Nothing Special   »   [go: up one dir, main page]

JP3013951B2 - Acrylic resin manufacturing method - Google Patents

Acrylic resin manufacturing method

Info

Publication number
JP3013951B2
JP3013951B2 JP4180240A JP18024092A JP3013951B2 JP 3013951 B2 JP3013951 B2 JP 3013951B2 JP 4180240 A JP4180240 A JP 4180240A JP 18024092 A JP18024092 A JP 18024092A JP 3013951 B2 JP3013951 B2 JP 3013951B2
Authority
JP
Japan
Prior art keywords
polymerization
temperature
polymerization reactor
acrylic resin
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4180240A
Other languages
Japanese (ja)
Other versions
JPH05331212A (en
Inventor
昌男 西山
和夫 図司
稔弘 稲池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP4180240A priority Critical patent/JP3013951B2/en
Publication of JPH05331212A publication Critical patent/JPH05331212A/en
Application granted granted Critical
Publication of JP3013951B2 publication Critical patent/JP3013951B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/14Methyl esters, e.g. methyl (meth)acrylate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、透明性に優れたプラス
チック材料として有用な、アクリル系樹脂の製造法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an acrylic resin useful as a plastic material having excellent transparency.

【0002】[0002]

【従来の技術及びその問題点】アクリル系樹脂は、透明
性、耐光性、機械的強度、成形性及び加工性に優れたプ
ラスチックで、看板、照明器具、車両用部品及び各種装
飾品等に使用されている。近年、レンズ、光ディスク、
光繊維等の光学分野での用途が拡大しており、分子量分
布が狭く、光学的性質に優れた高品質のアクリル系樹脂
を製造する方法が求められている。
2. Description of the Related Art Acrylic resin is a plastic excellent in transparency, light resistance, mechanical strength, moldability and workability, and is used for signboards, lighting equipment, vehicle parts and various decorative articles. Have been. In recent years, lenses, optical disks,
Applications in the optical field such as optical fibers are expanding, and there is a need for a method for producing a high-quality acrylic resin having a narrow molecular weight distribution and excellent optical properties.

【0003】従来、成形材料に使用するアクリル系樹脂
を工業的に製造する方法として、懸濁重合法、塊状重合
法、溶液重合法等が知られている。懸濁重合法は、重合
反応の制御が容易であるため、比較的分子量分布の狭い
アクリル系樹脂を製造することができるが、製造時に使
用する分散剤或いは分散安定剤等が樹脂中に残存し、光
学的性質の低下をきたすこと、バッチ生産が主で製造工
程が煩雑となり、生産性が低いこと、大量の排水処理を
必要とすること等の欠点がある。
Conventionally, suspension polymerization, bulk polymerization, solution polymerization, and the like have been known as methods for industrially producing an acrylic resin used for a molding material. The suspension polymerization method can produce an acrylic resin having a relatively narrow molecular weight distribution because the polymerization reaction is easily controlled, but the dispersant or dispersion stabilizer used in the production remains in the resin. However, there are drawbacks such as a decrease in optical properties, a batch production is mainly performed, the production process is complicated, productivity is low, and a large amount of wastewater treatment is required.

【0004】塊状重合法は、分散剤や分散安定剤を使用
しないこと、大量の排水処理が不要なこと、生産性の良
い連続化が比較的容易なこと等、懸濁重合法に比べて有
利な点がある。しかし、モノマー転化率(以下、転化率
という)が高くなると、一般にゲル効果として知られて
いる、重合速度の加速現象が起こり、重合反応時に粘度
及び温度が急激に上昇するため、重合熱の除去が困難と
なり、工業的規模では重合反応の制御が殆どできないこ
と、転化率を高くすることが難しいこと、生成するアク
リル系樹脂の分子量分布が広く、又、オリゴマーやゲル
化物等の不純物が副生し易くなり、光学的性質が低下す
る等の欠点がある。
[0004] The bulk polymerization method is advantageous over the suspension polymerization method in that it does not use a dispersant or a dispersion stabilizer, does not require a large amount of wastewater treatment, and has relatively easy continuity with good productivity. There is a point. However, when the monomer conversion rate (hereinafter, referred to as the conversion rate) increases, the phenomenon of acceleration of the polymerization rate, which is generally known as the gel effect, occurs, and the viscosity and the temperature rise rapidly during the polymerization reaction, so that the heat of polymerization is removed. It is difficult to control the polymerization reaction on an industrial scale, it is difficult to increase the conversion rate, the molecular weight distribution of the acrylic resin produced is wide, and impurities such as oligomers and gelled products are produced as by-products. Disadvantages, such as poor optical properties.

【0005】塊状重合法のこれら欠点を改良する目的
で、特開昭49−37993号公報には、転化率が50
〜80%に達した後、トルエン等の粘度低減剤とラジカ
ル重合開始剤を追加添加し、転化率を85%以上にする
方法が提案されている。しかし、塊状重合法によって転
化率が50〜80%に達するまで重合反応を制御するこ
とは、通常、非常に困難であり、ラジカル重合開始剤の
使用量や重合温度を特定範囲に限定するなど、製造可能
条件範囲が非常に狭く、工業的規模で実施することは極
めて難しい。又、粘度低減剤の添加やラジカル重合開始
剤の追加添加は重合温度等の重合条件を変化させ、得ら
れるアクリル系樹脂の分子量分布が広くなり、光学的性
質が低下する等の欠点がある。
In order to improve these disadvantages of the bulk polymerization method, Japanese Patent Application Laid-Open No. 49-37993 discloses a conversion rate of 50%.
After reaching ~ 80%, a method has been proposed in which a viscosity reducing agent such as toluene and a radical polymerization initiator are additionally added to increase the conversion to 85% or more. However, it is usually very difficult to control the polymerization reaction until the conversion reaches 50 to 80% by the bulk polymerization method, and the amount of the radical polymerization initiator and the polymerization temperature are limited to specific ranges. The range of manufacturable conditions is very narrow and it is extremely difficult to implement on an industrial scale. In addition, the addition of a viscosity reducing agent or the addition of a radical polymerization initiator changes the polymerization conditions such as the polymerization temperature, and has a disadvantage that the molecular weight distribution of the obtained acrylic resin is widened and the optical properties are lowered.

【0006】また、特開昭63−77909号公報に
は、メチルメタクリレート、ビニル芳香族、無水マレイ
ン酸及びアルキルアクリレートからなるモノマー混合物
を溶剤の存在下又は不存在下に転化率60%にまで重合
した後、約15〜33重量%の溶剤を加え、転化率80
%以上にまで重合する製造方法が提案されている。しか
し、通常、溶剤の不存在下でゲル効果を抑制して、転化
率60%まで重合反応を制御することは難しい。又、転
化率60%以上では重合反応液の粘度が非常に高く、溶
剤と均一に混合することが難しく、重合温度が不均一に
なり、得られるアクリル系樹脂の分子量分布が広くなる
等の欠点がある。
JP-A-63-77909 discloses that a monomer mixture comprising methyl methacrylate, vinyl aromatic, maleic anhydride and alkyl acrylate is polymerized to a conversion of 60% in the presence or absence of a solvent. After that, about 15 to 33% by weight of a solvent is added and the conversion is 80%.
% Has been proposed. However, it is usually difficult to control the polymerization reaction up to a conversion of 60% by suppressing the gel effect in the absence of a solvent. On the other hand, if the conversion is 60% or more, the viscosity of the polymerization reaction solution is extremely high, it is difficult to mix the solvent with the solvent uniformly, the polymerization temperature becomes uneven, and the molecular weight distribution of the obtained acrylic resin becomes wide. There is.

【0007】溶液重合法は溶剤の使用量が少ないとゲル
化が起こり、得られるアクリル系樹脂の分子量分布が広
くなるが、モノマーと同等量以上の溶剤を使用した場合
は、重合反応時の温度調節や分子量調節は比較的容易で
あり、分散剤等を使用しないため光学的性質が良く、分
子量分布の狭い樹脂の製造が可能である。しかし、良く
知られているように、多量の溶剤の使用は重合速度、特
に、重合初期の重合速度が遅く、生産性が悪くなること
や高分子量の重合体を得ることが難しいこと等の欠点が
ある。
In the solution polymerization method, gelation occurs when the amount of the solvent used is small, and the molecular weight distribution of the obtained acrylic resin is widened. However, when the solvent is used in an amount equal to or more than the monomer, the temperature during the polymerization reaction is increased. Adjustment and molecular weight adjustment are relatively easy, and since no dispersant or the like is used, optical properties are good and a resin having a narrow molecular weight distribution can be produced. However, as is well known, the use of a large amount of a solvent has a disadvantage in that the polymerization rate, particularly the polymerization rate in the early stage of the polymerization, is low, so that productivity is deteriorated and it is difficult to obtain a polymer having a high molecular weight. There is.

【0008】[0008]

【発明が解決しようとしている課題】本発明は、アクリ
ル系樹脂の重合に係る従来技術の欠点を排除し、重合反
応の制御が容易で、分子量分布の狭い、光学的性質の優
れたアクリル系樹脂を製造する方法を提供することを課
題とする。
DISCLOSURE OF THE INVENTION The present invention eliminates the drawbacks of the prior art relating to the polymerization of acrylic resins, makes it easy to control the polymerization reaction, has a narrow molecular weight distribution, and has excellent optical properties. It is an object of the present invention to provide a method for producing a.

【0009】本発明は、2個以上の重合反応器を使用し
て、70重量%〜95重量%のメチルメタクリレート
と、共重合可能な他のビニル化合物とからなるモノマー
を、ラジカル重合開始剤の作用で重合してアクリル系樹
脂を製造するにあたり、(1)第1重合反応器にモノマ
ーのみを投入し、モノマーの転化率が10〜35%の範
囲に重合し、生成した重合体含有混合物を最終重合反応
器を含む後段の重合反応器へ移すこと、(2)後段の重
合反応器で、第1重合反応器から移された重合体含有混
合物と溶剤とを重量比で30〜90/70〜10の割合
で混合すること、(3)後段の重合反応器でモノマーの
転化率が80%以上になるまで重合すること、(4)第
1及び後段の重合反応器での重合温度を同一とし、温度
変化を±10℃の範囲内に維持すること、(5)最終の
重合反応器で得た重合体混合物から溶剤、未反応モノマ
ー及び低分子量重合体を除去すること、を特徴とするア
クリル系樹脂の製造法に関する。
According to the present invention, a monomer comprising 70% by weight to 95% by weight of methyl methacrylate and another copolymerizable vinyl compound is converted into a radical polymerization initiator by using two or more polymerization reactors. In producing acrylic resin by polymerization by the action, (1) monomer is added to the first polymerization reactor.
And the resulting polymer-containing mixture is transferred to a subsequent polymerization reactor including a final polymerization reactor, and (2) a subsequent polymerization reaction Mixing the solvent and the polymer-containing mixture transferred from the first polymerization reactor at a ratio of 30 to 90/70 to 10 in a reactor, and (3) a conversion ratio of the monomer in the latter polymerization reactor. (4) equalizing the polymerization temperature in the first and second polymerization reactors and maintaining the temperature change within a range of ± 10 ° C., and (5) final polymerization. The present invention relates to a method for producing an acrylic resin, comprising removing a solvent, an unreacted monomer and a low-molecular-weight polymer from a polymer mixture obtained in a reactor.

【0010】メチルメタクリレートと共重合可能な他の
ビニル化合物としては、メチルアクリレート、エチルア
クリレート、ブチルアクリレート等のアルキルアクリレ
ート類、エチルメタクリレート、ブチルメタクリレー
ト、ラウリルメタクリレート等のアルキルメタクリレー
ト類、アクリロニトリル、メタクリロニトリル、α−ク
ロロアクリロニトリル等の不飽和ニトリル類、スチレ
ン、α−メチルスチレン等のスチレン系化合物類、アク
リルアミド、メタクリロアミド、アクリル酸、メタクリ
ル酸、塩化ビニル、塩化ビニリデン等が挙げられる。こ
れらは1種であってもよいし2種以上を混合して使用し
てもよい。
Other vinyl compounds copolymerizable with methyl methacrylate include alkyl acrylates such as methyl acrylate, ethyl acrylate and butyl acrylate, alkyl methacrylates such as ethyl methacrylate, butyl methacrylate and lauryl methacrylate, acrylonitrile and methacrylonitrile. And unsaturated nitriles such as α-chloroacrylonitrile, styrene compounds such as styrene and α-methylstyrene, acrylamide, methacrylamide, acrylic acid, methacrylic acid, vinyl chloride, vinylidene chloride and the like. These may be used alone or in combination of two or more.

【0011】メチルメタクリレートはJIS K671
6に記載の製品品質を有し、溶存酸素を重合反応に影響
を与えない量、通常、100ppm以下にまで除去した
ものが使用できる。共重合可能な他のビニル化合物はメ
チルメタクリレートに準ずる品質のものであればよい。
メチルメタクリレートの使用量が70重量%未満の場合
は透明性、機械的強度等が低下し、アクリル系樹脂本来
の特性が失われるため好ましくない。
Methyl methacrylate is JIS K671
A product having the product quality described in No. 6 and removing dissolved oxygen to an amount that does not affect the polymerization reaction, usually to 100 ppm or less can be used. The other copolymerizable vinyl compound may be of a quality equivalent to methyl methacrylate.
If the amount of methyl methacrylate is less than 70% by weight, the transparency, mechanical strength and the like are lowered, and the inherent properties of the acrylic resin are lost, which is not preferable.

【0012】ラジカル重合開始剤としては有機過酸化物
或いはアゾ系化合物等を使用することができる。有機過
酸化物としては、ラウロイルパーオキサイド、ベンゾイ
ルパーオキサイド等のジアシルパーオキサイド類、1,
1−ビス(t−ブチルパーオキシ)シクロヘキサン、
1,1−ビス(t−ブチルパーオキシ)3,3,5−ト
リメチルシクロヘキサン等のパーオキシケタール類、ジ
イソプロピルパーオキシジカーボネート、ジ−2−エチ
ルヘキシルパーオキシジカーボネート等のパーオキシジ
カーボネート類、t−ブチルパーオキシ−2−エチルヘ
キサノエート、t−ブチルパーオキシイソブチレート等
のパーオキシエステル類等が挙げられ、アゾ系化合物と
しては、アゾビスイソブチロニトリル、1,1−アゾビ
スシクロヘキサン−t−カーボニトリル等が挙げられ
る。これらは1種であってもよいし、2種以上を混合し
て使用してもよい。ラジカル重合開始剤は、モノマー1
00重量部当たり0.0005〜0.5重量部の割合で
使用される。
As the radical polymerization initiator, an organic peroxide or an azo compound can be used. Examples of the organic peroxide include diacyl peroxides such as lauroyl peroxide and benzoyl peroxide;
1-bis (t-butylperoxy) cyclohexane,
Peroxyketals such as 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, peroxydicarbonates such as diisopropylperoxydicarbonate and di-2-ethylhexylperoxydicarbonate; Examples include peroxyesters such as t-butylperoxy-2-ethylhexanoate and t-butylperoxyisobutyrate. Examples of the azo compound include azobisisobutyronitrile and 1,1-azo Biscyclohexane-t-carbonitrile and the like can be mentioned. These may be used alone or in combination of two or more. The radical polymerization initiator is monomer 1
It is used in a ratio of 0.0005 to 0.5 parts by weight per 00 parts by weight.

【0013】溶剤はモノマー及び生成するアクリル系樹
脂に対して溶解性を有し、重合反応を実質的に阻害しな
いもので、沸点が40〜225℃程度、好ましくは60
〜150℃程度の範囲にあるものが使用できる。具体的
には、テトラヒドロフラン、メチルエチルケトン、ヘキ
サン、ヘプタン、オクタン、ベンゼン、メチルイソブチ
レート、トルエン、キシレン、シクロヘキサン、シクロ
ドデカン、イソオクタン、デカリン、ジメチルスルホキ
シド、エチレンカーボネート、ノルマルブタノール等を
例示できる。これらは1種であってもよいし、2種以上
を混合して使用してもよい。これら溶剤は、溶存酸素を
重合反応に影響を与えない量にまで除去してから使用さ
れる。
The solvent has a solubility in the monomer and the acrylic resin to be formed and does not substantially inhibit the polymerization reaction, and has a boiling point of about 40 to 225 ° C., preferably 60 to 225 ° C.
What is in the range of about 150 ° C. can be used. Specific examples include tetrahydrofuran, methyl ethyl ketone, hexane, heptane, octane, benzene, methyl isobutyrate, toluene, xylene, cyclohexane, cyclododecane, isooctane, decalin, dimethyl sulfoxide, ethylene carbonate, and normal butanol. These may be used alone or in combination of two or more. These solvents are used after the dissolved oxygen is removed to an amount that does not affect the polymerization reaction.

【0014】これらの溶剤と第1重合反応器で生成した
重合体含有混合物は、重量比が(重合体含有混合物/溶
剤)30〜90/70〜10、好ましくは40〜80/
60〜20の範囲で後段の反応器に供給され均一に混合
される。溶剤の使用量が上記下限より少ないとゲル効果
により重合反応液の粘度が高くなり、重合反応の制御が
困難となるため好ましくない。逆に溶剤が上記上限より
多い場合は、重合反応の制御のし易さには差はないが、
製造した重合混合物から溶剤や未反応モノマー、低分子
量重合体等の除去に長時間を要し、生産性が悪くなるた
め好ましくない。
The solvent and the polymer-containing mixture formed in the first polymerization reactor have a weight ratio of (polymer-containing mixture / solvent) of 30 to 90/70 to 10, preferably 40 to 80/70.
In the range of 60 to 20, the mixture is supplied to the subsequent reactor and uniformly mixed. If the amount of the solvent is less than the above lower limit, the viscosity of the polymerization reaction solution becomes high due to the gel effect, and it becomes difficult to control the polymerization reaction, which is not preferable. Conversely, if the solvent is more than the upper limit, there is no difference in the ease of controlling the polymerization reaction,
It takes a long time to remove the solvent, unreacted monomer, low molecular weight polymer, and the like from the produced polymerization mixture, which is not preferable because productivity is deteriorated.

【0015】本発明では、第1重合反応器で重合体への
転化率を10〜35%、好ましくは15〜30%程度と
し、後段の重合反応器で溶剤を加え、高転化率まで重合
させるため、従来の溶液重合法とは異なり、第1重合反
応器での重合速度は速く、ゲル効果が生じ易い後段の重
合反応器の高転化率域では、溶剤の作用により重合反応
液の粘度が低いままで維持でき、重合発熱による温度変
化も小さいため、重合反応の制御は容易であり、得られ
るアクリル系樹脂の分子量分布は狭く、低分子量重合体
等の不純物の生成も少なくなる。又、第1重合反応器で
の転化率が35%以下であるため、重合反応液の粘度は
低く、後段の重合反応器での溶剤との混合は容易で重合
条件に殆ど影響を与えない。更に、重合反応液の粘度が
低いため、重合反応器に高価な特殊設備を必要としな
い。
In the present invention, the conversion to a polymer is made 10 to 35%, preferably about 15 to 30% in the first polymerization reactor, and a solvent is added in the latter polymerization reactor to polymerize to a high conversion. Therefore, unlike the conventional solution polymerization method, the polymerization rate in the first polymerization reactor is high, and the viscosity of the polymerization reaction solution is increased by the action of the solvent in the high conversion region of the subsequent polymerization reactor where the gel effect is easily generated. Since it can be maintained at a low level and the temperature change due to polymerization heat is small, the control of the polymerization reaction is easy, the molecular weight distribution of the obtained acrylic resin is narrow, and the generation of impurities such as low molecular weight polymers is reduced. Further, since the conversion in the first polymerization reactor is 35% or less, the viscosity of the polymerization reaction solution is low, and the mixing with the solvent in the subsequent polymerization reactor is easy and has little effect on the polymerization conditions. Furthermore, since the viscosity of the polymerization reaction solution is low, expensive special equipment is not required for the polymerization reactor.

【0016】第1重合反応器での転化率が35%を越え
るとゲル効果を生じ易く、重合反応の制御が困難とな
る。後段の重合反応器での転化率が80%未満では、未
反応モノマーが多くなり、回収装置や操作が煩雑となり
好ましくない。従って、後段の重合反応器では転化率を
可能な限り高めることが好ましい。重合温度は第1段及
び後段の重合反応器何れに於いても、60〜180℃、
好ましくは80〜150℃の範囲が好適である。この
際、各重合反応器の重合温度は同一に設定され、温度の
変動は±10℃の範囲内、好ましくは±5℃の範囲内に
維持して重合させる。重合温度が60℃以下では重合速
度が遅く、又、多くのラジカル重合開始剤を必要とし経
済的でない。一方、180℃を越える温度では低分子量
重合体等の不純物の生成量が増加し好ましくない。又、
温度変化が±10℃以上になると重合速度の制御が困難
となり、分子量分布が広くなるので好ましくない。
If the conversion in the first polymerization reactor exceeds 35%, a gel effect is liable to occur, and it becomes difficult to control the polymerization reaction. If the conversion in the subsequent polymerization reactor is less than 80%, the amount of unreacted monomer increases, and the recovery device and operation become complicated, which is not preferable. Therefore, it is preferable to increase the conversion in the latter polymerization reactor as much as possible. The polymerization temperature was 60 to 180 ° C. in both the first and second polymerization reactors.
Preferably, the range of 80 to 150 ° C is suitable. At this time, the polymerization temperature in each polymerization reactor is set to be the same, and the polymerization is performed while maintaining the temperature fluctuation within a range of ± 10 ° C., preferably within a range of ± 5 ° C. If the polymerization temperature is lower than 60 ° C., the polymerization rate is low and a large amount of radical polymerization initiator is required, which is not economical. On the other hand, if the temperature exceeds 180 ° C., the amount of impurities such as a low molecular weight polymer increases, which is not preferable. or,
If the temperature change exceeds ± 10 ° C., it is not preferable because it becomes difficult to control the polymerization rate and the molecular weight distribution becomes wide.

【0017】又、本発明では生成するアクリル系樹脂の
分子量調節、熱安定性の向上等を目的としてn−ブチル
メルカプタン、イソブチルメルカプタン、n−オクチル
メルカプタン、ラウリルメルカプタン等の各種メルカプ
タン或いはオクチルチオグリコレート等のチオグリコー
ル酸エステル類等の連鎖移動剤を使用することができ
る。連鎖移動剤の使用量は混合物100重量部当たり
0.05〜0.8重量部の範囲が好ましい。更に、本発
明で使用する原料混合溶液は反応開始時或いは反応途中
で重合反応を阻害することのない添加剤、例えば、ジオ
クチルフタレート等の可塑剤、ステアリルアルコール等
の潤滑剤、アントラキノン・レッド等の染料、フタロシ
アニン・ブルー、二酸化チタン等の顔料、ヒンダードフ
ェノール等の酸化防止剤或いはレゾルシノール系化合
物、ベンゾトリアジン、ベンゾトリアゾール等の紫外線
防止剤等を添加することもできる。
In the present invention, various mercaptans such as n-butyl mercaptan, isobutyl mercaptan, n-octyl mercaptan and lauryl mercaptan, or octyl thioglycolate are used for the purpose of controlling the molecular weight of the acrylic resin to be formed and improving the thermal stability. And other chain transfer agents such as thioglycolic acid esters. The use amount of the chain transfer agent is preferably in the range of 0.05 to 0.8 parts by weight per 100 parts by weight of the mixture. Furthermore, the raw material mixed solution used in the present invention is an additive that does not inhibit the polymerization reaction at the start of the reaction or during the reaction, for example, a plasticizer such as dioctyl phthalate, a lubricant such as stearyl alcohol, and an anthraquinone red. Dyes, pigments such as phthalocyanine blue and titanium dioxide, antioxidants such as hindered phenol or resorcinol compounds, and ultraviolet inhibitors such as benzotriazine and benzotriazole can also be added.

【0018】本発明のアクリル系樹脂は2個乃至それ以
上の攪拌槽型重合反応器で製造できる。以下に本発明の
アクリル系樹脂の製造法の1例を重合反応器を2個用い
る図1に基づき詳述する。原料調整槽1で所定のメチル
メタクリレート或いはメチルメタクリレートと共重合可
能な他のビニル化合物からなるモノマー混合物、ラジカ
ル重合開始剤及び必要に応じて連鎖移動剤、各種の添加
剤からなる混合物を約20℃の温度で均一に混合する。
この混合物を第1の定量ポンプ2によって抜き出し、フ
ィルター3で径が0.2μm以上の塵埃を除去し、得ら
れた重合反応原液の温度を第1の加熱機4で60〜18
0℃、好ましくは80〜150℃の範囲に昇温し、同一
温度に温調してある第1重合反応器5に供給する。第1
重合反応器5で転化率10〜35%、好ましくは15〜
30%まで重合させる。転化率の変化は重合反応時の重
合反応原液の温度変化及び/又は粘度変化を測定するこ
とによって知ることができる。
The acrylic resin of the present invention can be produced in two or more stirred tank polymerization reactors. One example of the method for producing the acrylic resin of the present invention will be described in detail below with reference to FIG. 1 using two polymerization reactors. In the raw material adjusting tank 1, a mixture of a monomer mixture composed of a predetermined methyl methacrylate or another vinyl compound copolymerizable with methyl methacrylate, a radical polymerization initiator and, if necessary, a chain transfer agent and various additives is mixed at about 20 ° C. Mix uniformly at a temperature of.
The mixture is withdrawn by a first metering pump 2, dust having a diameter of 0.2 μm or more is removed by a filter 3, and the temperature of the resulting polymerization reaction solution is adjusted to 60 to 18 by a first heater 4.
The temperature is raised to 0 ° C., preferably 80 to 150 ° C., and supplied to the first polymerization reactor 5 which has been adjusted to the same temperature. First
The conversion rate in the polymerization reactor 5 is 10 to 35%, preferably 15 to 35%.
Polymerize to 30%. The change in the conversion can be known by measuring the temperature change and / or the viscosity change of the polymerization reaction solution during the polymerization reaction.

【0019】第1重合反応器5での重合反応終了後、生
成した重合体含有混合物及び沸点よりやや低い温度に加
熱した所定量の溶剤を、それぞれ第2の定量ポンプ7及
び溶剤用定量ポンプ8で第2重合反応器10に供給す
る。又、必要であれば追加の共重合可能なビニル化合物
や連鎖移動剤を追加原料用ライン11から同反応器に供
給する。第2重合反応器10へ供給する重合体含有混合
物及び溶剤の温度は第2の加熱機9で調節する。第2重
合反応器10での重合温度は第1重合反応器と同一とす
る。重合体含有混合物と溶剤はスタティックミキサー等
を用いて混合しながら第2重合反応器10に供給しても
よい。第2重合反応器10での添加率は80%以上、好
ましくは95%以上となるまで重合し、実質的にラジカ
ル重合開始剤の全量を消費する。重合反応液の温度は、
蒸発した溶剤が第2のコンデンサー12で凝縮され、第
2重合反応器10へ還流すること及び重合反応器のジャ
ケットによる温度調節とで制御され、±10℃、好まし
くは±5℃の範囲内に維持される。反応圧力は、第1段
及び後段の重合反応器共に、メチルメタクリレートの飽
和蒸気圧より高めにすることが好ましい。
After the completion of the polymerization reaction in the first polymerization reactor 5, the produced polymer-containing mixture and a predetermined amount of the solvent heated to a temperature slightly lower than the boiling point are supplied to a second metering pump 7 and a solvent metering pump 8, respectively. To the second polymerization reactor 10. If necessary, an additional copolymerizable vinyl compound or chain transfer agent is supplied to the reactor from the additional raw material line 11. The temperature of the polymer-containing mixture and the solvent supplied to the second polymerization reactor 10 are adjusted by the second heater 9. The polymerization temperature in the second polymerization reactor 10 is the same as in the first polymerization reactor. The polymer-containing mixture and the solvent may be supplied to the second polymerization reactor 10 while mixing using a static mixer or the like. Polymerization is performed until the addition ratio in the second polymerization reactor 10 becomes 80% or more, preferably 95% or more, and substantially the entire amount of the radical polymerization initiator is consumed. The temperature of the polymerization reaction solution is
The evaporated solvent is condensed in the second condenser 12 and controlled by the reflux to the second polymerization reactor 10 and the temperature control by the jacket of the polymerization reactor, within ± 10 ° C, preferably ± 5 ° C. Will be maintained. The reaction pressure in both the first and second polymerization reactors is preferably higher than the saturated vapor pressure of methyl methacrylate.

【0020】第2重合反応器10での重合反応が終了
後、生成した重合体含有混合物は第3の定量ポンプ13
により第3の加熱機14に送られ、同加熱機では可能な
限り短時間で220〜260℃程度の温度に昇温する。
この時の圧力は溶剤の飽和蒸気圧よりも高く設定し、加
熱機能の低下を防ぐ。昇温した重合体含有混合物は移液
ライン15の下部にあるニードルバルブを通じて脱気装
置16でフラッシュされ、温度220〜260℃、圧力
10〜150mmHgの条件で重合体含有混合物から溶
剤、未反応モノマー、低分子量重合体等が除去される。
温度が220℃以下ではフラッシュされた後のアクリル
系樹脂の温度が低下し、溶剤、低分子量重合体等の除去
が不充分となり好ましくない。又、270℃以上ではゲ
ル化物等が生成したり、アクリル系樹脂が熱分解により
劣化するので好ましくない。除去された溶剤、低分子量
重合体等は溶剤等除去ライン17を経てリサイクルライ
ンへ送られる。この脱気により、アクリル系樹脂中の溶
剤、低分子量重合体等の含有量は1重量%以下、好まし
くは0.1重量%以下とされ、重合体は脱気装置16の
下部から第4の定量ポンプ18で抜き出され、ペレタイ
ザー19によってペレットとされる。
After the completion of the polymerization reaction in the second polymerization reactor 10, the resulting polymer-containing mixture is supplied to a third metering pump 13
Is sent to the third heater 14, which raises the temperature to about 220 to 260 ° C. in as short a time as possible.
The pressure at this time is set higher than the saturated vapor pressure of the solvent to prevent a decrease in the heating function. The heated polymer-containing mixture is flushed by a deaerator 16 through a needle valve at the lower part of the liquid transfer line 15, and the solvent, unreacted monomer is removed from the polymer-containing mixture at a temperature of 220 to 260 ° C and a pressure of 10 to 150 mmHg. , Low molecular weight polymers and the like are removed.
If the temperature is 220 ° C. or lower, the temperature of the acrylic resin after flashing decreases, and the removal of the solvent, the low molecular weight polymer and the like becomes insufficient, which is not preferable. On the other hand, if the temperature is 270 ° C. or higher, a gelled substance or the like is generated, and the acrylic resin is deteriorated by thermal decomposition, which is not preferable. The removed solvent, low molecular weight polymer and the like are sent to a recycling line via a solvent etc. removal line 17. By this deaeration, the content of the solvent, the low molecular weight polymer and the like in the acrylic resin is reduced to 1% by weight or less, preferably 0.1% by weight or less. It is withdrawn by the metering pump 18 and pelletized by the pelletizer 19.

【0021】ここで、原料調整槽1と第1重合反応器3
は同一であってもよい。重合体含有混合物からの溶剤、
低分子量重合体等の除去は上記のフラッシュ型装置以外
に、高粘度用薄膜蒸発器(例えば、商品名”EXEV
A”、神鋼パンテック社製等)やベント付押出機を使用
してもよく、又、本発明の脱気装置とそれらを併用する
ことはより好ましい。ペレット化は脱気装置下部から溶
融したアクリル系樹脂を1軸或いは多軸の押出機に供給
して行うこともできる。本装置の原料調整槽、重合反応
器、ライン、定量ポンプはジャケットに熱媒や冷媒を通
すことにより全て温度調節が可能となっている。又、ア
クリル系樹脂混合物を移送するラインはできるだけ短
く、堆積物が発生しないように設計されている。原料調
整槽及び重合反応器は不活性ガスで充分に置換してから
使用する。以上、2個の重合反応器の例で説明したが、
本発明では3個以上の反応器を使用することもでき、
又、連続化して運転することも可能である。3個以上の
重合反応器を使用する場合、第2重合反応器以降の各重
合反応器での到達転化率を順次高く設定して運転され
る。
Here, the raw material adjusting tank 1 and the first polymerization reactor 3
May be the same. A solvent from the polymer-containing mixture,
The removal of the low molecular weight polymer or the like can be performed by a thin film evaporator for high viscosity (for example, trade name “EXEV”) besides the flash type device described above.
A ″, manufactured by Shinko Pantech Co., Ltd.) or an extruder with a vent may be used, and it is more preferable to use them together with the deaerator of the present invention. Acrylic resin can be supplied to a single-screw or multi-screw extruder.The raw material adjustment tank, polymerization reactor, line and metering pump of this device are all temperature-controlled by passing a heating medium or refrigerant through the jacket. In addition, the line for transferring the acrylic resin mixture is designed to be as short as possible so that no sediment is generated.The raw material adjusting tank and the polymerization reactor are sufficiently replaced with an inert gas. As described above, the example using two polymerization reactors has been described.
In the present invention, three or more reactors can be used,
It is also possible to operate continuously. When three or more polymerization reactors are used, the operation is carried out by setting the attained conversion in each polymerization reactor after the second polymerization reactor to be sequentially higher.

【0022】[0022]

【実施例】以下に実施例、比較例によって本発明を更に
詳しく説明する。実施例のモノマー転化率、アクリル系
樹脂の全光線透過率及び分子量、分子量分布の測定は下
記の方法で行った。 (1)モノマー転化率 第1及び第2段の重合反応器より重合体含有混合物5〜
10gを試料として試験管に取り、液体酸素で冷却す
る。試料重量を測定した後、試料をクロロホルムに完全
に溶解し、その溶液を攪拌下、試料重量の約20倍量の
メタノール中に流し込みアクリル系樹脂を析出させる。
濾別によりアクリル系樹脂を分離し、約60℃で16時
間減圧乾燥した後、得られたアクリル系樹脂の重量を測
定する。転化率は乾燥後のアクリル系樹脂の重量と試料
重量との比から求めた。尚、後段の重合反応器の重合体
含有混合物中の溶剤含有量はガスクロマトグラムにより
定量し、算出した。 (2)全光線透過率 製造したアクリル系樹脂を射出成形(樹脂温度230
℃、射出圧力750Kgf/cm)により100mm
×100mm×3mm(厚さ)の板状体に成形した試料
を用いてASTM D1003に従って測定する。 (3)分子量、分子量分布 GPC装置(東ソー製HLC−8020型、カラムはS
hodex KF−80M)を使用し、製造したアクリ
ル系樹脂0.3gをテトラヒドロフラン100mlに溶
解した試料を測定し、標準ポリメチルメタクリレートで
作成した検量線に基づき数平均分子量、重量平均分子量
及び分子量分布を求める。
The present invention will be described in more detail with reference to the following examples and comparative examples. The following methods were used to measure the monomer conversion, total light transmittance, molecular weight, and molecular weight distribution of the acrylic resin in the examples. (1) Monomer conversion ratio The polymer-containing mixture 5 from the first and second polymerization reactors was used.
10 g is taken as a sample in a test tube and cooled with liquid oxygen. After measuring the weight of the sample, the sample is completely dissolved in chloroform, and the solution is poured into methanol of about 20 times the weight of the sample with stirring to precipitate the acrylic resin.
The acrylic resin is separated by filtration, dried under reduced pressure at about 60 ° C. for 16 hours, and the weight of the obtained acrylic resin is measured. The conversion was determined from the ratio of the weight of the acrylic resin after drying to the weight of the sample. The solvent content in the polymer-containing mixture in the latter polymerization reactor was determined by gas chromatogram and calculated. (2) Total light transmittance Injection molding of the produced acrylic resin (resin temperature 230
° C, injection pressure 750 Kgf / cm 2 )
The measurement is performed according to ASTM D1003 using a sample molded into a plate having a size of 100 mm x 3 mm (thickness). (3) Molecular weight, molecular weight distribution GPC apparatus (Tosoh HLC-8020 type, column is S
(Hodex KF-80M), a sample prepared by dissolving 0.3 g of the produced acrylic resin in 100 ml of tetrahydrofuran was measured, and the number average molecular weight, weight average molecular weight and molecular weight distribution were determined based on a calibration curve prepared with standard polymethyl methacrylate. Ask.

【0023】実施例1 原料調整槽1でメチルメタクリレート4750gとメチ
ルアクリレート250gとを20℃で混合し、この混合
液に窒素ガスを流速150ml/分で約10分間吹き込
み、溶存酸素を除去した。この混合液の溶存酸素はDO
メーター(セントラル科学製、UC−12−SOL型)
で測定した結果5ppm以下であった。この混合液にラ
ウロイルパーオキサイド5gとラウロイルメルカプタン
15gを加え、均一に混合した後、第1の定量ポンプ2
により抜き出し、フィルター3により径0.2μm以上
の塵埃等を除去し、第1の加熱機で120℃に昇温し、
120℃に温度調節した第1重合反応器5に移液し、温
度120℃、圧力kg/cm攪拌翼の回転数150r
pmで1時間重合した。この時の転化率は29%であっ
た。又、この間の温度変化は±2℃以内であった。この
重合体含有混合物を第2の定量ポンプ7で抜き出し、1
20℃に温度調節した第2重合反応器10へ移液した。
次いで、溶剤用定量ポンプ8によって120℃に加熱し
たキシレン4500gを第2重合反応器10に供給し、
混合して、回転数150rpmで攪拌しながら同温度で
3時間重合した。この時の転化率は89%であった。こ
の間の温度変化は±3.5℃以内であった。
Example 1 In a raw material adjusting tank 1, 4750 g of methyl methacrylate and 250 g of methyl acrylate were mixed at 20 ° C., and nitrogen gas was blown into the mixture at a flow rate of 150 ml / min for about 10 minutes to remove dissolved oxygen. The dissolved oxygen in this mixture is DO
Meter (UC-12-SOL type, manufactured by Central Science)
Was less than 5 ppm. After adding 5 g of lauroyl peroxide and 15 g of lauroyl mercaptan to this mixed solution and mixing them uniformly, the first metering pump 2 was used.
, And dust and the like having a diameter of 0.2 μm or more are removed by the filter 3, and the temperature is increased to 120 ° C. by the first heater,
The solution was transferred to the first polymerization reactor 5 whose temperature was adjusted to 120 ° C., the temperature was 120 ° C., the pressure was kg / cm 2 , and the rotation speed of the stirring blade was 150 r.
Polymerized at pm for 1 hour. At this time, the conversion was 29%. The temperature change during this period was within ± 2 ° C. This polymer-containing mixture was withdrawn by a second metering pump 7 and 1
The solution was transferred to the second polymerization reactor 10 whose temperature was adjusted to 20 ° C.
Then, 4500 g of xylene heated to 120 ° C. by the solvent metering pump 8 was supplied to the second polymerization reactor 10,
The mixture was mixed and polymerized at the same temperature for 3 hours while stirring at a rotation speed of 150 rpm. At this time, the conversion was 89%. The temperature change during this period was within ± 3.5 ° C.

【0024】重合体含有混合物を第3の定量ポンプ13
を通して第3の加熱器14に送り、245℃に加熱した
後、温度240℃で50mmHg以下の減圧状態にした
脱気装置16にフラッシュし、溶剤、低分子量重合体等
を除去した。アクリル系樹脂は脱気装置16の下部の第
4の定量ポンプ18のノズルからストランドで出し、ペ
レタイザー19の水槽で冷却後、カッターで切断してペ
レットとした。製造したアクリル系樹脂の全光線透過率
は93%と良好であり、GPCで測定した数平均分子量
は40500、重量平均分子量は78570であり、分
子量分布は1.94であった。
The polymer-containing mixture is pumped to a third metering pump 13
And heated to 245 ° C., and then flushed to a deaerator 16 at a temperature of 240 ° C. and a reduced pressure of 50 mmHg or less to remove solvents, low molecular weight polymers and the like. The acrylic resin was taken out from the nozzle of the fourth metering pump 18 below the deaerator 16 with a strand, cooled in a water tank of the pelletizer 19, and cut with a cutter to form pellets. The total light transmittance of the produced acrylic resin was as good as 93%, the number average molecular weight measured by GPC was 40500, the weight average molecular weight was 78570, and the molecular weight distribution was 1.94.

【0025】比較例1 原料調整槽1のメチルメタクリレート4750g、メチ
ルアクリレート250gの混合液にキシレン4500g
を添加した以外は実施例1と同様にして重合した。1時
間重合した時の添加率は8%、更に、3時間重合を続け
ても31%であり、実施例1に比べ重合速度が遅く、実
用的ではなかった。 比較例2 第2重合反応器でキシレンを添加しない以外は実施例1
と同様にして重合した。しかし、第2重合反応器で約2
5分間重合した頃から重合体含有混合物の温度が上昇し
始め、温度制御ができなくなった。同混合物の温度が1
70℃になった時、約10℃のキシレン5000gを添
加して均一に混合し、冷却後直ちに同混合物を第2重合
反応器からステンレス製容器に抜き取り、温度を40℃
以下にまで冷却した。この時の添加率は62%であっ
た。この方法で得たアクリル系樹脂の数平均分子量は3
9300、重量平均分子量は107700であり、分子
量分布は2.74であり、分子量分布が広く、全光線透
過率は90%であった。
Comparative Example 1 4500 g of xylene was added to a mixture of 4750 g of methyl methacrylate and 250 g of methyl acrylate in the raw material adjusting tank 1.
Polymerization was carried out in the same manner as in Example 1 except that was added. The addition ratio after polymerization for 1 hour was 8%, and the polymerization rate was 31% even after the polymerization was continued for 3 hours. The polymerization rate was lower than that in Example 1 and was not practical. Comparative Example 2 Example 1 except that xylene was not added in the second polymerization reactor.
Was polymerized in the same manner as described above. However, in the second polymerization reactor, about 2
The temperature of the polymer-containing mixture began to rise from the time when the polymerization was carried out for 5 minutes, and the temperature could not be controlled. The temperature of the mixture is 1
When the temperature reached 70 ° C., 5000 g of xylene at about 10 ° C. was added and mixed uniformly. Immediately after cooling, the mixture was withdrawn from the second polymerization reactor into a stainless steel container, and the temperature was reduced to 40 ° C.
Cooled down to: The addition rate at this time was 62%. The number average molecular weight of the acrylic resin obtained by this method is 3
The weight average molecular weight was 9,700, the molecular weight distribution was 2.74, the molecular weight distribution was wide, and the total light transmittance was 90%.

【0026】[0026]

【発明の効果】メチルメタクリレートを主成分とするア
クリル系樹脂を製造するに際し、多段重合とし、1段目
の添加率を10〜35%に抑え、後段では特定量の溶剤
を添加すると共に、転化率を80%以上とした後、溶
剤、低分子量成分等を除去することにより、 (1)80%以上の高転化率にしても粘度変化が小さ
く、重合反応の制御が容易である。 (2)全光線透過率が高く、分子量分布の狭い高品質の
アクリル系樹脂が得られる。 (3)重合反応液の粘度が低いため、安価な重合反応器
が使用できる。 等の効果がある。
In producing an acrylic resin containing methyl methacrylate as a main component, multi-stage polymerization is carried out, the addition ratio of the first stage is suppressed to 10 to 35%, and a specific amount of a solvent is added in the latter stage, and the conversion is carried out. After the conversion is 80% or more, the solvent, low molecular weight components and the like are removed. (1) Even at a high conversion of 80% or more, the change in viscosity is small and the polymerization reaction is easily controlled. (2) A high-quality acrylic resin having a high total light transmittance and a narrow molecular weight distribution can be obtained. (3) Since the viscosity of the polymerization reaction solution is low, an inexpensive polymerization reactor can be used. And so on.

【0027】[0027]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明のアクリル系樹脂の製造方法に係
るフローシートである。
FIG. 1 is a flow sheet according to a method for producing an acrylic resin of the present invention.

【符号の説明】[Explanation of symbols]

1 原料調整槽 2 第1の定量ポンプ 3 フィルター 4 第1の加熱機 5 第1重合反応器 6 第1のコンデンサー 7 第2の定量ポンプ 8 溶剤用定量ポンプ 9 第2の加熱機 10 第2重合反応器 11 追加原料用ライン 12 第2のコンデンサー 13 第3の定量ポンプ 14 第3の加熱機 15 移液ライン 16 脱気装置 17 溶剤等除去ライン 18 第4の定量ポンプ 19 ペレタイザー DESCRIPTION OF SYMBOLS 1 Raw material adjustment tank 2 1st metering pump 3 Filter 4 1st heating machine 5 1st polymerization reactor 6 1st condenser 7 2nd metering pump 8 Solvent metering pump 9 2nd heating machine 10 2nd polymerization Reactor 11 Line for additional raw material 12 Second condenser 13 Third pump 14 Third heater 15 Liquid transfer line 16 Degassing device 17 Removal line for solvent etc. 18 Fourth constant pump 19 Pelletizer

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 2個以上の重合反応器を使用して、70
重量%〜95重量%のメチルメタクリレートと、共重合
可能な他のビニル化合物とからなるモノマーを、ラジカ
ル重合開始剤の作用で重合してアクリル系樹脂を製造す
るにあたり、(1)第1重合反応器にモノマーのみを投
入し、モノマーの転化率が10〜35%の範囲に重合
し、生成した重合体含有混合物を最終重合反応器を含む
後段の重合反応器へ移すこと、(2)後段の重合反応器
で、第1重合反応器から移された重合体含有混合物と溶
剤とを重量比で30〜90/70〜10の割合で混合す
ること、(3)後段の重合反応器でモノマーの転化率が
80%以上になるまで重合すること、(4)第1及び後
段の重合反応器での重合温度を同一とし、温度変化を±
10℃の範囲内に維持すること、(5)最終の重合反応
器で得た重合体混合物から溶剤、未反応モノマー及び低
分子量重合体を除去すること、を特徴とするアクリル系
樹脂の製造法。
1. The method of claim 1 wherein two or more polymerization reactors are used.
In producing an acrylic resin by polymerizing a monomer composed of methyl methacrylate by weight to 95% by weight and another vinyl compound copolymerizable by the action of a radical polymerization initiator, (1) a first polymerization reaction Only the monomer
And the resulting polymer-containing mixture is transferred to a subsequent polymerization reactor including a final polymerization reactor. (2) The latter polymerization reactor
Mixing the polymer-containing mixture and the solvent transferred from the first polymerization reactor at a weight ratio of 30 to 90/70 to 10; (3) the conversion rate of the monomer in the subsequent polymerization reactor is (4) The polymerization temperature in the first and second polymerization reactors is the same, and the temperature change is ±
(5) removing the solvent, unreacted monomer and low-molecular-weight polymer from the polymer mixture obtained in the final polymerization reactor, and maintaining the temperature within a range of 10 ° C. .
JP4180240A 1992-05-29 1992-05-29 Acrylic resin manufacturing method Expired - Lifetime JP3013951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4180240A JP3013951B2 (en) 1992-05-29 1992-05-29 Acrylic resin manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4180240A JP3013951B2 (en) 1992-05-29 1992-05-29 Acrylic resin manufacturing method

Publications (2)

Publication Number Publication Date
JPH05331212A JPH05331212A (en) 1993-12-14
JP3013951B2 true JP3013951B2 (en) 2000-02-28

Family

ID=16079819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4180240A Expired - Lifetime JP3013951B2 (en) 1992-05-29 1992-05-29 Acrylic resin manufacturing method

Country Status (1)

Country Link
JP (1) JP3013951B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754831B2 (en) 2002-12-25 2010-07-13 Mitsubishi Rayon Co., Ltd. Vinyl polymer, process for producing vinyl polymer, thermosetting coating composition, and coating material
JP5150708B2 (en) 2010-11-08 2013-02-27 住友化学株式会社 Continuous polymerization apparatus and method for producing polymer composition
JP5431376B2 (en) 2011-01-26 2014-03-05 住友化学株式会社 Continuous polymerization apparatus and method for producing polymer composition
JP5249366B2 (en) 2011-01-26 2013-07-31 住友化学株式会社 Continuous polymerization apparatus and method for producing polymer composition
JP2012207203A (en) 2011-03-17 2012-10-25 Sumitomo Chemical Co Ltd Process for production of polymer composition
JP5901361B2 (en) 2011-11-18 2016-04-06 住友化学株式会社 Continuous polymerization apparatus and method for producing polymer composition
JP5959253B2 (en) 2012-03-22 2016-08-02 住友化学株式会社 Continuous polymerization apparatus and method for producing polymer composition
JP5998071B2 (en) 2013-01-31 2016-09-28 住友化学株式会社 Continuous polymerization apparatus, polymer composition production method and injection valve
JP5984702B2 (en) 2013-01-31 2016-09-06 住友化学株式会社 Continuous polymerization apparatus and method for producing polymer composition

Also Published As

Publication number Publication date
JPH05331212A (en) 1993-12-14

Similar Documents

Publication Publication Date Title
US6632907B1 (en) Process for producing methacrylic polymer
KR100427376B1 (en) Process for Preparing Polymer
JP3395291B2 (en) Method for producing methacrylic polymer
US5530080A (en) Polymethacrylate molding compound with high heat deflection temperature and stability against thermal degradation
JP3293702B2 (en) Method for producing methyl methacrylate polymer
US5980790A (en) Process for producing a copolymer
JPH0796580B2 (en) Transparent heat resistant styrene copolymer
JP3013951B2 (en) Acrylic resin manufacturing method
KR100689598B1 (en) Method for producing methacrylic resin excellent in stability and fluidity
JP3937111B2 (en) Method for producing polymer
JP3906848B2 (en) Method for producing methacrylic resin
JP3858948B2 (en) Method for producing styrene-methyl methacrylate polymer
JP4257469B2 (en) Method for producing methyl syrup methacrylate
JP3013953B2 (en) Acrylic resin manufacturing method
JP3565229B2 (en) Method for producing methacrylic resin
CN115734974B (en) Optical molding compositions with improved thermal stability
JP3319485B2 (en) Method for producing methacrylic resin having thermal decomposition resistance
KR100763951B1 (en) Method for producing methacryl-based resin having excellent optical properties
JP2000159816A (en) Method for producing methacrylic polymer
JP4296363B2 (en) Acrylic syrup manufacturing method
JP3319484B2 (en) Method for producing methacrylic resin having thermal decomposition resistance
JP3901700B2 (en) Method for producing methacrylic resin
JP2009227721A (en) Method for manufacturing thermoplastic copolymer
JPH0812722A (en) Manufacturing method of heat resistant resin
JP3319483B2 (en) Methacrylic resin having thermal decomposition resistance and method for producing the same