JP3028968B2 - Method of manufacturing contacts for vacuum valve - Google Patents
Method of manufacturing contacts for vacuum valveInfo
- Publication number
- JP3028968B2 JP3028968B2 JP3078743A JP7874391A JP3028968B2 JP 3028968 B2 JP3028968 B2 JP 3028968B2 JP 3078743 A JP3078743 A JP 3078743A JP 7874391 A JP7874391 A JP 7874391A JP 3028968 B2 JP3028968 B2 JP 3028968B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- particles
- fine
- contact
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/0203—Contacts characterised by the material thereof specially adapted for vacuum switches
Landscapes
- Manufacture Of Switches (AREA)
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Description
[発明の目的] [Object of the invention]
【0001】[0001]
【産業上の利用分野】本発明は、真空バルブ用接点の製
造方法に関する。The present invention relates to a method for manufacturing a contact for a vacuum valve.
【0002】[0002]
【従来の技術】図7は、一般的な真空バルブの内部構成
を示す断面図である。同図に示すように真空バルブは、
絶縁材料からなるほぼ円筒状の絶縁容器1と、その両端
面に封止金具2,3を介して装着された金属製の端板
4,5とにより絶縁容器が構成され、その内部に真空雰
囲気の遮断室6が形成されている。この遮断室6内には
端板4を気密に貫通して第1の導電棒7が固定して設け
られ、端板5を貫通して第2の導電棒8が軸方向に可動
に設けられている。第1の導電棒7および第2の導電棒
8の対向端にはそれぞれ接点9を有する固定電極10お
よび接点11を有する可動電極12が互いに対向するよ
うに取り付けられている。第2の導電棒8と端板5との
間には、両者の間の気密性を保持するためにベローズ1
3が取り付けられている。また、このベローズ13には
両接点9,11間に発生するアーク蒸気から保護するた
めにアークシールド14が設けられている。真空バルブ
としての開閉操作は図示していない駆動機構により第2
の導電棒8を介して行われる。2. Description of the Related Art FIG. 7 is a sectional view showing the internal structure of a general vacuum valve. As shown in FIG.
A substantially cylindrical insulating container 1 made of an insulating material and metal end plates 4 and 5 mounted on both end surfaces of the insulating container via sealing fittings 2 and 3 constitute an insulating container. Is formed. A first conductive rod 7 is fixedly provided in the cut-off chamber 6 through the end plate 4 in an airtight manner, and a second conductive rod 8 is provided movably in the axial direction through the end plate 5. ing. A fixed electrode 10 having a contact 9 and a movable electrode 12 having a contact 11 are attached to opposing ends of the first conductive rod 7 and the second conductive rod 8 so as to face each other. The bellows 1 is provided between the second conductive rod 8 and the end plate 5 to maintain airtightness between the two.
3 is attached. Further, the bellows 13 is provided with an arc shield 14 for protection from arc vapor generated between the two contacts 9 and 11. The opening and closing operation as a vacuum valve is performed by a second drive mechanism (not shown).
Through the conductive rod 8.
【0003】図8は、一般に用いられているCu−Cr
合金接点の断面図である。同図に示すように、Cu−C
r合金接点は、粒子状の耐弧状であるCr16と、その
周囲の導電材であるCu17から形成されている。Cu
中の他元素の固溶量は、導電性を考慮して、通常低く抑
えられている。FIG. 8 shows a conventional Cu—Cr alloy.
It is sectional drawing of an alloy contact. As shown in FIG.
The r-alloy contact is formed of a particle-like arc-resistant Cr16 and a surrounding conductive material of Cu17. Cu
The amount of other elements in the solid solution is usually kept low in consideration of conductivity.
【0004】また、Cu−Cr合金接点の表面に、組織
が微細な(微細組織層)18層を形成させた接点も用い
られている。その断面を図9、そして微細組織層の部分
を拡大して図10に示した。図10に見られるように微
細組織層は数μm程度のCr粒子19と粒子間のCu相
20から形成されている。[0004] Further, a contact in which 18 layers having a fine structure (fine structure layer) are formed on the surface of the Cu-Cr alloy contact is also used. The cross section is shown in FIG. 9 and the microstructure layer is shown in FIG. As can be seen in FIG. 10, the fine structure layer is composed of Cr particles 19 of about several μm and Cu phase between the particles.
20 .
【0005】[0005]
【発明が解決しようとする課題】以上述べたような真空
バルブ用接点は、再点弧特性の観点から、接点表面が平
滑でかつ接点の機械的強度が大きいことが要求される。From the viewpoint of restriking characteristics, the above-mentioned vacuum valve contacts are required to have a smooth contact surface and high mechanical strength of the contacts.
【0006】前述の図8の接点の場合、接点表面は加工
したままの状態であるため接点表面は微視的には非常に
荒れた状態となっている。また、CuとCrは固相状態
ではほとんど固溶しあうことがなく、液相状態において
も通常の溶解方法では液相が2相分離してしまう。この
ため、図8に示したような合金接点は一般に固相焼結法
あるいは溶浸法において作成されており、接点の機械的
強度はあまり大きくなく従って再点弧の抑制には必ずし
も満足な状態ではない。In the case of the above-mentioned contact point shown in FIG. 8, the contact surface is in a state of being processed, so that the contact surface is very rough microscopically. Further, Cu and Cr hardly form a solid solution in a solid phase state, and even in a liquid phase state, the liquid phase is separated into two phases by a usual dissolution method. For this reason, the alloy contacts as shown in FIG. 8 are generally produced by the solid phase sintering method or the infiltration method, and the mechanical strength of the contacts is not so large, so that they are not always satisfactory for suppressing restriking. is not.
【0007】このような接点表面の平滑性および機械的
強度の改善のために、接点表面を熱処理することによっ
て接点表面に微細組識層を形成させることが従来に行わ
れている。このような微細層が形成されることにより、
接点表面はかなり平滑になる。この微細層は接点表面の
一部もしくは全体がいったん溶融した後凝固して形成さ
れたものである。しかし、Cu−Cr系合金は前述した
ように液相領域に2層分離領域が存在し、しかもCuと
Crの融点には800℃以上の差が存在するため最高到
達温度および冷却速度などの熱処理条件によって大きく
変化する。従来の方法による接点表面に見られる微細層
は、図10に示すようにCu層20中にCr微粒子19
がまばらに分散したものであり、微細層の主体はCu層
である。このため従来の接点は機械的強度の点で未だ満
足のいくものではないという問題がある。[0007] In order to improve the smoothness and mechanical strength of the contact surface, a heat treatment is performed on the contact surface to form a fine tissue layer on the contact surface. By forming such a fine layer,
The contact surface becomes fairly smooth. This fine layer is formed by melting and then solidifying a part or the whole of the contact surface. However, as described above, the Cu-Cr alloy has a two-layer separation region in the liquid phase region and a difference in melting point of Cu and Cr of 800 ° C. or more. It changes greatly depending on conditions. As shown in FIG. 10, the fine layer seen on the contact surface according to the conventional method has Cr fine particles 19 in a Cu layer 20.
Are sparsely dispersed, and the main component of the fine layer is a Cu layer. For this reason, there is a problem that the conventional contacts are not yet satisfactory in terms of mechanical strength.
【0008】本発明の目的は、表面に非常に平滑でかつ
機械的強度の極めて大きい微細組識層を有するCu−C
r合金接点を得る真空バルブ用接点の製造方法を提供す
ることにある。 [発明の構成]An object of the present invention is to provide a Cu—C having a fine tissue layer having a very smooth surface and a very high mechanical strength.
An object of the present invention is to provide a method for manufacturing a vacuum valve contact for obtaining an r alloy contact. [Configuration of the Invention]
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
に本発明は直径10〜150μmのCr粒子と、それを
取り囲むCu相とで構成された第1の相と、直径0.1
〜5μmの微細Cr粒子とそれを取り囲むCu相とで構
成された第2の相とから成り、接点表面に厚さが少なく
とも10μmの第2の相を生成するに充分な量の高エネ
ルギー密度を有するレーザを照射して、前記第2の相中
の微細Cr粒子中に該Cr粒子径のほぼ1/2〜1/1
00の直径を有するCr粒子が高度に分散した接点の製
造方法において、前記接点表面に、最大4.5J/パル
スのレーザ光をオーバーラップ率50%以上として照射
することを特徴としている。In order to achieve the above object, the present invention provides a first phase composed of Cr particles having a diameter of 10 to 150 μm, a Cu phase surrounding the particles, and a 0.1 phase having a diameter of 0.1 μm.
A second phase composed of fine Cr particles of about 5 μm and a Cu phase surrounding the fine particles, and the contact surface has a small thickness.
High energy sufficient to produce a second phase of 10 μm each.
Irradiating a laser having an energy density of
微細 of the Cr particle diameter in the fine Cr particles
Production of contacts with highly dispersed Cr particles having a diameter of 00
In the manufacturing method, a maximum of 4.5 J / pal
Irradiation of laser beam with an overlap rate of 50% or more
It is characterized in that.
【0010】[0010]
【0011】本発明の真空バルブ用接点の製造方法は前
記のようにCu板とCr板との積層体、Cu板とCr粒
との積層体、Cu粒とCr粒との混合体、成形体、Cu
−Cr合金体の接点表面全面に高エネルギー密度を有す
るレーザを照射し、急激でかつピーク温度の非常に高い
熱履歴を与える。 The method for manufacturing a contact for a vacuum valve according to the present invention is, as described above, a laminate of a Cu plate and a Cr plate, a laminate of a Cu plate and Cr particles, a mixture of Cu particles and Cr particles, and a compact. , Cu
-High energy density over the entire contact surface of the Cr alloy body
Irradiates a sharp laser and has a very high peak temperature
Give heat history.
【0012】上記の非常に高いピーク温度とは、接点相
成によって決まる液相2 相分離領域上限温度をはるかに
越え、液相が極めて短い時間内で均一化され得る程度の
温度(すなわち2000℃より高い温度)を意味し、ま
た急激な熱履歴とは、冷却時に液相2相分離温度領域を
通過するのに要する時間が非常に短く上述したような極
めて微細な組織が形成される程度、冷却速度が大きい
(すなわち103℃/秒より速い)ことを意味する。こ
うしたことにより、機械的強度の非常に大きい極微細組
織を接点表面に有するので、再点弧発生を防止でき且つ
遮断特性が向上する。The above-mentioned extremely high peak temperature is a temperature far exceeding the upper limit temperature of the liquid-phase two-phase separation region determined by the contact phase formation, and a temperature at which the liquid phase can be homogenized within a very short time (that is, 2000 ° C.). Higher temperature ) , and the rapid thermal history means that the time required for cooling to pass through the liquid-phase two-phase separation temperature region is extremely short, and the extremely fine structure as described above is formed. It means that the cooling rate is high (ie, faster than 103 ° C./sec). As a result, an extremely fine structure having extremely large mechanical strength is provided on the contact surface, so that occurrence of restriking can be prevented and cutoff characteristics are improved.
【0013】[0013]
【実施例】図8に示したようなCu−Cr合金接点表面
に急激でかつピーク温度の非常に高い熱履歴を与え接点
表面に図5および図7に示したような、組識が極めて微
細な層を形成させる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An abrupt and extremely high peak temperature thermal history is applied to the contact surface of a Cu--Cr alloy as shown in FIG. 8 and the contact surface has an extremely fine structure as shown in FIG. 5 and FIG. Layer is formed.
【0014】本発明の製造方法では、接点表面にレーザ
を照射することによって熱履歴を与えることが特徴であ
る。レーザ照射の条件は、エネルギー密度最大4.5J
/パルスのYAGレーザを使用し、パルス幅9msec
繰り返し周波数10Hzとした。又、レーザの照射を表
面全体に行うためオーバーラープ率を50%以上とした。
オーバーラーップ率50%とは、1回のレーザ照射時の接
点表面でのレーザ半径の長さを次の照射時に重なるよう
に照射することを意味する。つまり、レーザ照射をオー
バーラップさせることにより、接点表面全面にレーザに
よる熱履歴を与えることができる。レーザ照射後、接点
の再点弧特性の評価を行なった。評価結果を以下のよう
な表1に示した。The manufacturing method of the present invention is characterized in that a thermal history is given by irradiating a laser to the contact surface. Laser irradiation conditions are 4.5 J maximum energy density.
/ Pulse YAG laser, pulse width 9msec
The repetition frequency was 10 Hz. The overlap rate was set to 50% or more in order to perform laser irradiation on the entire surface.
An overlap rate of 50% means that irradiation is performed so that the length of the laser radius on the contact surface during one laser irradiation overlaps with the next irradiation. That is, by overlapping the laser irradiation, the thermal history by the laser can be given to the entire contact surface. After the laser irradiation, the re-ignition characteristics of the contacts were evaluated. The evaluation results are shown in Table 1 below.
【0015】[0015]
【表1】 以上説明した実施例と比較するため、従来の図9および
図10に示したような微細組識層を接点表面に形成させ
再点弧特性の評価を行なった。[Table 1] For comparison with the embodiment described above, a fine tissue layer as shown in FIGS. 9 and 10 was formed on the contact surface, and the re-ignition characteristics were evaluated.
【0016】この場合は、アーク放電により実施例に比
べピーク温度の低い熱履歴を接点表面に与えた。放電条
件は、直流50A、ギャップ長5mm、アーク時間10
msで50回繰り返し行なった。放電後、同様に接点の
再点弧特性の評価を行なった。これを表1に比較例−1
として示した。加工したままの接点についても再点弧特
性の評価を行ない、比較例−2として表1に示した。In this case, a heat history having a lower peak temperature than that of the embodiment was given to the contact surface by arc discharge. The discharge conditions were DC 50A, gap length 5mm, arc time 10
Repeated 50 times at ms. After the discharge, the re-ignition characteristics of the contacts were similarly evaluated. This is shown in Table 1 in Comparative Example-1.
As shown. The re-ignition characteristics were also evaluated for the as-processed contacts, and the results are shown in Table 1 as Comparative Example-2.
【0017】また、図5および図6と構造が同様である
が、寸法の異なる組識を接点表面に形成させた場合につ
いても評価を行ない、比較例−3として示した。この場
合は、実施例に比べ、ピーク温度の高さが同等あるいは
それ以上で冷却速度が比較的ゆるやかな熱履歴を接点表
面に与えることにより、容易に形成させることができ
る。ここでは、一例として本発明の製造方法による条件
下でレーザ照射させたCu−Cr合金体を、真空中95
0℃で再加熱し微細Cr粒成長させた場合について示し
た。Also, a case where a structure having the same structure as that of FIGS. 5 and 6 but having different dimensions was formed on the contact surface was evaluated, and the result is shown as Comparative Example-3. In this case, as compared with the embodiment, the contact temperature can be easily formed by giving a heat history to the contact surface having the same or higher peak temperature and a relatively slow cooling rate. Here, as an example, a Cu—Cr alloy body irradiated with laser under the conditions according to the manufacturing method of the present invention is placed in a vacuum at 95%.
The case where re-heating was performed at 0 ° C. to grow fine Cr grains was shown.
【0018】さらに、図6と構造、寸法とも同様である
が、接点表面のわずかな部分にしか形成されない場合に
ついても評価し比較例4として示した。このような状態
は、実施例又は比較例と同様な熱処理をその繰り返し回
数を半減して行なうことにより容易に実現できる。(実
施例−1)Further, although the structure and dimensions were the same as those in FIG. 6, a case where the contact was formed only on a small portion of the contact surface was evaluated and shown as Comparative Example 4. Such a state can be easily realized by performing the same heat treatment as that of the example or the comparative example by halving the number of repetitions. (Example-1)
【0019】厚さが30μmのCr板31と30μmの
Cu板32とを重ね合わせCu−Cr積層体30(図
1)とした後、この積層体30をCu基板33と共にレ
ーザ発振装置34にセットし積層体30のいずれかの
面、例えばCr板31の面に所定エネルギーのレーザ光
35を照射した(図4)(照射条件:4J/パルス、パ
ルス幅9msec、オーバーラップ率50%) 。After laminating a 30 μm thick Cr plate 31 and a 30 μm Cu plate 32 to form a Cu—Cr laminate 30 (FIG. 1), the laminate 30 is set together with a Cu substrate 33 in a laser oscillator 34. One of the surfaces of the laminated body 30, for example, the surface of the Cr plate 31, was irradiated with laser light 35 having a predetermined energy (FIG. 4) (irradiation conditions: 4 J / pulse, pulse width 9 msec, overlap ratio 50%).
【0020】照射によってCr板31とCu板32と
は、合金化すると共にこの合金の一部とCu基体33と
の界面35は一体化した。金属組識の調査の結果、表面
層より深さ約30μmの領域では、直径0.1〜5μm
の微細Crが存在しこの微細Crをとり囲むCu相とで
構成され(第2の相)、深さが30μmより更に深い領
域では直径10μmより大きいCr粒子が存在した(第
1の相)。更に内部ではCu基体33がそのまま存在し
た。このようにして得られたCu−Cr合金を供試接点
片とした。尚、前記第2の相中の微細Cr粒子中には、
この微細Cr粒子の直径の1/2〜1/100の直径を
持つ更に微細なCr粒子が高度に分散している。 (実施例−2)By irradiation, the Cr plate 31 and the Cu plate 32 were alloyed and the interface 35 between a part of the alloy and the Cu base 33 was integrated. As a result of the investigation of the metal organization, in the region of about 30 μm deep from the surface layer, the diameter was 0.1 to 5 μm.
And a Cu phase surrounding the fine Cr (second phase), and in the region deeper than 30 μm, Cr particles having a diameter larger than 10 μm were present (first phase). Furthermore, the Cu base 33 was present as it was inside. The Cu-Cr alloy thus obtained was used as a test contact piece. Incidentally, in the fine Cr particles in the second phase,
Finer Cr particles having a diameter of 1/2 to 1/100 of the diameter of the fine Cr particles are highly dispersed. (Example-2)
【0021】平均粒子径が44μmのCuと74μmの
Crとをボールミル中で2時間混合した後、4トン/c
m2 で成形し直径42mm厚さ3mmの成形体57を得
た(図2)。After mixing Cu having an average particle diameter of 44 μm and Cr having an average particle diameter of 74 μm in a ball mill for 2 hours, 4 tons / c
m 2 To obtain a molded body 57 having a diameter of 42 mm and a thickness of 3 mm (FIG. 2).
【0022】この成形体50をレーザ発振装置34にセ
ットし前記成形体40の一面に所定のエネルギーのレー
ザ光35を照射した(条件:3J/パルス、パルス幅9
msec、オーバーラップ率50%)。照射によって、
単に混合の状態にあったCu粒とCr粒は合金化した。The molded body 50 was set in a laser oscillator 34, and one surface of the molded body 40 was irradiated with a laser beam 35 having a predetermined energy (condition: 3 J / pulse, pulse width 9).
msec, overlap rate 50%). By irradiation
Cu particles and Cr particles which were simply mixed were alloyed.
【0023】金属組識の調査の結果、照射表面より深さ
約40μmの領域では直径0.1〜5μmの微細Crが
存在し、この微細Crをとり囲むCu相とで構成され
(第2の相)、深さが40μmより更に深い領域では、
最初に用いた平均粒径が74μmのCr粒子とそれをと
り囲むCu相とが存在した(第1の相)。このようにし
て得られたCu−Cr合金を供試接点片とした。尚前記
第2の相中の微細Cr粒子中には、この微細Cr粒子の
直径の1/2〜1/100の直径を持つ更に微細なCr
粒子が高度に分散している。 (実施例−3)As a result of the investigation of the metal structure, fine Cr having a diameter of 0.1 to 5 μm exists in a region at a depth of about 40 μm from the irradiated surface, and is composed of a Cu phase surrounding the fine Cr (second phase). Phase), in a region deeper than 40 μm,
Cr particles having an average particle diameter of 74 μm used initially and a Cu phase surrounding the particles were present (first phase). The Cu-Cr alloy thus obtained was used as a test contact piece. The fine Cr particles in the second phase contain finer Cr having a diameter of 1/2 to 1/100 of the diameter of the fine Cr particles.
Particles are highly dispersed. (Example-3)
【0024】前記実施例−2で使用した成形体41を真
空中で1100℃で焼結し、残存空隙中に1150℃で
Cuを溶浸し50%Cr−Cu合金体60を得た(図
3)。この合金体60をレーザ発振装置34にセットし
前記合金体50の一面に所定エネルギーのレーザ光35
を照射した(条件:3J/パルス、パルス間4mso
c、オーバーラップ率50%)。金属組識の調査の結
果、照射表面より深さ約50μmの領域は、直径0.1
〜5μmの微細Crが存在しこの微細Crをとり囲むC
u相とで構成され(第2の相)、深さが50μmより更
に深い領域では、最初に用いた平均粒径が74μmのC
r粒子とそれをとり囲むCu相とが存在した(第1の
相)。このようにして得られたCu−Cr合金を供試接
点片とした。尚、前記第2の相中の微細Cr粒子中に
は、この微細Cr粒子の直径の1/2〜1/100直径
を持つ更に微細なCr粒子が高度に分散している。The compact 41 used in Example 2 was sintered at 1100 ° C. in vacuum, and Cu was infiltrated into the remaining void at 1150 ° C. to obtain a 50% Cr—Cu alloy body 60 (FIG. 3). ). The alloy body 60 is set in the laser oscillation device 34, and a laser beam 35 having a predetermined energy is applied to one surface of the alloy body 50.
(Conditions: 3 J / pulse, 4 ms between pulses)
c, overlap rate 50%). As a result of the investigation of the metal tissue, the region having a depth of about 50 μm
55 μm of fine Cr exists and C surrounding the fine Cr
In a region having a depth of more than 50 μm, the first particle having a mean particle size of 74 μm is used.
r particles and a surrounding Cu phase were present (first phase). The Cu-Cr alloy thus obtained was used as a test contact piece. Further, finer Cr particles having a diameter of 1/2 to 1/100 of the diameter of the fine Cr particles are highly dispersed in the fine Cr particles in the second phase.
【0025】表1に見られるように、従来の接点(比較
例1および2)では再点弧発生確率が2%前後見られて
いるのに対し、本発明の接点の製造方法(実施例1〜
3)においては、再点弧発生が極めて少なく、再点弧特
性が顕著に改善されると共に、遮断特性の向上も見られ
る。また、微細層の構造が同一でも、粗大な組織となっ
ている。比較例3、および微細層の生成が不十分な比較
例4では、十分な改善が見られていない。なお、本実施
例および比較例では、Cu−50wt%Cr合金接点を
用いて検討したが、その他のCr量に対しても本発明に
よる製造方法は有効である。As can be seen from Table 1, the re-ignition probability is about 2% in the conventional contacts (Comparative Examples 1 and 2), whereas the contact manufacturing method of the present invention (Example 1). ~
In 3), the occurrence of restriking is extremely small, the restriking characteristics are remarkably improved, and the breaking characteristics are also improved. Even if the structure of the fine layer is the same, the structure is coarse. In Comparative Example 3 and Comparative Example 4 in which the formation of a fine layer was insufficient, no sufficient improvement was observed. In this example and the comparative example, the investigation was performed using a Cu-50 wt% Cr alloy contact. However, the production method according to the present invention is effective for other Cr contents.
【0026】また、表面層を強化した本発明の製造方法
により作った接点を使用した真空バルブに於ける耐溶着
性は、この表面層で溶着を引きはずし開極するという期
待は低くなるため、特に耐溶着性を配慮することを要求
される場合には、例えばBiのような耐溶着性向上成分
を、再点弧発生を高めない程度の量添加して、対応する
ことが有効である。この場合には、図8、17のマトリ
ックスから破壊が起こる。前記した実施例および比較例
における遮断特性の評価条件は次の通りである。The welding resistance of a vacuum valve using a contact formed by the manufacturing method of the present invention with a reinforced surface layer is low because the expectation that the surface layer will be released by welding and the contact will be lowered. In particular, when it is required to consider welding resistance, it is effective to add a welding resistance improving component such as Bi, for example, in an amount that does not increase restriking. In this case, destruction occurs from the matrix of FIGS. The evaluation conditions of the cutoff characteristics in the above-mentioned Examples and Comparative Examples are as follows.
【0027】直径30mm、厚さ5mmの円板状接点片
を、ディマンタブル形真空バルブに装着し、合成遮断試
験により遮断特性の評価を行った。回路条件は、回復電
圧10KV一定とし、遮断電流を増加させた。A disk-shaped contact piece having a diameter of 30 mm and a thickness of 5 mm was mounted on a demountable vacuum valve, and the breaking characteristics were evaluated by a synthetic breaking test. The circuit conditions were such that the recovery voltage was constant at 10 KV and the cutoff current was increased.
【0028】表1には比較例2を100%とし、その相
対値を示し各条件2本の平均値を示している。また、接
点の装着に際しては、ベーキング加熱(450℃、30
分)のみを行い、ろう材の使用ならびにこれに伴う加熱
処理は行なわなかった。前記した実施例および比較例に
おける、再点弧特性の評価条件は次の通りである。Table 1 shows the relative value of Comparative Example 2 as 100%, and shows the average value of two conditions. When mounting the contacts, baking heating (450 ° C., 30 ° C.)
Min), but no brazing material was used and no heat treatment was performed. The evaluation conditions of the restriking characteristic in the above-described examples and comparative examples are as follows.
【0029】直径30mm、厚さ5mmの円板状接点片
を、ディマウンタブル形真空バルブに装着し、10KV
×500Aの回路を2000回遮断した時の再点弧発生
頻度を求めた(真空バルブ3本)。接点の装着に際して
は、ベーキング加熱(450℃、30分)のみ行ない、
ろう材の使用ならびにこれに伴う加熱は行なわなかっ
た。A disk-shaped contact piece having a diameter of 30 mm and a thickness of 5 mm was mounted on a demountable vacuum valve,
The frequency of occurrence of restriking when the circuit of × 500 A was interrupted 2,000 times was obtained (three vacuum valves). When mounting the contacts, only baking heating (450 ° C, 30 minutes) is performed.
No brazing material was used and no accompanying heating was performed.
【0030】[0030]
【発明の効果】本発明の接点は、機械的強度の非常に大
きい極微細組識を接点表面に有しているため再点弧発生
確率を小さく維持すると共に、遮断特性が向上する。し
たがって、本発明によれば、信頼性の一層向上した真空
バルブ用接点の製造方法を提供することができる。Since the contact of the present invention has an extremely fine structure having extremely high mechanical strength on the contact surface, the probability of occurrence of restriking is kept small and the breaking characteristics are improved. Therefore, according to the present invention, it is possible to provide a method of manufacturing a contact for a vacuum valve with further improved reliability.
【図1】本発明の実施例のCu−Cr積層体の配置を示
す断面図。FIG. 1 is a sectional view showing an arrangement of a Cu—Cr laminate according to an embodiment of the present invention.
【図2】本発明の実施例のCu−Cr成形体の配置を示
す断面図。FIG. 2 is a cross-sectional view showing an arrangement of a Cu—Cr compact according to an embodiment of the present invention.
【図3】本発明の実施例のCu−Cr合金体の配置を示
す断面図。FIG. 3 is a cross-sectional view showing an arrangement of a Cu—Cr alloy according to an embodiment of the present invention.
【図4】本発明の実施例のレーザ発振装置の配置図。FIG. 4 is a layout diagram of a laser oscillation device according to an embodiment of the present invention.
【図5】本発明の真空バルブ用接点の断面図。FIG. 5 is a cross-sectional view of the vacuum valve contact of the present invention.
【図6】本発明の真空バルブ用接点の表面極微細組識層
の拡大断面図。FIG. 6 is an enlarged cross-sectional view of a surface microstructure layer of the vacuum valve contact of the present invention.
【図7】真空バルブの構成を示す断面図。FIG. 7 is a sectional view showing the configuration of a vacuum valve.
【図8】従来のCu−Cr接点の断面図。FIG. 8 is a sectional view of a conventional Cu—Cr contact.
【図9】従来の微細層を有する真空バルブ用接点の断面
図。FIG. 9 is a cross-sectional view of a conventional vacuum valve contact having a fine layer.
【図10】図9の拡大断面図。FIG. 10 is an enlarged sectional view of FIG. 9;
30…Cu−Cr積層体 33…Cu−Cr基体 34…レーザ発振装置 50…Cu−Cr成形体 60…Cu−Cr合金体 DESCRIPTION OF SYMBOLS 30 ... Cu-Cr laminated body 33 ... Cu-Cr base 34 ... Laser oscillation device 50 ... Cu-Cr molded body 60 ... Cu-Cr alloy body
───────────────────────────────────────────────────── フロントページの続き (72)発明者 玉川 徹 神奈川県川崎市川崎区浮島町2番1号 株式会社東芝 浜川崎工場内 (72)発明者 本間 三孝 東京都府中市東芝町1番地 株式会社東 芝 府中工場内 (72)発明者 木村 盛一郎 東京都府中市東芝町1番地 株式会社東 芝 府中工場内 (56)参考文献 特開 平2−226623(JP,A) 特開 昭59−143031(JP,A) 特開 昭54−56178(JP,A) 特開 昭63−141226(JP,A) 特開 平1−258330(JP,A) 特開 平3−254020(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01H 33/66 H01H 11/04 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toru Tamagawa 2-1 Ukishima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Toshiba Corporation Hamakawasaki Plant (72) Inventor Mitaka Honma 1-Toshiba-cho, Fuchu-shi, Tokyo East Shiba Fuchu Plant (72) Inventor Seichiro Kimura 1 Toshiba-cho, Fuchu-shi, Tokyo Toshiba Fuchu Plant Co., Ltd. (56) References JP-A-2-226623 (JP, A) JP-A-59-143031 ( JP, A) JP-A-54-56178 (JP, A) JP-A-63-141226 (JP, A) JP-A-1-258330 (JP, A) JP-A-3-254020 (JP, A) (58) ) Surveyed field (Int.Cl. 7 , DB name) H01H 33/66 H01H 11/04
Claims (1)
を取り囲むCu相とで構成された第1の相と、直径0.
1〜5μmの微細Cr粒子とそれを取り囲むCu相とで
構成された第2の相とから成り、接点表面に厚さが少な
くとも10μmの第2の相を生成するに充分な量の高エ
ネルギー密度を有するレーザを照射して、前記第2の相
中の微細Cr粒子中に該Cr粒子径のほぼ1/2〜1/
100の直径を有するCr粒子が高度に分散した接点の
製造方法において、前記接点表面に、最大4.5J/パ
ルスのレーザ光をオーバーラップ率50%以上として照
射することを特徴とする真空バルブ用接点の製造方法。1. A first phase composed of Cr particles having a diameter of 10 to 150 μm, a Cu phase surrounding the particles, and a first phase having a diameter of 0.1 μm.
It consists of a second phase composed of fine Cr particles of 1 to 5 μm and a Cu phase surrounding it, and the contact surface has a small thickness.
A high energy sufficient to produce a second phase of at least 10 μm.
The second phase is irradiated by irradiating a laser having an energy density.
In the fine Cr particles in the middle, approximately 1/2 to 1/1 /
Of highly dispersed contacts with Cr particles having a diameter of 100
In the manufacturing method, a maximum of 4.5 J / p
Lus laser light with an overlap ratio of 50% or more.
Method of manufacturing a contact for a vacuum valve, characterized in that the morphism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3078743A JP3028968B2 (en) | 1991-04-11 | 1991-04-11 | Method of manufacturing contacts for vacuum valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3078743A JP3028968B2 (en) | 1991-04-11 | 1991-04-11 | Method of manufacturing contacts for vacuum valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04312723A JPH04312723A (en) | 1992-11-04 |
JP3028968B2 true JP3028968B2 (en) | 2000-04-04 |
Family
ID=13670371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3078743A Expired - Fee Related JP3028968B2 (en) | 1991-04-11 | 1991-04-11 | Method of manufacturing contacts for vacuum valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3028968B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101834077A (en) * | 2010-04-16 | 2010-09-15 | 河南理工大学 | A method of manufacturing pure copper/copper-chromium alloy composite contact material |
CN109280867A (en) * | 2018-10-29 | 2019-01-29 | 中国科学院力学研究所 | A method for uniform dispersion of Cr phase particles in the surface layer of a Cu-Cr alloy substrate |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009158216A (en) | 2007-12-26 | 2009-07-16 | Japan Ae Power Systems Corp | Electrode contact member of vacuum circuit breaker and method for producing the same |
JP6018366B2 (en) * | 2011-06-24 | 2016-11-02 | 株式会社東芝 | Manufacturing method of vacuum valve |
CN105821361B (en) * | 2016-03-18 | 2017-12-05 | 中国科学院力学研究所 | A kind of method for adjusting movement locus when cu cr contact material surface laser is modified |
CN105839037B (en) * | 2016-03-18 | 2018-01-16 | 中国科学院力学研究所 | A kind of laser surface modification method of cu cr contact material |
CN109252118B (en) * | 2018-10-29 | 2019-10-01 | 中国科学院力学研究所 | A kind of preparation method of Cu-Cr alloy surface nanostructure |
-
1991
- 1991-04-11 JP JP3078743A patent/JP3028968B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101834077A (en) * | 2010-04-16 | 2010-09-15 | 河南理工大学 | A method of manufacturing pure copper/copper-chromium alloy composite contact material |
CN101834077B (en) * | 2010-04-16 | 2012-02-01 | 河南理工大学 | A method of manufacturing pure copper/copper-chromium alloy composite contact material |
CN109280867A (en) * | 2018-10-29 | 2019-01-29 | 中国科学院力学研究所 | A method for uniform dispersion of Cr phase particles in the surface layer of a Cu-Cr alloy substrate |
Also Published As
Publication number | Publication date |
---|---|
JPH04312723A (en) | 1992-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100270267A1 (en) | Electrode contact member of vacuum circuit breakers and a method of manufacturing the same | |
JP4455066B2 (en) | Electrical contact member, method of manufacturing the same, vacuum valve and vacuum circuit breaker using the same | |
JP3028968B2 (en) | Method of manufacturing contacts for vacuum valve | |
US3821505A (en) | Vacuum type electric circuit interrupting devices | |
KR890002304B1 (en) | Manufacturing Method of Contact Electrode of Vacuum Interater | |
JP6983370B1 (en) | Manufacturing method of electrical contacts | |
JPH09161628A (en) | Contact material for vacuum valve and manufacture thereof | |
JP6669327B1 (en) | Electrical contacts, vacuum valves with electrical contacts | |
JP2695902B2 (en) | Contact for vacuum valve | |
JP2653461B2 (en) | Manufacturing method of contact material for vacuum valve | |
JPH09171746A (en) | Vacuum circuit breaker, vacuum valve and electric contact used therefor, and manufacturing method | |
JP3405761B2 (en) | Vacuum circuit breaker and manufacturing method thereof | |
JP2005150032A (en) | Manufacturing method for contact for vacuum bulb | |
JP3106598B2 (en) | Manufacturing method of electrode material | |
JPH09245589A (en) | Vacuum valve | |
JPH0510782B2 (en) | ||
JP3909804B2 (en) | Contact material for vacuum valves | |
JP2004211173A (en) | Manufacturing method of contact material for vacuum valve | |
JPH056292B2 (en) | ||
JPH08111131A (en) | Manufacture of contact for vacuum circuit breaker | |
JPS5975520A (en) | Method of producing contactor for vacuum breaker | |
JP3443516B2 (en) | Manufacturing method of contact material for vacuum valve | |
Russell et al. | Electron-beam technology in switch contacts | |
JPS6276224A (en) | Contact for vacuum breaker | |
JPH0474810B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080204 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090204 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |