deflector, the two A scanning electron microscope characterized by switching a deflection fulcrum of a step deflector.
集束レンズ(対物レンズ)の励磁条件を切り換えること
を特徴とする走査形電子顕微鏡。4. A scanning electron microscope according to claim 1, wherein the excitation condition of the final-stage focusing lens (objective lens) is switched in conjunction with the switching of the deflection fulcrum of the two-stage deflector.
って試料に照射するための集束レンズ系と、該一次電子A focusing lens system for irradiating the sample with the primary electron
線を二段階に偏向し試料上で二次元的に走査する二段偏Two-step deflection that deflects the line in two steps and scans the sample two-dimensionally
向器と、試料より放出された電子を検出する検出器を備And a detector to detect electrons emitted from the sample.
えた走査形電子顕微鏡において、In the scanning electron microscope obtained, 前記一次電子線の偏向支点を、前記一次電子線の光軸方The deflection fulcrum of the primary electron beam is defined by the optical axis of the primary electron beam.
向の少なくとも2点にAt least two points 移動させるように前記二段偏向器The two-stage deflector to move
を制御する制御手段と、前記集束レンズ系の内、対物レControl means for controlling the objective lens of the focusing lens system.
ンズを少なくとも第1の励磁条件、或いは当該第1の励At least in the first excitation condition or the first excitation condition.
磁条件よりも弱励磁または非励磁状態とする第2の励磁The second excitation to make the state weaker or non-energized than the magnetic condition
条件に設定する設定手段とを備え、当該設定手段は、前Setting means for setting the condition.
記偏向支点が、他の一方の偏向支点より電子源側に位置The deflection fulcrum is located closer to the electron source than the other deflection fulcrum.
づけられたときに前記第2の励磁条件で前記対物レンズWhen attached to the objective lens under the second excitation condition
を励磁することを特徴とする走査形電子顕微鏡。A scanning electron microscope characterized by exciting a laser beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05357093A JP3156428B2 (en) | 1993-03-15 | 1993-03-15 | Scanning electron microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05357093A JP3156428B2 (en) | 1993-03-15 | 1993-03-15 | Scanning electron microscope |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06267477A JPH06267477A (en) | 1994-09-22 |
JP3156428B2 true JP3156428B2 (en) | 2001-04-16 |
Family
ID=12946496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05357093A Expired - Fee Related JP3156428B2 (en) | 1993-03-15 | 1993-03-15 | Scanning electron microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3156428B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012018812A (en) * | 2010-07-08 | 2012-01-26 | Keyence Corp | Magnifying observation device, magnifying observation method, program for magnifying observation, and computer-readable recording medium |
US10504684B1 (en) * | 2018-07-12 | 2019-12-10 | ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH | High performance inspection scanning electron microscope device and method of operating the same |
-
1993
- 1993-03-15 JP JP05357093A patent/JP3156428B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06267477A (en) | 1994-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6855931B2 (en) | Scanning electron microscope and sample observation method using the same | |
JPH0233843A (en) | Scanning electronic microscope | |
JP3323021B2 (en) | Scanning electron microscope and sample image observation method using the same | |
KR100406895B1 (en) | Scanning electron microscope | |
US6580074B1 (en) | Charged particle beam emitting device | |
JP2000133183A (en) | Charged-particle beam device | |
US6800853B2 (en) | Electron microscope and method of photographing TEM images | |
JP3156428B2 (en) | Scanning electron microscope | |
JPH08255588A (en) | Scanning electron microscope and device similar thereto | |
JP2003151484A (en) | Scanning type charged particle beam device | |
CN115714080B (en) | Scanning electron beam imaging equipment and imaging method | |
JP3474082B2 (en) | Electron beam equipment | |
US11664186B1 (en) | Apparatus of electron beam comprising pinnacle limiting plate and method of reducing electron-electron interaction | |
JP3429988B2 (en) | Scanning electron microscope | |
US7161149B2 (en) | Scanning electron microscope and method of controlling same | |
JP2002117796A (en) | Charged particle beam device and focus ion beam device | |
JP2886168B2 (en) | Electron beam equipment | |
JP2000156192A (en) | Scanning electron microscope | |
JP2001076665A (en) | Low-energy reflection electron microscope | |
JPH1196954A (en) | Scanning electron microscope | |
JPH10172489A (en) | Adjusting method of electron beam in scan electron microscope | |
JP2001243904A (en) | Scanning electron microscope | |
JP3779581B2 (en) | Electron beam equipment | |
JP2002319361A (en) | Method of setting different magnification for scanning electron microscope | |
JP2000048749A (en) | Scanning electron microscope, and electron beam axis aligning method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080209 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090209 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090209 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100209 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100209 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110209 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120209 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120209 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130209 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |