Nothing Special   »   [go: up one dir, main page]

JP3152971B2 - Manufacturing method of high purity copper single crystal ingot - Google Patents

Manufacturing method of high purity copper single crystal ingot

Info

Publication number
JP3152971B2
JP3152971B2 JP26819291A JP26819291A JP3152971B2 JP 3152971 B2 JP3152971 B2 JP 3152971B2 JP 26819291 A JP26819291 A JP 26819291A JP 26819291 A JP26819291 A JP 26819291A JP 3152971 B2 JP3152971 B2 JP 3152971B2
Authority
JP
Japan
Prior art keywords
copper
mold
purity
single crystal
crystal ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26819291A
Other languages
Japanese (ja)
Other versions
JPH0578195A (en
Inventor
透 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP26819291A priority Critical patent/JP3152971B2/en
Publication of JPH0578195A publication Critical patent/JPH0578195A/en
Application granted granted Critical
Publication of JP3152971B2 publication Critical patent/JP3152971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高純度銅単結晶鋳塊の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-purity copper single crystal ingot.

【0002】[0002]

【従来の技術】従来より、高純度銅はボンディングワイ
ヤーや金属・半導体コンタクトなどのエレクトロニクス
用としてのみならず、超電導、超高電圧、超高真空、ま
たは音響機器などの導電材料、極低温機器用冷却媒体ま
たは高耐力レーザーミラー等多くの先端技術分野におい
て、その性能を支配する材料の一つとして広く用いられ
てきた。近年では、このような用途に使用されている高
純度銅材の需要は著しく高まる一方、これらの用途に要
求される形状は多様になっている。
2. Description of the Related Art Conventionally, high-purity copper has been used not only for electronics such as bonding wires and metal / semiconductor contacts, but also for conductive materials such as superconducting, ultra-high voltage, ultra-high vacuum or acoustic equipment, and cryogenic equipment. It has been widely used as one of the materials governing its performance in many advanced technology fields such as a cooling medium or a high strength laser mirror. In recent years, while the demand for high-purity copper materials used for such uses has increased remarkably, the shapes required for these uses have been diversified.

【0003】通常、純金属の単結晶鋳塊を製造する場合
は、種子結晶を溶湯に接触させ、回転させながら徐々に
引き上げていく引き上げ法(チョクラルスキー法)や、
縦型・横型のボートや鋳型に原料を入れ加熱用の熱源を
徐々に移動させていくブリッジマン法などが知られてい
る。
[0003] Usually, when producing a single crystal ingot of pure metal, a pulling method (Czochralski method) in which a seed crystal is brought into contact with a molten metal and gradually raised while rotating the seed crystal,
There are known the Bridgeman method in which raw materials are put into a vertical or horizontal boat or a mold and a heat source for heating is gradually moved.

【0004】これらの方法で、融液より単結晶を製造す
るためには、融液を凝固させる際に、過冷却させずに冷
却しなければならない。これは過冷却させると新しい結
晶の核が生成してしまうからである。また、融液を凝固
させるためには、潜熱を抽出除去してやらなければなら
ない。すなわち、結晶から熱を取り除くためには熱の逃
げ道が必要であり、一方、金属を溶融して所定時間融液
状態に保つ熱を供給するための熱源も必要とされる。こ
のため、引き上げ法における引上速度は 5〜10mm/hr 、
ブリッジマン法における加熱源の移動速度は20〜50 mm/
hrといずれも非常に遅く、したがって、生産性に劣り、
また、装置自体に過冷却防止上の有効手段がないため、
多結晶になりやすいという欠点があった。
[0004] In order to produce a single crystal from the melt by these methods, the solidified melt must be cooled without being supercooled. This is because if supercooled, new crystal nuclei are generated. Further, in order to solidify the melt, the latent heat must be extracted and removed. That is, a heat escape path is required to remove heat from the crystal, while a heat source for supplying heat for melting the metal and maintaining the molten state for a predetermined time is also required. For this reason, the lifting speed in the lifting method is 5 to 10 mm / hr,
The moving speed of the heating source in the Bridgman method is 20 to 50 mm /
hr and both are very slow and therefore less productive,
Also, since there is no effective means for preventing supercooling in the device itself,
There is a drawback that polycrystals are easily formed.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上述の如き
従来技術上の問題点を解決し、原料の高純度特性を保持
したまま、所望の形状の高純度銅単結晶鋳塊を低コスト
で製造することができる新規な高純度銅単結晶鋳塊の製
造方法の提供を目的としている。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, and provides a high-purity copper single crystal ingot having a desired shape while maintaining high purity characteristics of a raw material. It is an object of the present invention to provide a novel method for producing a high-purity copper single crystal ingot that can be produced by the method described above.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記課題を
解決するため鋭意研究した結果、高純度銅を鋳型内にお
いて高真空のもと高周波加熱により溶解させる際に、鋳
型とるつぼの間に過冷却防止手段として金属銅の溶湯を
存在させることによって、鋳型内の高純度銅の多結晶化
を防止できることを見い出し本発明を達成することがで
きた。
Means for Solving the Problems The present inventor has conducted intensive studies to solve the above-mentioned problems. As a result, when high-purity copper is melted in a mold by high-frequency heating under a high vacuum, the distance between the mold and the crucible is reduced. The present inventors have found that the presence of a molten metal of copper as a means for preventing supercooling can prevent polycrystallization of high-purity copper in a mold.

【0007】すなわち本発明は、銀と硫黄の合計含有量
が1ppm 以下で、かつ純度が99.999%以上の高純度銅を
原料とし、原料の高純度特性を保持したまま高真空中に
おいて単結晶鋳塊を製造する方法において、底部が逆円
錐状に尖った鋳造空間を有する柱状の黒鉛鋳型を黒鉛る
つぼ内に、鋳型とるつぼとの間に銅の溶湯を保持できる
空間を残して鉛直に固定した後、単結晶鋳塊製造用銅原
料を鋳型内に入れると共に、鋳型外壁と黒鉛るつぼ内壁
との間に設けた空間に、同一または異なる品位の保温・
伝熱用の銅材を充填し、次いで高周波加熱により前記銅
原料および銅材を溶解し、高周波コイルで鋳型を加熱し
ながら0.1〜20 mm/min の上昇速度でコイルを移動させ
てるつぼ内の銅原料を高純度銅単結晶鋳塊となすことを
特徴とする高純度銅単結晶鋳塊の製造方法に関するもの
である。
That is, according to the present invention, high purity copper having a total content of silver and sulfur of 1 ppm or less and a purity of 99.999% or more is used as a raw material, and single crystal casting is performed in a high vacuum while maintaining the high purity characteristics of the raw material. In the method of producing a lump, a columnar graphite mold having a casting space with a bottom pointed in the shape of an inverted cone was fixed vertically in a graphite crucible, leaving a space between the mold and the crucible that could hold the molten copper. Thereafter, the copper raw material for producing a single crystal ingot is placed in a mold, and the same or different grades of heat insulation are provided in a space provided between the outer wall of the mold and the inner wall of the graphite crucible.
A copper material for heat transfer is filled, then the copper material and the copper material are melted by high-frequency heating, and the coil is moved at a rising speed of 0.1 to 20 mm / min while heating the mold with a high-frequency coil. The present invention relates to a method for producing a high-purity copper single crystal ingot, wherein a copper raw material is formed into a high-purity copper single crystal ingot.

【0008】[0008]

【作用】一般的に、銀と硫黄の合計含有量が1ppm 以下
でかつ純度が99.999%(5N)以上の高純度銅を得るた
めの精製技術は、ほぼ完成されている。本発明法におい
てはかような高純度銅を用い、その高純度特性を維持し
たまま単結晶の鋳塊を生産性よく得ることを目的とす
る。
Generally, a purification technique for obtaining high-purity copper having a total content of silver and sulfur of 1 ppm or less and a purity of 99.999% (5N) or more has been almost completed. It is an object of the present invention to use such high-purity copper and to obtain a single-crystal ingot with good productivity while maintaining its high-purity characteristics.

【0009】本発明法において使用する装置としては、
図1に示されるように内壁面底部を逆円錐状に尖らせた
柱状の黒鉛鋳型1の外側下端部に設けられたおねじ部
を、黒鉛るつぼ2の内側底部に設けられためねじ部に篏
合することにより、黒鉛るつぼ2内に固定したものを用
いる。このようにして、鋳型1と黒鉛るつぼ2との間に
銅材7を充填できる構造とし、これを縦長に設置された
石英製ベルジャー4内の石英製支持台3に固定した。こ
の銅材7は、原料の高純度銅材6と同じものでなく、通
常の銅材(4N以下のもの)でもよいが、装置の構造
は、この銅材の溶融時の上面が鋳型内で溶かした高純度
銅6の上面よりも高く、一方、下端は鋳型の尖端部より
も低い位置となるようにすることが重要である。次い
で、高周波コイル5を石英製ベルジャー4外に上下に移
動できるように設置した。
The apparatus used in the method of the present invention includes:
As shown in FIG. 1, a male screw portion provided at the outer lower end portion of a columnar graphite mold 1 having the inner wall bottom portion pointed in an inverted cone shape is provided at the inner bottom portion of the graphite crucible 2 and fitted to the screw portion. By being combined, the one fixed in the graphite crucible 2 is used. In this way, the structure was such that the copper material 7 could be filled between the mold 1 and the graphite crucible 2, and this was fixed to the quartz support 3 in the quartz bell jar 4 installed vertically. The copper material 7 is not the same as the raw material high-purity copper material 6, but may be a normal copper material (4N or less). However, the structure of the apparatus is such that the upper surface of the copper material at the time of melting is in a mold. It is important that the top of the molten high-purity copper 6 is higher than the top, while the lower end is lower than the top of the mold. Next, the high-frequency coil 5 was installed outside the quartz bell jar 4 so as to be able to move up and down.

【0010】まず、本発明においては、高周波コイル5
を原料の高純度銅材6の入った鋳型1の下端部を包囲す
る位置にセットし、出力を上げ加熱しながら溶解する。
溶解後もしばらくその位置に保持して充分に加熱し、鋳
型内の高純度銅材と鋳型の外部に配置した銅材7とをど
ちらも溶解した。これらの銅材6、7が実際に溶解した
かどうかは、鋳型1の下部に設置した熱電対8による温
度の測定により確認することができる。
First, in the present invention, the high-frequency coil 5
Is set at a position surrounding the lower end of the mold 1 containing the high-purity copper material 6 as a raw material, and the output is increased to melt while heating.
After the dissolution, it was kept at that position for a while and heated sufficiently to dissolve both the high-purity copper material in the mold and the copper material 7 arranged outside the mold. Whether or not these copper materials 6 and 7 are actually melted can be confirmed by measuring the temperature with a thermocouple 8 installed below the mold 1.

【0011】この場合、高周波の効果は外側に位置する
黒鉛るつぼ2までしか及ばないため、るつぼ内壁に接し
ている銅材7および鋳型1内の原料である高純度銅材6
は伝熱により溶解される。このようにして、充分に加熱
した後 0.1〜20 mm/min の速度でコイルを少しずつ上げ
ていき、鋳型上部での溶解、凝固を確認してから加熱を
停止する。従来のブリッジマン法では、上記操作の際鋳
型1の保温ができないため、鋳型が冷却されやすく過冷
却を起こし多結晶となってしまうことがあった。このた
め、アフターヒーターなどの装置により結晶の急冷を防
いだり、温度勾配が一定に保たれるように配慮したりし
なければならなかった。また、そのような熱量のバラン
スが保たれるようにするためコイルの移動速度を充分に
遅くしなければならないという欠点があった。本発明法
においては、これらの欠点が解消できるようになった。
In this case, since the effect of the high frequency extends only to the graphite crucible 2 located outside, the copper material 7 in contact with the inner wall of the crucible and the high-purity copper material 6 as a raw material in the mold 1 are formed.
Is dissolved by heat transfer. After sufficient heating, the coil is gradually raised at a speed of 0.1 to 20 mm / min, and after melting and solidification at the upper part of the mold is confirmed, heating is stopped. In the conventional Bridgman method, since the temperature of the mold 1 cannot be maintained during the above operation, the mold is easily cooled, resulting in overcooling and polycrystal formation. For this reason, it was necessary to prevent rapid cooling of the crystal by using an apparatus such as an after-heater, and to take care to keep the temperature gradient constant. In addition, there is a disadvantage that the moving speed of the coil must be sufficiently reduced in order to maintain such a balance of the amount of heat. In the method of the present invention, these drawbacks can be eliminated.

【0012】すなわち本発明法では、高周波を外側の黒
鉛るつぼ2にのせて鋳型1の周囲に配置した銅材7を伝
熱で溶解した後、その伝熱によって鋳型1内の高純度銅
材6を溶解する。この場合、コイルを上昇させるとコイ
ルの影響範囲から外れた鋳型下部の溶湯から凝固が始ま
る。従来法の場合には、コイルの影響下から外れたとこ
ろは熱源からの熱の供給がなく外部に放熱するだけとな
るため過冷却が生じ新しい核発生の原因となるが、本発
明法の場合には、鋳型1の周囲に熱伝導性の良い銅が溶
解されて存在しているため、コイルの影響下から外れた
位置でも溶融銅からの熱伝導により鋳型周囲全体から熱
が供給されるため、鋳型1内の高純度銅6を鋳型外面の
直接外部との接触による放冷で冷却するのではなく、冷
却固化した銅材7への伝熱によって間接的に冷却凝固さ
せることができるため過冷却を防止できるのである。
That is, in the method of the present invention, a high frequency is placed on the outer graphite crucible 2 to melt the copper material 7 disposed around the mold 1 by heat transfer, and then the high-purity copper material 6 in the mold 1 is transferred by the heat transfer. Dissolve. In this case, when the coil is raised, solidification starts from the molten metal below the mold, which is out of the range of influence of the coil. In the case of the conventional method, the part outside the influence of the coil does not supply heat from the heat source and only radiates heat to the outside, so supercooling occurs and causes new nucleation, but in the case of the method of the present invention, In this case, heat is supplied from the entire periphery of the mold by heat conduction from the molten copper even at a position outside the influence of the coil because copper having good thermal conductivity is dissolved around the mold 1 and exists. Since the high-purity copper 6 in the mold 1 can be indirectly cooled and solidified by heat transfer to the cooled and solidified copper material 7 instead of cooling by cooling by contacting the outer surface of the mold directly with the outside. Cooling can be prevented.

【0013】このとき、コイルの位置する部分の溶湯が
温度が一番高く、鋳型尖端部が常に一番温度が低いよう
に温度勾配がつけられている。また、鋳型周囲全体が熱
伝導性のよい銅材に覆われているため、局所的に温度が
高くなったり低くなったりすることもなく、さらに、こ
の銅材が凝固する際に発生する潜熱の放出も鋳型内の高
純度銅の保温・徐冷効果を増している。これらの効果に
より、コイルの移動速度を従来の20倍以上にすること
ができ、生産性を増すことができるものである。
At this time, the temperature gradient is set so that the temperature of the molten metal in the portion where the coil is located is the highest, and the temperature of the tip of the mold is always the lowest. In addition, since the entire periphery of the mold is covered with a copper material having good thermal conductivity, the temperature does not locally increase or decrease, and furthermore, the latent heat generated when the copper material solidifies. Release also increases the effect of keeping and cooling the high-purity copper in the mold. By these effects, the moving speed of the coil can be made 20 times or more as compared with the conventional case, and the productivity can be increased.

【0014】以下、実施例により本発明をさらに詳細に
説明する。しかし本発明の範囲は、以下の実施例により
制限されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by the following examples.

【0015】[0015]

【実施例1】図1に示す製造装置を用いた本発明の高純
度銅単結晶鋳塊の製造方法を以下に説明する。
Embodiment 1 A method for producing a high-purity copper single crystal ingot of the present invention using the production apparatus shown in FIG. 1 will be described below.

【0016】図1は本実施例で用いた装置を示す断面図
であって、内部形状が製造する鋳塊の形状に合わせて作
製された内部形状を有する黒鉛鋳型1が、その外壁を、
溶解状態の保温・伝熱用の銅材7で覆われ得る寸法・形
状に形成されて黒鉛るつぼ2内に固定され、さらにこの
黒鉛るつぼ2が石英製支持台3に固定された状態を示し
ている。この装置全体は、石英製ベルジャー4によって
覆われており、また、この石英製ベルジャー4は真空排
気装置に連結されていて、その内部を高真空にすること
ができる。また、石英製ベルジャー4の外部には、ベル
ジャーを包囲するように高周波コイル5が装備されてお
り、この高周波コイル5は、石英製ベルジャー4内部に
おける黒鉛るつぼ2の底部から鋳型1の頂部までの間を
加熱できるような可動構造となっている。なお、黒鉛る
つぼ2の最底部には、PR熱電対8が装備されており、
黒鉛るつぼ2の底部の温度が測定できるようになってい
る。9は真空排気の方向を示している。
FIG. 1 is a cross-sectional view showing an apparatus used in the present embodiment. A graphite mold 1 having an internal shape made according to the shape of an ingot to be manufactured has an outer wall,
FIG. 4 shows a state in which the graphite crucible 2 is fixed in the graphite crucible 2 and is fixed to the graphite crucible 2 in such a size and shape that it can be covered with the copper material 7 for heat retention and heat transfer in a molten state. I have. The entire apparatus is covered by a quartz bell jar 4, and this quartz bell jar 4 is connected to an evacuation apparatus, so that the inside thereof can be made high vacuum. A high-frequency coil 5 is provided outside the quartz bell jar 4 so as to surround the bell jar, and the high-frequency coil 5 extends from the bottom of the graphite crucible 2 inside the quartz bell jar 4 to the top of the mold 1. It has a movable structure that can heat the space. At the bottom of the graphite crucible 2, a PR thermocouple 8 is provided.
The temperature at the bottom of the graphite crucible 2 can be measured. Reference numeral 9 indicates the direction of evacuation.

【0017】本実施例では、まず銀と硫黄の合計含有量
が1ppm 以下である純度99.999%以上の高純度銅約500g
を黒鉛鋳型1内に入れると共に、鋳型周囲に充分な銅材
7を入れて黒鉛るつぼ2を支持台3に固定した後、石英
製ベルジャー4でこれらを覆い、真空排気装置と連結し
た。次に、石英製ベルジャー4内部の真空度を、真空排
気装置で10-5〜10-6Torrまで上げて真空を保持すると共
に、高周波コイル5を原料の入った鋳型1の上部を包囲
する位置にセットし、加熱溶解した後落ちるまで保持
し、高周波コイル5を加熱したまま 20 mm/minの速度で
コイルを下降させた。
In this embodiment, first, about 500 g of high-purity copper having a purity of 99.999% or more and having a total content of silver and sulfur of 1 ppm or less.
Was placed in a graphite mold 1 and a sufficient amount of copper material 7 was put around the mold to fix the graphite crucible 2 to the support 3. Then, these were covered with a quartz bell jar 4 and connected to a vacuum exhaust device. Next, the degree of vacuum inside the quartz bell jar 4 is raised to 10 -5 to 10 -6 Torr by a vacuum exhaust device to maintain the vacuum, and the high-frequency coil 5 is placed at a position surrounding the upper part of the mold 1 containing the raw material. After heating and melting, it was held until it fell, and the coil was lowered at a speed of 20 mm / min while the high-frequency coil 5 was heated.

【0018】最底部まできたところでPR熱電対8によ
り溶解を確認した後、コイルを加熱したまま 20 mm/min
の速度でコイルを上昇させ、鋳型上部まで移動させた後
加熱を中止した。鋳型より取り出したところ該高純度特
性を維持した1インチφ×100 mmの単結晶鋳塊を製造す
ることができた。
After confirming the dissolution by the PR thermocouple 8 when reaching the bottom, the coil is heated to 20 mm / min.
The heating was stopped after moving the coil up to the upper part of the mold at the speed of. When removed from the mold, a 1-inch φ × 100 mm single-crystal ingot with the high-purity characteristics maintained could be produced.

【0019】[0019]

【比較例1】過冷却防止手段のついていない鋳型を用い
たほかは、実施例1に示す方法と同一の方法で高純度銅
の単結晶鋳塊を製造した。この鋳塊は断面で6つの結晶
を持つ多結晶体であった。
Comparative Example 1 A high-purity copper ingot was produced in the same manner as in Example 1 except that a mold having no means for preventing supercooling was used. This ingot was a polycrystal having six crystals in cross section.

【0020】[0020]

【発明の効果】本発明の開発により、原料の高純度特性
を保持したまま所望の形状の均質な高純度銅単結晶を製
造できるようになった。また、本発明によると、高価な
高純度銅を原料として用いても、原料の高純度特性を保
持することができる上ロスが極めて少ないため、低コス
トで高純度単結晶を製造できるようになった。さらに、
本発明は、簡易な装置を用いて容易に実施することがで
きるため、その産業的価値は極めて高い。
According to the development of the present invention, a homogeneous high-purity copper single crystal having a desired shape can be produced while maintaining the high-purity characteristics of the raw material. Further, according to the present invention, even when expensive high-purity copper is used as a raw material, the high-purity single crystal can be manufactured at low cost because the high-purity characteristics of the raw material can be maintained and the loss is extremely small. Was. further,
Since the present invention can be easily implemented using a simple device, its industrial value is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高純度銅単結晶製造装置の一例を示し
た断面図である。
FIG. 1 is a cross-sectional view showing an example of a high-purity copper single crystal manufacturing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 黒鉛鋳型 2 黒鉛るつぼ 3 石英製支持台 4 石英製ベルジャー 5 高周波コイル 6 高純度銅材 7 銅材 8 PR熱電対 9 真空排気 DESCRIPTION OF SYMBOLS 1 Graphite mold 2 Graphite crucible 3 Quartz support 4 Quartz bell jar 5 High frequency coil 6 High purity copper material 7 Copper material 8 PR thermocouple 9 Vacuum exhaust

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 銀と硫黄の合計含有量が1ppm 以下で、
かつ純度が99.999%以上の高純度銅を原料とし、原料の
高純度特性を保持したまま高真空中において単結晶鋳塊
を製造する方法において、底部が逆円錐状に尖った鋳造
空間を有する柱状の黒鉛鋳型を黒鉛るつぼ内に、鋳型と
るつぼとの間に銅の溶湯を保持できる空間を残して鉛直
に固定した後、単結晶鋳塊製造用銅原料を鋳型内に入れ
ると共に、鋳型外壁と黒鉛るつぼ内壁との間に設けた空
間に、同一または異なる品位の保温・伝熱用の銅材を充
填し、次いで高周波加熱により前記銅原料および銅材を
溶解し、高周波コイルで鋳型を加熱しながら 0.1〜20 m
m/min の上昇速度でコイルを移動させてるつぼ内の銅原
料を高純度銅単結晶鋳塊となすことを特徴とする高純度
銅単結晶鋳塊の製造方法。
Claims: 1. The total content of silver and sulfur is 1 ppm or less,
In a method of producing a single crystal ingot in a high vacuum while maintaining the high purity characteristics of the raw material using high-purity copper with a purity of 99.999% or higher, a columnar shape with an inverted conical bottom-shaped casting space at the bottom After fixing the graphite mold vertically in a graphite crucible, leaving a space that can hold the molten copper between the mold and the crucible, put the single crystal ingot production copper raw material into the mold, The space provided between the inner wall of the graphite crucible is filled with the same or different grade of copper material for heat retention and heat transfer, and then the copper raw material and the copper material are melted by high frequency heating, and the mold is heated by a high frequency coil. 0.1 ~ 20m
A method for producing a high-purity copper single crystal ingot, characterized in that a copper material in a crucible in which a coil is moved at an ascending speed of m / min is made into a high-purity copper single crystal ingot.
JP26819291A 1991-09-19 1991-09-19 Manufacturing method of high purity copper single crystal ingot Expired - Fee Related JP3152971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26819291A JP3152971B2 (en) 1991-09-19 1991-09-19 Manufacturing method of high purity copper single crystal ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26819291A JP3152971B2 (en) 1991-09-19 1991-09-19 Manufacturing method of high purity copper single crystal ingot

Publications (2)

Publication Number Publication Date
JPH0578195A JPH0578195A (en) 1993-03-30
JP3152971B2 true JP3152971B2 (en) 2001-04-03

Family

ID=17455203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26819291A Expired - Fee Related JP3152971B2 (en) 1991-09-19 1991-09-19 Manufacturing method of high purity copper single crystal ingot

Country Status (1)

Country Link
JP (1) JP3152971B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3031102U (en) * 1996-05-11 1996-11-22 ワツト株式会社 Foundry production equipment
US6858102B1 (en) 2000-11-15 2005-02-22 Honeywell International Inc. Copper-containing sputtering targets, and methods of forming copper-containing sputtering targets
US6113761A (en) 1999-06-02 2000-09-05 Johnson Matthey Electronics, Inc. Copper sputtering target assembly and method of making same
AU1609501A (en) 1999-11-24 2001-06-04 Honeywell International, Inc. Physical vapor deposition targets, conductive integrated circuit metal alloy interconnections, electroplating anodes, and metal alloys for use as a conductive interconnection in an integrated circuit
JP5719957B1 (en) * 2014-06-06 2015-05-20 日新技研株式会社 Single crystal manufacturing apparatus and manufacturing method
CN112388251A (en) * 2019-03-24 2021-02-23 荆门市亿美工业设计有限公司 Manufacturing method of device for manufacturing oxygen-free copper rod fracture-preventing graphite sleeve
CN110976817A (en) * 2019-12-10 2020-04-10 昆明理工大学 Lotus root-shaped porous metal material preparation device and method

Also Published As

Publication number Publication date
JPH0578195A (en) 1993-03-30

Similar Documents

Publication Publication Date Title
US4622211A (en) Apparatus for solidification with resistance heater and magnets
JP4810346B2 (en) Method for producing sapphire single crystal
EP0992618B1 (en) Method of manufacturing compound semiconductor single crystal
US3173765A (en) Method of making crystalline silicon semiconductor material
JP3152971B2 (en) Manufacturing method of high purity copper single crystal ingot
JPS63166711A (en) Production of polycrystalline silicon ingot
US4561930A (en) Process for the production of coarsely crystalline silicon
KR101025652B1 (en) Method for manufacturing crystal for solar cell by recycling remaining melt
JP2007045640A (en) Forming method of semiconductor bulk crystal
US5785753A (en) Single crystal manufacturing method
JP2883910B2 (en) Manufacturing method of single crystal silicon
JP3018738B2 (en) Single crystal manufacturing equipment
JP2814796B2 (en) Method and apparatus for producing single crystal
JP2758038B2 (en) Single crystal manufacturing equipment
JPH11302094A (en) Production of compound semiconductor single crystal
JPH0380180A (en) Device for producing single crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JPS62167213A (en) Production of silicon polycrystalline ingot
JPH03193689A (en) Production of compound semiconductor crystal
JPH0377159B2 (en)
JPS63319286A (en) Method for growing single crystal
JPH08104591A (en) Apparatus for growing single crystal
JPH0848591A (en) Crucible for cyrstal growth
JPH0475880B2 (en)
JPH03131591A (en) Method for growing crystal and device for dissolving crystal raw material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080126

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080126

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees