JP3145233B2 - Two-way solenoid valve - Google Patents
Two-way solenoid valveInfo
- Publication number
- JP3145233B2 JP3145233B2 JP19618793A JP19618793A JP3145233B2 JP 3145233 B2 JP3145233 B2 JP 3145233B2 JP 19618793 A JP19618793 A JP 19618793A JP 19618793 A JP19618793 A JP 19618793A JP 3145233 B2 JP3145233 B2 JP 3145233B2
- Authority
- JP
- Japan
- Prior art keywords
- main valve
- valve body
- chamber
- back pressure
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Fluid-Driven Valves (AREA)
- Magnetically Actuated Valves (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はヒートポンプ型の空調装
置における冷媒制御用の電磁弁に関し、特に冷暖房用空
調装置において冷媒流通方向の逆転の際にも全く同様に
作動する双方向電磁弁に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solenoid valve for controlling a refrigerant in a heat pump type air conditioner, and more particularly to a two-way solenoid valve which operates in the same manner when the direction of refrigerant flow is reversed in a cooling / heating air conditioner.
【0002】[0002]
【従来の技術】従来、冷暖房用空調装置としてヒートポ
ンプ型冷凍回路を備えたものが広く用いられており、1
個の圧縮装置からの冷媒を複数室に分配して個別に冷暖
房を行なう、いわゆるマルチ型の空調装置が増加してき
ている。このようなマルチ型の空調装置において、室毎
の冷房と暖房とを同時に並行して行なうために室内ユニ
ットと室外ユニットとを3本の配管で結んだ図4に示す
ような3配管型の装置が利用されている。2. Description of the Related Art Conventionally, air conditioners having a heat pump type refrigeration circuit are widely used as air conditioners for cooling and heating.
A so-called multi-type air conditioner, which distributes refrigerant from a plurality of compression devices to a plurality of chambers and performs cooling and heating individually, is increasing. In such a multi-type air conditioner, a three-pipe type apparatus as shown in FIG. 4 in which an indoor unit and an outdoor unit are connected by three pipes in order to simultaneously perform cooling and heating for each room in parallel. Is used.
【0003】この装置にあっては、室内ユニットI毎に
冷暖切替え用の一組の電磁弁a,bが設けられており、
冷房時には吐出ガスラインAに通ずる電磁弁aを閉じて
吸入ガスラインBに通ずる電磁弁bを開くことにより液
ラインCから液状冷媒を室内用熱交換器Eに導入して吸
入ガスラインBに送出し、また暖房時には吐出ガスライ
ンAに通ずる電磁弁aを開いて吸入ガスラインBに通ず
る電磁弁bを閉じることにより吸入ガスラインBから熱
ガス冷媒を室内用熱交換器Eに導入して液状冷媒を液ラ
インCに送出するようにしている。ここでOは室外ユニ
ット、Mは圧縮機である。In this apparatus, a set of solenoid valves a and b for switching between cooling and heating is provided for each indoor unit I.
At the time of cooling, the electromagnetic valve a communicating with the discharge gas line A is closed and the electromagnetic valve b communicating with the suction gas line B is opened, thereby introducing the liquid refrigerant from the liquid line C into the indoor heat exchanger E and sending it to the suction gas line B. In addition, at the time of heating, the solenoid valve a communicating with the discharge gas line A is opened and the solenoid valve b communicating with the suction gas line B is closed to introduce the hot gas refrigerant from the suction gas line B into the indoor heat exchanger E so as to be in a liquid state. The refrigerant is sent to the liquid line C. Here, O is an outdoor unit, and M is a compressor.
【0004】しかしこの方式では配管の長さが長くなっ
て設備費用が嵩む問題があるほか、暖房室内ユニットで
得られた液状冷媒を冷房室内ユニットで利用するにあた
って熱効率のバランスを取るのが容易でないという問題
もあるので、室内ユニットIと室外ユニットOとの間に
分流ユニットRを設けて、室外ユニットOと分流ユニッ
トRとの間及び分流ユニットRとそれぞれの室内ユニッ
トIの間をいずれも2本の配管で結んだ図5に示すよう
な装置が提案された。この装置では室外ユニットOに設
けられた四方弁Dによって室外ユニットOと分流ユニッ
トRとの間の配管は高圧と低圧とに転換されるようにな
っており、分流ユニットRと室内ユニットIとの間の配
管も一方は液状冷媒であるが他方は高圧ガスと低圧ガス
とに転換されることになるので、分流ユニットRに設け
られる電磁弁は流れの方向が逆転しても全く同様に大流
量の流体制御ができる双方向型の電磁弁であることが必
要となっている。[0004] However, in this method, there is a problem that the length of the piping becomes long and the equipment cost increases, and it is not easy to balance the thermal efficiency when the liquid refrigerant obtained in the heating indoor unit is used in the cooling indoor unit. Therefore, the flow dividing unit R is provided between the indoor unit I and the outdoor unit O, and the distance between the outdoor unit O and the flow dividing unit R and between the flow dividing unit R and each indoor unit I are all two. An apparatus as shown in FIG. 5 connected by book pipes has been proposed. In this device, the piping between the outdoor unit O and the diversion unit R is switched between high pressure and low pressure by a four-way valve D provided in the outdoor unit O. One of the pipes between the two is a liquid refrigerant, but the other is converted into a high-pressure gas and a low-pressure gas. Therefore, even if the flow direction is reversed, the solenoid valve provided in the branch unit R has a large flow rate. It is required that the valve be a two-way solenoid valve capable of controlling the fluid.
【0005】このような場合に利用できる従来の双方向
型電磁弁は、いずれも被制御流体の流量を大きく取るこ
とが困難であるうえ被制御流体の流通圧損を小さくする
と弁の動作が不安定となるなどの不都合があり、流通方
向に係わらず被制御流体の流通圧損を小さくすることが
できず、冷凍効率改善上の障害となっていた。そこで出
願人は、流体の流通方向が正逆いずれであっても殆ど圧
損を生ずることなしに大流量の流体を安定に制御するこ
とができるパイロット式の双方向電磁弁を開発し、この
発明について特許出願している。In the conventional two-way solenoid valves that can be used in such a case, it is difficult to increase the flow rate of the controlled fluid, and the operation of the valve becomes unstable if the flow pressure loss of the controlled fluid is reduced. Therefore, the flow pressure loss of the controlled fluid cannot be reduced irrespective of the flow direction, which is an obstacle to improving the refrigeration efficiency. Accordingly, the applicant has developed a pilot-type two-way solenoid valve capable of stably controlling a large flow rate of fluid with almost no pressure loss regardless of whether the flow direction of the fluid is normal or reverse. We have applied for a patent.
【0006】かかる双方向電磁弁は図7に示すように、
第1流体通路12aと連通する筒状弁室11aの底部に
径が弁室11aよりも小な第2流体通路12bが開口す
る主弁座11bを設け、弁室11aを背圧室11cと主
弁室11dとに分割するように弁室11a内にピストン
状の主弁体13を摺動自在に嵌装し、主弁体23内に主
弁室11dから背圧室11cへの流入を許容する第1逆
止弁13aを備えた第1漏洩流路13bと第2流体通路
12bから背圧室11cへの流入を許容する第2逆止弁
13cを備えた第2漏洩流路13dとを設けると共に、
第1逆止弁13aと第2逆止弁13cとを同時に開放で
きる電磁作動の弁開部材15を設け、かつ主弁体13を
主弁座11bから離す方向に付勢する主弁ばね18を設
けて構成されているものである。[0006] Such a two-way solenoid valve, as shown in FIG.
A main valve seat 11b, in which a second fluid passage 12b having a smaller diameter than the valve chamber 11a is opened, is provided at the bottom of the tubular valve chamber 11a communicating with the first fluid passage 12a, and the valve chamber 11a is mainly connected to the back pressure chamber 11c. A piston-shaped main valve body 13 is slidably fitted in the valve chamber 11a so as to be divided into the valve chamber 11d, and the main valve body 23 is allowed to flow into the back pressure chamber 11c from the main valve chamber 11d. A first leak passage 13b provided with a first check valve 13a and a second leak passage 13d provided with a second check valve 13c permitting inflow from the second fluid passage 12b to the back pressure chamber 11c. Along with
An electromagnetically actuated valve opening member 15 capable of simultaneously opening the first check valve 13a and the second check valve 13c is provided, and a main valve spring 18 for urging the main valve body 13 in a direction away from the main valve seat 11b is provided. It is provided and configured.
【0007】[0007]
【発明が解決しようとする課題】しかしかかる新しい双
方向電磁弁では、安定かつ確実に弁を作動させるには弁
閉時における弁室壁と主弁体との間での流体漏洩量を小
さくすることが必要であるが、そのために主弁体の周囲
にシールリング等を嵌装して封止力を強化すると弁室壁
と主弁体との摺動抵抗が大きくなって充分に弁開せず、
流体の流通抵抗を低くするという本来の目的の達成が困
難となる。従って弁室壁と主弁体との摺動抵抗を小さく
することと流体漏洩量を効果的に抑制することとは両立
できないと考えられていた。However, in such a new two-way solenoid valve, in order to operate the valve stably and reliably, the amount of fluid leakage between the valve chamber wall and the main valve body when the valve is closed is reduced. However, if a sealing ring or the like is fitted around the main valve body to enhance the sealing force, the sliding resistance between the valve chamber wall and the main valve body increases, and the valve cannot be opened sufficiently. Without
It is difficult to achieve the original purpose of reducing the flow resistance of the fluid. Therefore, it has been considered that reducing the sliding resistance between the valve chamber wall and the main valve body and effectively suppressing the amount of fluid leakage cannot be compatible with each other.
【0008】そこで本発明は、上記のような新しい双方
向電磁弁をもとにして更に改良し、弁閉時における流体
差圧の大きさの如何にかかわらず背圧室と主弁室との間
の流体漏洩量を弁の作動上無視できる程に少なくするこ
とができ、しかも主弁体の摺動抵抗も極めて小さくて長
期にわたって安定に作動をする双方向電磁弁を提供する
ことを目的としたものである。Accordingly, the present invention is further improved on the basis of the above-described new two-way solenoid valve, and the back pressure chamber and the main valve chamber are connected regardless of the magnitude of the fluid differential pressure when the valve is closed. An object of the present invention is to provide a two-way solenoid valve which can minimize the amount of fluid leakage between the valves so as to be negligible in terms of the operation of the valve, and has a very small sliding resistance of the main valve body and operates stably for a long period of time. It was done.
【0009】[0009]
【課題を解決するための手段】かかる本発明の目的は、
第1流体通路と連通する筒状弁室をピストン状の主弁体
が摺動自在に嵌装された主弁室と該主弁室より径の大き
い背圧室とに分割すると共に該主弁室より径の小さい第
2流体通路が開口する主弁座を該主弁室の底部に設け、
該主弁室と該背圧室とを連通する第1漏洩流路及び該第
2流体通路と該背圧室とを連通する第2漏洩流路を該主
弁体内に設けると共に該主弁室と該背圧室との間の壁部
に形成された段部に当接可能な鍔状の可撓性シール板を
該主弁体の肩部に取付け、該第1及び第2漏洩流路の背
圧室側開口に接する第1及び第2逆止弁体を同時に離開
させ得る弁体支持体を備えた電磁作動のプランジャを設
け、更に前記主弁体を前記主弁座から離す方向に付勢す
る主弁ばねを設けたことを特徴とする双方向電磁弁によ
って達成することができる。SUMMARY OF THE INVENTION The object of the present invention is as follows.
The cylindrical valve chamber communicating with the first fluid passage is divided into a main valve chamber in which a piston-shaped main valve body is slidably fitted and a back pressure chamber having a larger diameter than the main valve chamber. A main valve seat at which a second fluid passage having a smaller diameter than the chamber is opened is provided at a bottom of the main valve chamber;
A first leak passage communicating between the main valve chamber and the back pressure chamber and a second leak passage communicating the second fluid passage with the back pressure chamber are provided in the main valve body; A flange-shaped flexible seal plate capable of abutting a step formed on a wall between the first and second back pressure chambers is attached to a shoulder of the main valve body; An electromagnetically actuated plunger provided with a valve body support capable of simultaneously releasing the first and second check valve bodies in contact with the back pressure chamber side opening of the main valve body in a direction away from the main valve seat. This can be achieved by a bidirectional solenoid valve characterized by providing a main valve spring for biasing.
【0010】[0010]
【作用】本発明の双方向電磁弁は、弁閉時には被制御流
体の一次圧が背圧室に加わることによって主弁体が主弁
座に圧着されると同時に可撓性シール板が主弁体の肩部
と段部との双方に圧着されるので、背圧室内の流体の漏
洩が完全に防止される。そして弁開時には電磁作動のプ
ランジャによって2個の逆止弁体が引き上げられ、背圧
室内の流体圧力が主弁体に設けられた流路を通じて低圧
側に開放される結果、主弁体は被制御流体の一次圧と二
次圧の差がなくても主弁ばねの作用により主弁座から離
れるが、この際に可撓性シール板は段部から離れるのに
何等の抵抗も受けない。従って主弁体は容易に全開し、
大量の流体を殆ど圧損の発生なしに流通させることがで
きる。In the two-way solenoid valve of the present invention, when the valve is closed, the primary pressure of the controlled fluid is applied to the back pressure chamber, so that the main valve body is pressed against the main valve seat and the flexible seal plate is used as the main valve. Since the pressure is applied to both the shoulder and the shoulder of the body, leakage of the fluid in the back pressure chamber is completely prevented. When the valve is opened, the two check valves are pulled up by the electromagnetically operated plunger, and the fluid pressure in the back pressure chamber is released to the low pressure side through the flow path provided in the main valve, so that the main valve is covered. Even when there is no difference between the primary pressure and the secondary pressure of the control fluid, the control valve separates from the main valve seat by the action of the main valve spring. At this time, the flexible seal plate does not receive any resistance to separate from the step. Therefore, the main valve body is easily fully opened,
A large amount of fluid can be circulated with almost no pressure loss.
【0011】本発明において、弁体支持体がプランジャ
に対して限定範囲内で軸方向に遊動可能に結合されてい
るように構成すると、電磁コイルに大きな電流を供給し
なくても円滑にプランジャの作動が開始し、背圧室内の
圧力が大きくても第1及び第2逆止弁体を容易に離開さ
せることができる。また、この場合に弁体支持体をプラ
ンジャに向けて付勢する押上ばねを主弁体と弁体支持体
との間に設けることにより、大量の流体を流通させるに
際して主弁体のハンチング現象を有効に抑制することが
できる。In the present invention, if the valve body support is connected to the plunger so as to be freely movable in the axial direction within a limited range, the plunger can be smoothly moved without supplying a large current to the electromagnetic coil. When the operation starts and the pressure in the back pressure chamber is large, the first and second check valves can be easily separated. Further, in this case, by providing a push-up spring for urging the valve body support toward the plunger between the main valve body and the valve body support, a hunting phenomenon of the main valve body when a large amount of fluid flows is provided. It can be suppressed effectively.
【0012】また、第1及び第2漏洩流路の開口と第1
及び第2逆止弁体を軸に対して相互に対称の位置に設け
ることによって、これらの開口をバランスした力で閉止
することができるほか、部品の構成が簡単で組立が容易
となり、更に主弁体と弁体支持体との相対回動を許容し
ないが軸方向の相対移動を許容するガイド手段を設ける
ことによって、これらの逆止弁体がそれぞれの漏洩流路
の開口上に正確に着座し、漏洩を生じることなくパイロ
ット制御を行うことができて、確実な第1及び第2逆止
弁の開閉が可能となる。Further, the first and second leakage flow paths have openings and
By providing the second check valve element and the second check valve element at positions symmetrical to each other with respect to the axis, these openings can be closed with a balanced force, and the structure of the parts is simple and assembly is easy. By providing a guide means that does not allow relative rotation between the valve body and the valve body support but allows relative movement in the axial direction, these check valve bodies are accurately seated on the openings of the respective leak passages. However, pilot control can be performed without causing leakage, and the first and second check valves can be reliably opened and closed.
【0013】[0013]
【実施例】本発明の双方向電磁弁の第1実施例を図1に
より説明する。図1において、1は弁本体であり、第1
流体通路2aと連通する筒状弁室1aの底部には主弁座
1bが設けられていて、ここに第2流体通路2bが開口
している。又弁室1aはピストン状の主弁体3が摺動自
在に嵌装されている主弁室1dと背圧室1cとに分割さ
れている。ここで背圧室1cの径は主弁室1dの径より
も大きくて、この間の壁部には段部1eが形成されてお
り、また主弁座1bの径は主弁室1dの径よりも小さい
から、主弁体3が主弁座1bに着座しているときには背
圧室1c内の圧力が主弁体3の上面にかかり、主弁室1
d内の圧力が主弁体3の底面の一部にかかるようになっ
ている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a two-way solenoid valve according to the present invention will be described with reference to FIG. In FIG. 1, reference numeral 1 denotes a valve body,
A main valve seat 1b is provided at the bottom of the cylindrical valve chamber 1a communicating with the fluid passage 2a, and the second fluid passage 2b is opened here. The valve chamber 1a is divided into a main valve chamber 1d in which a piston-shaped main valve body 3 is slidably fitted and a back pressure chamber 1c. Here, the diameter of the back pressure chamber 1c is larger than the diameter of the main valve chamber 1d, a step portion 1e is formed in the wall between them, and the diameter of the main valve seat 1b is larger than the diameter of the main valve chamber 1d. When the main valve body 3 is seated on the main valve seat 1b, the pressure in the back pressure chamber 1c is applied to the upper surface of the main valve body 3 and the main valve body 1
The pressure in d is applied to a part of the bottom surface of the main valve body 3.
【0014】主弁室1dと背圧室1cとを連通する第1
漏洩流路3bと、第2流体通路2bと背圧室1cとを連
通する第2漏洩流路3dとが主弁体3を貫いて設けられ
ており、また電磁コイル7により電磁作動するプランジ
ャ4の先端部に設けられた弁体支持体5によって保持さ
れている第1逆止弁体3a及び第2逆止弁体3cが、第
1漏洩流路3b及び第2漏洩流路3dの背圧室1c側の
開口にそれぞれ弁ばねで押し付けられている。そして通
常は、主弁室1d内の流体が第1漏洩流路3bを経て背
圧室1cへ流入することはできるが、逆に背圧室1cか
ら主弁室1dへ向かっては流出することができず、また
第2流体通路2b内の流体が第2漏洩流路3dを経て背
圧室1cへ流入することはできるが、逆に背圧室1cか
ら第2流体通路2bへ向かっては流出することができな
いように構成されている。A first valve connecting the main valve chamber 1d and the back pressure chamber 1c.
A leak passage 3b and a second leak passage 3d communicating the second fluid passage 2b and the back pressure chamber 1c are provided through the main valve body 3, and a plunger 4 electromagnetically operated by an electromagnetic coil 7 is provided. The first check valve body 3a and the second check valve body 3c held by the valve body support member 5 provided at the distal end of the first and the second check valves 3a and 3c are the back pressures of the first leak passage 3b and the second leak passage 3d. Each of them is pressed against the opening on the side of the chamber 1c by a valve spring. Normally, the fluid in the main valve chamber 1d can flow into the back pressure chamber 1c via the first leak passage 3b, but on the contrary, flows out from the back pressure chamber 1c toward the main valve chamber 1d. And the fluid in the second fluid passage 2b can flow into the back pressure chamber 1c via the second leak passage 3d, but on the contrary, the fluid from the back pressure chamber 1c to the second fluid passage 2b It is configured so that it cannot escape.
【0015】これらの第1逆止弁体3a及び第2逆止弁
体3cは、プランジャ4が電磁コイル7に吸引されたと
きには、それぞれ係止段部3e及び3fが係合すること
により第1逆止弁体3a及び第2逆止弁体3cが同時に
引き上げられ、第1漏洩流路3bと第2漏洩流路3dと
が開放されるようになっている。ここで3gは第2漏洩
流路3dに設けられていて第2流体通路2bから背圧室
1cへ向かう流量を制限するが、逆方向の流量は制限し
ない絞り弁である。また8は主弁体3を主弁座1bから
離す方向に付勢する主弁ばねであり、9は弁体支持体5
を主弁体3に向けて付勢しているプランジャばねであ
る。When the plunger 4 is attracted by the electromagnetic coil 7, the first check valve 3a and the second check valve 3c are engaged with the locking step portions 3e and 3f, respectively. The check valve body 3a and the second check valve body 3c are simultaneously pulled up, so that the first leak passage 3b and the second leak passage 3d are opened. Here, 3g is a throttle valve provided in the second leak passage 3d to limit the flow rate from the second fluid passage 2b to the back pressure chamber 1c, but does not limit the flow rate in the reverse direction. Reference numeral 8 denotes a main valve spring that biases the main valve body 3 in a direction away from the main valve seat 1b, and 9 denotes a valve body support 5
Is biased toward the main valve body 3.
【0016】更に主弁体3の肩部3hの周りには例えば
弗素樹脂などの可撓性材料から形成された円形のシール
板3iが抑えリング3jを介して挟着されており、主弁
体3が主弁座1bに着座したときには、図2(a)に示
すような状態にシール板3iが段部1eに接触して、背
圧室1cと主弁室1dとを仕切るようになっている。し
かしシール板3iは可撓性であるために、主弁室1d内
の圧力が背圧室1c内の圧力より高いか又は等しいとき
は圧着から開放されることとなり、第1逆止弁3aと同
様に流体が漏洩できて主弁室1dと背圧室1cとの均圧
化が促進され、また背圧室1c内の圧力が主弁室1d内
の圧力より高いときには段部1eと肩部3hとの双方に
圧着されて、流体の漏洩が発生しないものである。Further, a circular seal plate 3i made of a flexible material such as fluorine resin is sandwiched around a shoulder 3h of the main valve body 3 via a restraining ring 3j. When the seat 3 is seated on the main valve seat 1b, the seal plate 3i comes into contact with the step portion 1e in a state as shown in FIG. 2 (a) to separate the back pressure chamber 1c from the main valve chamber 1d. I have. However, since the seal plate 3i is flexible, when the pressure in the main valve chamber 1d is higher than or equal to the pressure in the back pressure chamber 1c, the seal plate 3i is released from crimping, and the first check valve 3a and Similarly, when the fluid can leak, the equalization between the main valve chamber 1d and the back pressure chamber 1c is promoted, and when the pressure in the back pressure chamber 1c is higher than the pressure in the main valve chamber 1d, the step portion 1e and the shoulder portion are formed. 3h, so that leakage of fluid does not occur.
【0017】また、主弁体3と弁体支持体5との間に
は、図3に示すように背圧室1cに通ずる流体通路3k
が形成されており、またガイド部材6が設けられてい
て、主弁体3に設けられたガイド孔に摺動自在に嵌合し
ている。従って主弁体3と弁体支持体5とは相対的に回
動することはできないが、軸方向には相対移動ができる
ようになっているので、逆止弁体は漏洩流路の開口に正
確に対向することとなり、閉止不完全による流体漏れは
もちろんのこと、偏った摩耗による弁機能の劣化などが
避けられる。As shown in FIG. 3, a fluid passage 3k communicating with the back pressure chamber 1c is provided between the main valve body 3 and the valve body support 5.
And a guide member 6 is provided, which is slidably fitted in a guide hole provided in the main valve body 3. Therefore, the main valve body 3 and the valve body support 5 cannot rotate relative to each other, but can move relative to each other in the axial direction. Since they oppose each other exactly, it is possible to avoid not only fluid leakage due to incomplete closing, but also deterioration of valve function due to uneven wear.
【0018】このような構成を有する双方向電磁弁にお
いて、電磁コイル7が無通電状態にあるときは弁体支持
体5と係止段部3e及び3fとの係合は開放されてお
り、第1逆止弁体3a及び第2逆止弁体3cはいずれも
正規の閉止状態にある。ここで第1流体通路2aから流
体が供給されると、主弁室1d内の流体が第1漏洩流路
3bから第1逆止弁体3aを押し上げて背圧室1cへ流
入するが、背圧室1cから第2流体通路2bへは第2逆
止弁体3cのために流出できない。そしてこのときはシ
ール板3iは機能せず、主弁室1d内の流体がシール板
3iの隙間を通って背圧室1cへ流入することは妨げら
れない。結局、背圧室1c内の圧力は主弁室1d内の圧
力と等しくなって、第1流体通路2aと第2流体通路2
bとの差圧に主弁座1bの面積を乗じた力によって主弁
体3が主弁座1bに圧着される。ただし、このときの主
弁ばね8の力はプランジャばね9の力より大きくないよ
うに構成されていることが必要である。In the bidirectional solenoid valve having such a configuration, when the electromagnetic coil 7 is in a non-energized state, the engagement between the valve body support 5 and the locking steps 3e and 3f is released, and Both the first check valve 3a and the second check valve 3c are in the normal closed state. Here, when the fluid is supplied from the first fluid passage 2a, the fluid in the main valve chamber 1d pushes up the first check valve body 3a from the first leak passage 3b and flows into the back pressure chamber 1c. The second check valve 3c cannot flow out of the pressure chamber 1c to the second fluid passage 2b. At this time, the seal plate 3i does not function, and the fluid in the main valve chamber 1d is not prevented from flowing into the back pressure chamber 1c through the gap of the seal plate 3i. As a result, the pressure in the back pressure chamber 1c becomes equal to the pressure in the main valve chamber 1d, and the first fluid passage 2a and the second fluid passage 2
The main valve element 3 is pressed against the main valve seat 1b by a force obtained by multiplying the area of the main valve seat 1b by the pressure difference from the main valve seat 1b. However, it is necessary that the force of the main valve spring 8 at this time should not be larger than the force of the plunger spring 9.
【0019】次に電磁コイル7に通電すると、弁体支持
体5が係止段部3e及び3fと係合して第1逆止弁体3
a及び第2逆止弁体3cを引き上げる結果、これらの逆
止弁体3a及び3cはいずれも開放状態となり、背圧室
1c内の圧力は第2流体通路2b内の圧力に近づく。そ
して背圧室1cと主弁室1dとの差圧に主弁体3と主弁
座1bとの面積差を乗じた力と主弁ばね8の付勢力との
合力によって主弁体3が主弁座1bから離れることにな
るが、シール板3iは図2(b)のように段部1eから
離れるために、シール板3iによる摺動抵抗は全く無
い。その結果、背圧室1cと主弁室1dとの差圧に主弁
体3の断面積を乗じた力と主弁ばね8の付勢力との合力
によって主弁体3が全開するに至り、背圧室1cと主弁
室1dとの差圧が殆ど零となっても、主弁ばね8の付勢
力のために主弁体3は安定した全開状態を維持するもの
である。Next, when the electromagnetic coil 7 is energized, the valve body support 5 engages with the locking steps 3e and 3f and the first check valve body 3
As a result, the check valve bodies 3a and 3c are both opened, and the pressure in the back pressure chamber 1c approaches the pressure in the second fluid passage 2b. The main valve body 3 is mainly driven by the resultant force of the force obtained by multiplying the pressure difference between the back pressure chamber 1c and the main valve chamber 1d by the area difference between the main valve body 3 and the main valve seat 1b and the urging force of the main valve spring 8. Although the seal plate 3i is separated from the valve seat 1b, the seal plate 3i is separated from the stepped portion 1e as shown in FIG. 2B, so that there is no sliding resistance due to the seal plate 3i. As a result, the main valve body 3 is fully opened due to the resultant force of the force obtained by multiplying the differential pressure between the back pressure chamber 1c and the main valve chamber 1d by the sectional area of the main valve body 3 and the urging force of the main valve spring 8. Even if the pressure difference between the back pressure chamber 1c and the main valve chamber 1d becomes almost zero, the main valve body 3 maintains a stable fully open state due to the urging force of the main valve spring 8.
【0020】また上記とは逆に電磁コイル7が無通電状
態にあるときに第2流体通路2bから流体が供給される
と、流体は絞り弁3gと第2漏洩流路3dを通り、第2
逆止弁体3cを押し上げて背圧室1cへ流入する。この
とき第1逆止弁体3aは閉止したままであるから流体は
主弁室1dへ流出できない。従って背圧室1c内の圧力
は第2流体通路2b内の圧力と等しくなって、第2流体
通路2bと第1流体通路2aとの差圧に主弁体3と主弁
座1bとの面積差を乗じた力によって主弁体3が主弁座
1bに圧着され、それと同時に背圧室1cと主弁室1d
との差圧によってシール板3iは段部1eと肩部3hと
の間に圧着され、流体の漏洩が防止される。Conversely, when fluid is supplied from the second fluid passage 2b when the electromagnetic coil 7 is in a non-energized state, the fluid passes through the throttle valve 3g and the second leak passage 3d,
The check valve body 3c is pushed up and flows into the back pressure chamber 1c. At this time, since the first check valve body 3a remains closed, fluid cannot flow out to the main valve chamber 1d. Therefore, the pressure in the back pressure chamber 1c becomes equal to the pressure in the second fluid passage 2b, and the pressure difference between the second fluid passage 2b and the first fluid passage 2a is reduced by the area of the main valve body 3 and the main valve seat 1b. The main valve body 3 is pressed against the main valve seat 1b by the force multiplied by the difference, and at the same time, the back pressure chamber 1c and the main valve chamber 1d
The seal plate 3i is pressed between the stepped portion 1e and the shoulder 3h by the pressure difference between them, thereby preventing leakage of the fluid.
【0021】次に電磁コイル7に通電すると、第1逆止
弁体3a及び第2逆止弁体3cが開放されて背圧室1c
内の流体が主弁室1dへ流出する結果、背圧室1c内の
圧力は主弁室1d内の圧力に近づき、段部1eに対する
シール板3iの圧着力も小さくなる。そのため、背圧室
1cと第2流体通路2bとの差圧に主弁座1bの断面積
を乗じた力と主弁ばね8の付勢力との合力によって主弁
体3が主弁座1bから離れ、シール板3iの圧着も解消
されるから、主弁体3は殆ど抵抗もなく全開するに至
る。この際には、背圧室1cと主弁室1dとの差圧が殆
ど零に近くなっても、主弁ばね8の付勢力のために主弁
体3は安定した全開状態を維持するものである。Next, when the electromagnetic coil 7 is energized, the first check valve 3a and the second check valve 3c are opened and the back pressure chamber 1c is opened.
As a result, the pressure in the back pressure chamber 1c approaches the pressure in the main valve chamber 1d, and the pressing force of the seal plate 3i against the step portion 1e also decreases. Therefore, the main valve body 3 is moved from the main valve seat 1b by the combined force of the force obtained by multiplying the differential pressure between the back pressure chamber 1c and the second fluid passage 2b by the sectional area of the main valve seat 1b and the urging force of the main valve spring 8. The main valve body 3 is fully opened with almost no resistance since the separation and the pressing of the seal plate 3i are also eliminated. At this time, even if the pressure difference between the back pressure chamber 1c and the main valve chamber 1d becomes almost zero, the main valve body 3 maintains a stable fully open state due to the urging force of the main valve spring 8. It is.
【0022】また、本発明の双方向電磁弁の第2実施例
の要部を図4に示すが、この実施例においてはプランジ
ャ4の下端部に弁体支持体5の上端部に形成された係合
フランジ5aを遊動可能に収容する筒状空間4aが形成
されており、その内壁面には係合フランジ5aが筒状空
間4aから逸脱することを防止するための係止環4bが
突設されている。そして係合フランジ5aは筒状空間4
a内を軸方向に限定範囲内で遊動できるようになってお
り、また主弁体3と弁体支持体5との間に弱い押上ばね
5bが設けてあって弁体支持体5をプランジャ4に向け
て付勢しているが、その外は第1実施例と同様な構造を
有している。なお、図4では弁体支持体5として一体に
形成したものが示されているが、係合フランジ部分と本
体部分とを別体で形成したうえ結合した弁体支持体を用
いることもできる。FIG. 4 shows a main part of a two-way solenoid valve according to the present invention. In this embodiment, the two-way solenoid valve is formed at the lower end of the plunger 4 and at the upper end of the valve body support 5. A cylindrical space 4a for movably accommodating the engagement flange 5a is formed, and a locking ring 4b protrudes from an inner wall surface thereof to prevent the engagement flange 5a from deviating from the cylindrical space 4a. Have been. The engagement flange 5a is connected to the cylindrical space 4.
a, a weak push-up spring 5b is provided between the main valve body 3 and the valve body support 5 so that the valve body support 5 is , But the rest has the same structure as the first embodiment. Although FIG. 4 shows that the valve body support 5 is integrally formed, a valve body support in which the engagement flange portion and the main body portion are formed separately and connected to each other may be used.
【0023】この例の双方向電磁弁においては、基本的
な弁の作動状態については第1実施例と同様であるが、
プランジャ4と弁体支持体5に関する作動状態のみが異
なっている。すなわち、電磁コイル7が無通電状態にあ
るときは、弁体支持体5は第1逆止弁体3a及び第2逆
止弁体3cとの係合から解除された位置にあって、これ
らの逆止弁はいずれも正規の閉止状態にあるが、この状
態を保ったままでプランジャ4は軸方向に限定範囲内で
遊動できる。従ってこの状態で電磁コイル7に通電する
と、先ずプランジャ4のみが動き始め、次いでプランジ
ャ4の下端部に設けられた係止環4bが係合フランジ5
aの下面に衝合して弁体支持体5を動かし、更に弁体支
持体5が係止段部3e及び3fと係合して、プランジャ
4と弁体支持体5とが協動して第1逆止弁体3a及び第
2逆止弁体3cを引き上げる。その際、押上ばね5bは
弁体支持体5を確実に作動させると同時に、主弁体3が
流体の流れに伴い揺動して第1逆止弁体3a及び第2逆
止弁体3cと接触することを防止し、ハンチング現象の
発生を抑制するようになっている。In the bidirectional solenoid valve of this embodiment, the basic operation state of the valve is the same as that of the first embodiment.
Only the operating states relating to the plunger 4 and the valve body support 5 are different. That is, when the electromagnetic coil 7 is in a non-energized state, the valve body support 5 is at a position where it is released from engagement with the first check valve 3a and the second check valve 3c. Although all the check valves are in a normally closed state, the plunger 4 can float within a limited range in the axial direction while maintaining this state. Accordingly, when the electromagnetic coil 7 is energized in this state, only the plunger 4 starts to move, and then the locking ring 4b provided at the lower end of the plunger 4
The valve body support 5 is moved by abutting against the lower surface of a, and the valve body support 5 further engages with the locking steps 3e and 3f, so that the plunger 4 and the valve body support 5 cooperate with each other. The first check valve 3a and the second check valve 3c are pulled up. At this time, the push-up spring 5b surely operates the valve body support 5 and at the same time, the main valve body 3 swings with the flow of the fluid, and the first check valve body 3a and the second check valve body 3c are connected to each other. The contact is prevented, and the occurrence of the hunting phenomenon is suppressed.
【0024】上述のような作動に際して、電磁コイル7
によって最初に動くのはプランジャ4だけであり、弁開
に対して抵抗となる流体圧力は全く作用しないから電磁
コイル7の吸引力が大きくなくても加速が早い。従って
弁体支持体5は、加速されたプランジャ4が衝突するこ
とにより、プランジャ4の運動慣性力の作用と電磁コイ
ル7の吸引力との作用のために急速発進する。そのため
第1逆止弁体3a及び第2逆止弁体3cは、単に電磁コ
イル7の吸引力のみでなく、これにプランジャ4と弁体
支持体5との衝撃エネルギーが加わることによって瞬間
的に開放されることになる結果、背圧室1cと主弁室1
dとの差圧が大きくても比較的に小さな電磁コイルを用
いて容易に大型の双方向電磁弁を作動させることができ
るものである。In the above operation, the electromagnetic coil 7
Only the plunger 4 moves first, and no fluid pressure acting as a resistance to valve opening acts at all. Therefore, acceleration is quick even if the suction force of the electromagnetic coil 7 is not large. Therefore, when the accelerated plunger 4 collides, the valve body support 5 rapidly starts due to the action of the kinetic inertia force of the plunger 4 and the action of the attraction force of the electromagnetic coil 7. Therefore, the first check valve body 3 a and the second check valve body 3 c are not only attracted by the electromagnetic coil 7 but also instantaneously due to the impact energy between the plunger 4 and the valve body support 5. As a result, the back pressure chamber 1c and the main valve chamber 1 are opened.
Even if the pressure difference with d is large, a large two-way solenoid valve can be easily operated using a relatively small electromagnetic coil.
【0025】[0025]
【発明の効果】本発明双方向電磁弁は、上記のような構
成を備えているパイロット型の電磁弁であって、その流
体制御特性が対称的であって流体の流通方向の如何にか
かわらず圧損が殆ど生じないという特性をそのまま保持
しながら、パイロット弁の作動が正確で流体の漏洩が発
生せず、また主弁体の摺動抵抗が極めて小さくて確実に
作動し、しかも弁閉時における流体差圧の大きさの如何
にかかわらず漏洩量が極めて少なく、精密なパイロット
弁は摩耗等による劣化を起こしにくくて耐久性が大きい
という特長を有している。The two-way solenoid valve of the present invention is a pilot-type solenoid valve having the above-mentioned structure, and its fluid control characteristics are symmetrical and independent of the flow direction of the fluid. While maintaining the characteristic that almost no pressure loss occurs, the pilot valve operates accurately, no fluid leakage occurs, and the sliding resistance of the main valve body is extremely small, ensuring reliable operation. Irrespective of the magnitude of the fluid differential pressure, the leakage amount is extremely small, and a precise pilot valve is characterized by being hardly deteriorated by abrasion or the like and having high durability.
【図1】本発明の双方向電磁弁の第1実施例の縦断面図
である。FIG. 1 is a longitudinal sectional view of a first embodiment of a two-way solenoid valve of the present invention.
【図2】本発明の弁におけるシール板の作動状態の説明
図である。FIG. 2 is an explanatory diagram of an operating state of a seal plate in the valve of the present invention.
【図3】本発明の弁における逆止弁体及び弁体支持体を
含む部分の構造図である。FIG. 3 is a structural view of a portion including a check valve body and a valve body support in the valve of the present invention.
【図4】本発明の双方向電磁弁の第2実施例の要部の縦
断面図である。FIG. 4 is a longitudinal sectional view of a main part of a second embodiment of the bidirectional solenoid valve of the present invention.
【図5】同時冷暖房マルチ空調システムにおける3配管
型の冷凍回路図である。FIG. 5 is a refrigeration circuit diagram of a three-pipe type in the simultaneous cooling / heating multi air conditioning system.
【図6】同時冷暖房マルチ空調システムにおける2配管
型の冷凍回路図である。FIG. 6 is a diagram of a two-pipe refrigeration circuit in a simultaneous cooling / heating multi-air conditioning system.
【図7】先行技術の双方向電磁弁の例の縦断面図であ
る。FIG. 7 is a longitudinal sectional view of an example of a prior art two-way solenoid valve.
1 弁本体 1a 弁室 1b 主弁座 1c 背圧室 1d 主弁室 1e 段部 2a 第1流体通路 2b 第2流体通路 3 主弁体 3a 第1逆止弁体 3b 第1漏洩流路 3c 第2逆止弁体 3d 第2漏洩流路 3e、3f 係止段部 3g 絞り弁 3h 肩部 3i シール板 3j 抑えリング 3k 流体通路 4 プランジャ 4a 筒状空間 4b 係止環 5 弁体支持体 5a 係合フランジ 5b 押上ばね 6 ガイド部材 7 電磁コイル 8 主弁ばね 9 プランジャばね 11a 弁室 11b 主弁座 11c 背圧室 11d 主弁室 12a 第1流体通路 12b 第2流体通路 13 主弁体 13a 第1逆止弁 13b 第1漏洩流路 13c 第2逆止弁 13d 第2漏洩流路 15 弁開部材 18 主弁ばね A 吐出ガスライン B 吸入ガスライン C 液ライン D 四方弁 E 室内用熱交換器 I 室内ユニット M 圧縮機 O 室外ユニット R 分流ユニット a、b 電磁弁 DESCRIPTION OF SYMBOLS 1 Valve main body 1a Valve chamber 1b Main valve seat 1c Back pressure chamber 1d Main valve chamber 1e Step 2a First fluid passage 2b Second fluid passage 3 Main valve body 3a First check valve body 3b First leak passage 3c 2 check valve 3d 2nd leak passage 3e, 3f locking step 3g throttle valve 3h shoulder 3i seal plate 3j restraining ring 3k fluid passage 4 plunger 4a cylindrical space 4b locking ring 5 valve support 5a Mating flange 5b Push-up spring 6 Guide member 7 Electromagnetic coil 8 Main valve spring 9 Plunger spring 11a Valve chamber 11b Main valve seat 11c Back pressure chamber 11d Main valve chamber 12a First fluid passage 12b Second fluid passage 13 Main valve body 13a First Check valve 13b First leak passage 13c Second check valve 13d Second leak passage 15 Valve opening member 18 Main valve spring A Discharge gas line B Intake gas line C Liquid line D Four-way valve E Indoor heat exchange I indoor unit M compressor O outdoor unit R shunt units a, b solenoid valve
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 誠一 埼玉県狭山市笹井535 株式会社鷺宮製 作所狭山事業所内 (56)参考文献 特開 昭63−199980(JP,A) 特開 平5−172270(JP,A) 特開 平5−99367(JP,A) 実開 昭62−163383(JP,U) 特公 平1−28273(JP,B2) 実公 昭61−41015(JP,Y2) 実公 昭57−19907(JP,Y2) 実公 昭63−39499(JP,Y2) (58)調査した分野(Int.Cl.7,DB名) F16K 31/06 - 31/11 F16K 31/36 - 31/42 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Seiichi Nakano 535 Sasai, Sayama City, Saitama Prefecture Sagimiya Manufacturing Co., Ltd. Sayama Works (56) References JP-A-63-199980 (JP, A) JP-A-5-205 172270 (JP, A) JP-A-5-99367 (JP, A) JP-A-62-163383 (JP, U) JP-B-1-28273 (JP, B2) JP-A-61-141515 (JP, Y2) F. 57-19907 (JP, Y2) F. 63-39499 (JP, Y2) (58) Fields investigated (Int. Cl. 7 , DB name) F16K 31/06-31/11 F16K 31/36 -31/42
Claims (5)
トン状の主弁体が摺動自在に嵌装された主弁室と該主弁
室より径の大きい背圧室とに分割すると共に該主弁室よ
り径の小さい第2流体通路が開口する主弁座を該主弁室
の底部に設け、該主弁室と該背圧室とを連通する第1漏
洩流路及び該第2流体通路と該背圧室とを連通する第2
漏洩流路を該主弁体内に設けると共に該主弁室と該背圧
室との間の壁部に形成された段部に当接可能な鍔状の可
撓性シール板を該主弁体の肩部に取付け、該第1及び第
2漏洩流路の背圧室側開口に接する第1及び第2逆止弁
体を同時に離開させ得る弁体支持体を備えた電磁作動の
プランジャを設け、更に前記主弁体を前記主弁座から離
す方向に付勢する主弁ばねを設けたことを特徴とする双
方向電磁弁。1. A cylindrical valve chamber communicating with a first fluid passage is divided into a main valve chamber in which a piston-shaped main valve body is slidably fitted and a back pressure chamber having a larger diameter than the main valve chamber. A main valve seat having a second fluid passage having a smaller diameter than the main valve chamber is provided at a bottom portion of the main valve chamber; a first leakage flow path communicating the main valve chamber with the back pressure chamber; A second fluid passage communicating the second fluid passage with the back pressure chamber;
The main valve body is provided with a flange-shaped flexible seal plate which is provided with a leakage flow path in the main valve body and which can contact a step formed in a wall portion between the main valve chamber and the back pressure chamber. And an electromagnetically actuated plunger provided with a valve body support that can be simultaneously released from the first and second check valves and that is in contact with the back pressure chamber side openings of the first and second leak passages. And a main valve spring for urging the main valve body in a direction away from the main valve seat.
に限定範囲内で遊動可能に結合されている請求項1記載
の双方向電磁弁。2. The two-way solenoid valve according to claim 1, wherein the valve body support is axially movably connected to the plunger within a limited range.
る押上ばねを主弁体と弁体支持体との間に設けた請求項
2記載の双方向電磁弁。3. The two-way solenoid valve according to claim 2, wherein a push-up spring for urging the valve body support toward the plunger is provided between the main valve body and the valve body support.
に対称の位置に設けたことを特徴とする請求項1乃至3
のいずれかに記載の双方向電磁弁。4. The system according to claim 1, wherein the first and second check valves are provided at mutually symmetric positions with respect to the axis.
A two-way solenoid valve according to any one of the above.
しないが軸方向の相対移動を許容するガイド手段を設け
たことを特徴とする請求項1乃至4のいずれかに記載の
双方向電磁弁。5. A guide device according to claim 1, further comprising a guide means which does not allow relative rotation between the main valve body and the valve body support but allows relative movement in the axial direction. Two-way solenoid valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19618793A JP3145233B2 (en) | 1992-08-07 | 1993-08-06 | Two-way solenoid valve |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4-211342 | 1992-08-07 | ||
JP21134292 | 1992-08-07 | ||
JP19618793A JP3145233B2 (en) | 1992-08-07 | 1993-08-06 | Two-way solenoid valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06101780A JPH06101780A (en) | 1994-04-12 |
JP3145233B2 true JP3145233B2 (en) | 2001-03-12 |
Family
ID=26509602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19618793A Expired - Fee Related JP3145233B2 (en) | 1992-08-07 | 1993-08-06 | Two-way solenoid valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3145233B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101611840B1 (en) * | 2012-10-17 | 2016-04-26 | 가부시키가이샤 교와 컨설턴츠 | Submersible power generator and submersible power generation system |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4629709B2 (en) * | 2007-08-30 | 2011-02-09 | 株式会社鷺宮製作所 | Bidirectional solenoid valve |
CN102032382B (en) | 2009-10-08 | 2013-09-25 | 浙江三花制冷集团有限公司 | Bidirectional solenoid valve |
JP2011112209A (en) * | 2009-11-30 | 2011-06-09 | Inax Corp | Seal structure of flow control valve |
JP5676984B2 (en) * | 2010-09-07 | 2015-02-25 | 株式会社不二工機 | Shut-off valve |
JP5710183B2 (en) * | 2010-09-07 | 2015-04-30 | 株式会社不二工機 | Pilot operated bidirectional solenoid valve |
JP5572809B2 (en) * | 2010-09-30 | 2014-08-20 | 株式会社テージーケー | Control valve |
KR101238760B1 (en) * | 2011-04-18 | 2013-03-06 | (주)모토닉 | Solenoid valve |
CN103322205B (en) * | 2012-03-21 | 2017-11-10 | 浙江三花制冷集团有限公司 | A kind of bidirectional electromagnetic valve |
DE102012015354A1 (en) * | 2012-08-03 | 2014-05-15 | Hydac Fluidtechnik Gmbh | Valve, in particular pilot-operated proportional directional seat valve |
CN104074996B (en) * | 2013-03-28 | 2018-03-23 | 浙江三花制冷集团有限公司 | Bidirectional electromagnetic valve |
EP2937608B1 (en) * | 2013-03-28 | 2019-06-05 | Zhejiang Sanhua Climate & Appliance Controls Group Co., Ltd. | Linear bidirectional electromagnetic valve |
JP5699267B2 (en) * | 2014-02-13 | 2015-04-08 | 株式会社テージーケー | Control valve |
JP6889685B2 (en) * | 2018-06-20 | 2021-06-18 | 株式会社鷺宮製作所 | Electric valve and refrigeration cycle system |
CN112245755A (en) * | 2020-11-13 | 2021-01-22 | 中国工程物理研究院机械制造工艺研究所 | Proportional valve for breathing machine |
-
1993
- 1993-08-06 JP JP19618793A patent/JP3145233B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101611840B1 (en) * | 2012-10-17 | 2016-04-26 | 가부시키가이샤 교와 컨설턴츠 | Submersible power generator and submersible power generation system |
Also Published As
Publication number | Publication date |
---|---|
JPH06101780A (en) | 1994-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3145233B2 (en) | Two-way solenoid valve | |
US6783110B2 (en) | Proportional solenoid valve | |
US8540207B2 (en) | Fluid flow control assembly | |
EP2375116B1 (en) | Flow reversing valve and heat pump device using the same | |
EP0664425A1 (en) | Expansion valve combined with a solenoid valve | |
US7036744B2 (en) | Solenoid valve-equipped expansion valve | |
JP2966597B2 (en) | Two-way solenoid valve | |
JP3774334B2 (en) | Four-way selector valve | |
JP7109057B2 (en) | four-way switching valve | |
JP3362990B2 (en) | Expansion valve with solenoid valve | |
JP7367972B2 (en) | pilot valve | |
JP4446628B2 (en) | Bypass valve and air conditioner using the same | |
JP3387586B2 (en) | Expansion valve with solenoid valve | |
CN221569601U (en) | Electromagnetic valve | |
JPH01150081A (en) | Solenoid valve | |
JPS63293373A (en) | Two stage operating type solenoid valve | |
JPH04116360A (en) | Five way reversing valve for reversible refrigeration cycle | |
JP2002372160A (en) | Four way selector valve | |
JPH034082A (en) | Solenoid valve | |
JPH0113976Y2 (en) | ||
JPS6260586B2 (en) | ||
JPH04258585A (en) | Electromagnetic valve | |
JPS6291758A (en) | Refrigerator | |
JPS63312588A (en) | Slow moving solenoid valve | |
JP2007155136A (en) | Solenoid control valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20001128 |
|
LAPS | Cancellation because of no payment of annual fees |