Nothing Special   »   [go: up one dir, main page]

JP3012919B2 - Thermostable enzyme having aminoacylase and carboxypeptidase activities, and gene encoding the same - Google Patents

Thermostable enzyme having aminoacylase and carboxypeptidase activities, and gene encoding the same

Info

Publication number
JP3012919B2
JP3012919B2 JP9018380A JP1838097A JP3012919B2 JP 3012919 B2 JP3012919 B2 JP 3012919B2 JP 9018380 A JP9018380 A JP 9018380A JP 1838097 A JP1838097 A JP 1838097A JP 3012919 B2 JP3012919 B2 JP 3012919B2
Authority
JP
Japan
Prior art keywords
enzyme
gly
ile
activity
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9018380A
Other languages
Japanese (ja)
Other versions
JPH10210976A (en
Inventor
一彦 石川
郁夫 松井
紘靖 石田
佳次 小杉
勝彦 樋口
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP9018380A priority Critical patent/JP3012919B2/en
Publication of JPH10210976A publication Critical patent/JPH10210976A/en
Application granted granted Critical
Publication of JP3012919B2 publication Critical patent/JP3012919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Saccharide Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アミノアシラーゼ
活性およびカルボキシペプチダーゼ活性を有する耐熱性
酵素、並びにそれをコードする遺伝子に関する。本発明
の酵素は、アミノアシラーゼ活性を有するので、合成ア
ミノ酸の光学活性異性体(D体L体)の分割に有効であ
り、また、カルボキシペプチダーゼ活性を有するのでペ
プチドのカルボキシル基末端分析に有効である。
[0001] The present invention relates to a thermostable enzyme having aminoacylase activity and carboxypeptidase activity, and a gene encoding the same. Since the enzyme of the present invention has aminoacylase activity, it is effective for resolving optically active isomers of synthetic amino acids (D-form L-form), and has carboxypeptidase activity, which is effective for analysis of carboxyl group terminal of peptides. is there.

【0002】[0002]

【従来の技術】従来、合成アミノ酸の光学活性異性体
(D体L体)分割は、アミノアシラーゼを用いて、L体
アシルアミノ酸のアシル基のみを遊離することにより、
行われている。また、タンパク質およびペプチドのカル
ボキシル基末端分析(アミノ酸配列分析)はカルボキシ
ペプチダーゼを用いて行われている。
2. Description of the Related Art Conventionally, optically active isomers (D-form L-form) of synthetic amino acids are separated by releasing only the acyl group of L-form acylamino acid using an aminoacylase.
Is being done. Carboxyl group terminal analysis (amino acid sequence analysis) of proteins and peptides is performed using carboxypeptidase.

【0003】[0003]

【発明が解決しようとする課題】従来の酵素は、高温下
で不安定であるため、上記の反応は比較的低温で行うこ
とが必要であった。しかし,高温下で上記の反応を行う
ことにより、反応効率の向上、混入微生物の除去等、多
くの利点が考えられる。そこで、高温で使用でき、さら
に、高温下で安定な酵素が渇望されている。本発明は、
このような技術的背景の下になされたものであり、その
目的とするところは、耐熱性のアミノアシラーゼおよび
カルボキシペプチダーゼを提供することにある。
Since the conventional enzyme is unstable at high temperatures, the above-mentioned reaction has to be performed at a relatively low temperature. However, by performing the above reaction at a high temperature, many advantages such as improvement of reaction efficiency and removal of contaminating microorganisms can be considered. Therefore, there is a need for an enzyme that can be used at a high temperature and that is stable at a high temperature. The present invention
It has been made under such a technical background, and an object of the present invention is to provide a thermostable aminoacylase and carboxypeptidase.

【0004】[0004]

【課題を解決するための手段】本発明者は、以上のよう
な課題を解決すべく、90〜100℃で生育する超高熱性細
菌に着目し、その遺伝子配列から本酵素活性を示すと推
測される遺伝子を見い出した。さらに、大腸菌を使って
その遺伝子から酵素を生産し、この酵素が高温(90〜95
℃)で安定でかつアミノアシラーゼおよびカルボキシペ
プチダーゼ活性を示すことを確認し、これらの知見に基
づき本発明を完成するに至った。
Means for Solving the Problems In order to solve the above problems, the present inventors have focused on ultra-thermophilic bacteria growing at 90 to 100 ° C. and presumed to exhibit the enzyme activity from the gene sequence thereof. Gene found. In addition, Escherichia coli is used to produce an enzyme from the gene, which is then heated to a high temperature (90-95).
° C) and showed aminoacylase and carboxypeptidase activities, and the present invention was completed based on these findings.

【0005】即ち、本発明は下記の性質を有する酵素で
ある。 (1)アミノアシラーゼ活性およびカルボキシペプチダ
ーゼ活性を有する (2)至適温度は90〜95℃ (3)至適pHは6.5 〜8.0 (4)95℃で3時間加熱(pH 7.5)しても活性を失わな
い (5)分子量は40,000(SDSポリアクリルアミド電気
泳動法) また、本発明は以下の(a) 又は(b) のタンパク質をコー
ドする遺伝子である。 (a) 配列番号1記載のアミノ酸配列からなるタンパク質 (b) 配列番号1記載のアミノ酸配列において1若しくは
数個のアミノ酸が欠失、置換若しくは付加されたアミノ
酸配列からなり、かつアミノアシラーゼ活性およびカル
ボキシペプチダーゼ活性を有するタンパク質
That is, the present invention relates to an enzyme having the following properties. (1) Has aminoacylase activity and carboxypeptidase activity (2) Optimal temperature is 90-95 ° C (3) Optimal pH is 6.5-8.0 (4) Activity even after heating at 95 ° C for 3 hours (pH 7.5) (5) Molecular weight of 40,000 (SDS polyacrylamide gel electrophoresis) The present invention relates to a gene encoding the following protein (a) or (b). (a) a protein consisting of the amino acid sequence of SEQ ID NO: 1; (b) a protein consisting of the amino acid sequence of SEQ ID NO: 1 in which one or several amino acids have been deleted, substituted or added; and Protein having peptidase activity

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の酵素は、以下のような性質を有する。 (1)アミノアシラーゼ活性とカルボキシペプチダーゼ
活性という二種類の酵素活性を有する。 (2)温度変化に伴う酵素活性の変化は図1に示す通り
である。この図が示すように本発明の酵素の至適温度は
90〜95℃、最適温度は90℃である。 (3)至適pHは6.5 〜8.0 であり、最適pHは7.5 であ
る。 (4)耐熱性の酵素で、95℃で3時間加熱(pH 7.5)し
ても活性を失わない (5)SDSポリアクリルアミド電気泳動法により測定
されたる分子量は約40,000である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The enzyme of the present invention has the following properties. (1) It has two types of enzyme activities, aminoacylase activity and carboxypeptidase activity. (2) Changes in enzyme activity with changes in temperature are as shown in FIG. As shown in this figure, the optimal temperature of the enzyme of the present invention is
90-95 ° C, optimal temperature is 90 ° C. (3) The optimum pH is 6.5 to 8.0, and the optimum pH is 7.5. (4) A thermostable enzyme that does not lose its activity even after heating at 95 ° C. for 3 hours (pH 7.5). (5) The molecular weight measured by SDS polyacrylamide electrophoresis is about 40,000.

【0007】また、本発明の酵素のアミノ酸配列は、配
列番号1記載のアミノ酸配列、又は配列番号1において
1若しくは数個のアミノ酸が欠失、置換若しくは付加さ
れたアミノ酸配列により表わすことができる。ここで、
「1若しくは数個」とは、部位特異的変移誘発法(Nucl
eic Acid Research, Vol.10, No.20, p6487-6500)によ
り欠失等させることができる範囲をいう。
[0007] The amino acid sequence of the enzyme of the present invention can be represented by the amino acid sequence described in SEQ ID NO: 1 or the amino acid sequence in which one or several amino acids are deleted, substituted or added in SEQ ID NO: 1. here,
"One or several" refers to the site-specific mutation induction method (Nucl
eic Acid Research, Vol. 10, No. 20, p6487-6500).

【0008】本発明の酵素は、微生物中に含まれるの
で、これから得ることができる。具体的には、微生物の
菌体を破砕した後、緩衝液中に懸濁し、遠心分離により
得られる上清を、その酵素活性を指標として各種クロマ
トグラフィーにより精製することにより得られる。使用
する微生物としては、硫黄代謝高熱古細菌であるパイロ
コッカス・ホリコシ(理化学研究所微生物系統保存施設
(JCM)番号9974、以下「JCM 9974」と略記する)を
使用することができるが、本発明の酵素を生産できる微
生物であればどのようなものでもよく、例えば、後述す
る本発明の遺伝子を導入した微生物を使用してもよい。
使用する緩衝液、遠心分離の条件、使用するクロマトグ
ラフィーは、微生物菌体より酵素を精製する際に常用さ
れるものでよい。酵素活性の有無は、例えば、ベンジル
オキシカルボニル化アミノ酸及びベンジルオキシカルボ
ニル化ペプチドを基質とし、加水分解により生じるアミ
ノ酸をニンヒドリン反応で検出することで判定できる。
[0008] Since the enzyme of the present invention is contained in microorganisms, it can be obtained therefrom. Specifically, it is obtained by crushing the microorganism cells, suspending the cells in a buffer, and purifying the supernatant obtained by centrifugation by various chromatography using the enzyme activity as an index. As a microorganism to be used, Pyrococcus horikoshi, a sulfur-metabolizing hyperthermic archaeon (RICM Microbial Strain Preservation Facility (JCM) No. 9974, hereinafter abbreviated as “JCM 9974”) can be used. Any microorganism can be used as long as it can produce the enzyme of the present invention. For example, a microorganism into which the gene of the present invention described below is introduced may be used.
The buffer used, the conditions for centrifugation, and the chromatography used may be those commonly used when purifying enzymes from microbial cells. The presence or absence of the enzyme activity can be determined, for example, by using a benzyloxycarbonylated amino acid and a benzyloxycarbonylated peptide as a substrate and detecting an amino acid generated by hydrolysis by a ninhydrin reaction.

【0009】本発明の酵素は、アミノアシラーゼ活性を
有するので、合成アミノ酸の光学活性異性体(D体L
体)の分割に使用することができ、また、カルボキシペ
プチダーゼ活性を有するのでペプチドのカルボキシル基
末端分析に使用することができる。本発明の遺伝子は、
配列番号1記載のアミノ酸配列からなるタンパク質、又
は配列番号1記載のアミノ酸配列において1若しくは数
個のアミノ酸が欠失、置換若しくは付加されたアミノ酸
配列からなり、かつアミノアシラーゼ活性およびカルボ
キシペプチダーゼ活性を有するタンパク質をコードす
る。ここで、「1若しくは数個」とは、上記と同様に部
位特異的変移誘発法により欠失等させることができる範
囲をいう。
Since the enzyme of the present invention has aminoacylase activity, the optically active isomer of a synthetic amino acid (D-form L
Can be used for the resolution of carboxyl group ends of peptides since it has carboxypeptidase activity. The gene of the present invention
A protein consisting of the amino acid sequence of SEQ ID NO: 1 or an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 1, and which has an aminoacylase activity and a carboxypeptidase activity Encodes a protein. Here, “one or several” refers to a range that can be deleted or the like by the site-specific mutagenesis method as described above.

【0010】本発明の遺伝子は、例えば、以下のように
して得ることができる。まず、本発明の遺伝子を有する
微生物からDNAを抽出し、これを制限酵素で部分分解
し、ベクターに挿入する。この組換えベクターを、適当
な宿主微生物に導入し、DNAのシークエンスを行う。
得られたシークエンスデータから本酵素のホモロジー領
域を調べ、本酵素の構造遺伝子をみつけだす。本酵素構
造遺伝子の両末端に結合するプライマーを合成しPCR
で本酵素遺伝子だけを増幅する。これにより、本発明の
遺伝子を得ることができる。ここで、使用する微生物と
しては、JCM 9974を挙げることができるが、これに限定
されるわけではない。DNAの抽出は、特別な方法を使
用する必要はなく、常法に従って行うことができ、市販
のキット等を使用することも可能である。使用する制限
酵素は、特に限定されないが、HindIII 、EcoRI 、XhoI
等を使用するのが好ましい。使用するベクターとして
は、pBAC108L、pFOS1 、M13 、pUC19 等を例示できる
が、これらに限定されるわけではない。使用する宿主微
生物としては、大腸菌、酵母等を例示することができる
が、これらに限定されるわけでない。宿主微生物への導
入手段は、使用するベクターに応じて決めればよく、例
えば、pBAC108Lを使用する場合は、電気孔窄法が好まし
く、pFOS1 を使用する場合は、λファージ等を利用する
のが好ましい。なお、本発明の遺伝子を含む大腸菌BL21
(DE3) は、工業技術院生命工学工業技術研究所に受託番
号FERM P- 16051 として寄託されている(寄託日:平成
9年1月27日)。
The gene of the present invention can be obtained, for example, as follows. First, DNA is extracted from a microorganism having the gene of the present invention, partially digested with a restriction enzyme, and inserted into a vector. This recombinant vector is introduced into a suitable host microorganism, and the DNA is sequenced.
The homology region of the present enzyme is examined from the obtained sequence data, and the structural gene of the present enzyme is found. A primer that binds to both ends of the enzyme structural gene is synthesized and PCR is performed.
Amplifies only this enzyme gene. Thereby, the gene of the present invention can be obtained. Here, examples of the microorganism used include JCM 9974, but are not limited thereto. Extraction of DNA does not need to use a special method, can be performed according to a conventional method, and a commercially available kit or the like can be used. The restriction enzymes used are not particularly limited, but include HindIII, EcoRI, XhoI
And the like. Examples of a vector to be used include, but are not limited to, pBAC108L, pFOS1, M13, pUC19, and the like. Examples of the host microorganism used include Escherichia coli and yeast, but are not limited thereto. The means for introduction into the host microorganism may be determined according to the vector to be used.For example, when pBAC108L is used, electroporation is preferable, and when pFOS1 is used, λ phage or the like is preferably used. . Escherichia coli BL21 containing the gene of the present invention
(DE3) has been deposited with the National Institute of Bioscience and Human-Technology, National Institute of Advanced Industrial Science and Technology under the accession number FERM P-16051 (Deposit date: January 27, 1997).

【0011】本発明の遺伝子は、上記本発明の酵素をコ
ードするので、これを微生物に導入し、発現させること
により、本発明の酵素を大量に生産することができる。
遺伝子を発現させるために使用するベクターとしては、
pET-11a 、pET-15a 、pET15b等を例示することができ、
遺伝子を導入する微生物としては、大腸菌 BL21(DE3)、
大腸菌XL1-Blue MR 等を挙げることができる。
[0011] Since the gene of the present invention encodes the enzyme of the present invention, the enzyme of the present invention can be produced in large quantities by introducing it into a microorganism and expressing it.
As a vector used for expressing a gene,
pET-11a, pET-15a, pET15b and the like can be exemplified,
E. coli BL21 (DE3)
Escherichia coli XL1-Blue MR and the like can be mentioned.

【0012】以下、実施例により本発明を更に詳細に説
明するが、本発明の技術的範囲は、これらの実施例に限
定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the technical scope of the present invention is not limited to these Examples.

【0013】[0013]

【実施例】【Example】

(実施例1)(菌の培養) JCM9974 は次の方法で培養した。13.5gの食塩、4gの
Na2SO4 、0.7gのKCl 、0.2gのNaHCO3 、0.1gのKB
r 、30mgのH3BO3 、10gのMgCl2 ・ 6H2O 、1.5gのCaC
l2 、25mgのSrCl2 、1.0mlのレザスリン溶液(0.2g/
L)、1.0gの酵母エキス、5gのバクトペプトンを1L
の水に溶かし、この溶液のpHを6.8に調整し加圧殺菌し
た。ついで、乾熱滅菌した元素硫黄を0.2%となるよう
に加え、この培地をアルゴンで飽和して嫌気性とした
後、JCM9974 を植菌した。培地が嫌気性となったか否か
はNa2S 溶液を加えて、培養液中でNa2S によるレザスリ
ン溶液のピンク色が着色しないことにより確認した。こ
の培養液を95℃で2〜4日培養し、その後遠心分離し集
菌した。
(Example 1) (Culture of bacteria) JCM9974 was cultured by the following method. 13.5g salt, 4g
Na 2 SO 4 , 0.7 g KCl, 0.2 g NaHCO 3 , 0.1 g KB
r, 30 mg of H 3 BO 3 , 10 g of MgCl 2 .6H 2 O, 1.5 g of CaC
l 2 , 25 mg SrCl 2 , 1.0 ml resasulin solution (0.2 g /
L), 1.0 g of yeast extract, 5 g of bactopeptone in 1 L
, And the solution was adjusted to pH 6.8 and sterilized by pressure. Then, dry heat sterilized elemental sulfur was added to a concentration of 0.2%, the medium was saturated with argon to make it anaerobic, and JCM9974 was inoculated. Whether or not the medium became anaerobic was confirmed by adding a Na 2 S solution and not coloring the pink color of the resasurin solution with Na 2 S in the culture solution. This culture was cultured at 95 ° C. for 2 to 4 days, and then centrifuged to collect the bacteria.

【0014】(実施例2)染色体DNAの調整 JCM9974 の染色体DNAは以下の方法により調製した。
培養終了後5000rpm 、10分間の遠心分離により菌体を集
菌した。菌体を10mM Tris (pH7.5)-1mM EDTA溶液で2
回洗浄後 In Cert Agarose (FMC社製)ブロック中に
封入した。このブロックを1% N- ラウロイルサルコシ
ンと1mg/ml プロテアーゼKを含む溶液中で処理し、染
色体DNAをアガロースブロック中に分離調製した。
(Example 2) Preparation of chromosomal DNA The chromosomal DNA of JCM9974 was prepared by the following method.
After completion of the culture, the cells were collected by centrifugation at 5000 rpm for 10 minutes. The cells were washed with 10 mM Tris (pH 7.5) -1 mM EDTA solution.
After washing twice, it was sealed in an In Cert Agarose (manufactured by FMC) block. This block was treated in a solution containing 1% N-lauroyl sarcosine and 1 mg / ml protease K, and chromosomal DNA was separated and prepared in an agarose block.

【0015】(実施例3)染色体DNAを含むライブラ
リークローンの作製 実施例2で得られた染色体DNAを制限酵素HindIII に
より部分分解後アガロースゲル電気泳動により約40kb長
の断片を調製した。このDNA断片と制限酵素HindIII
によって完全分解した BacベクターpBAC108L(Stratage
ne製)及びpFOS1 (Stratagene製)とをT4リガーゼを用
いて結合させた。前者のベクターを用いた場合には結合
終了後のDNAをただちに大腸菌内へ電気孔搾法により
導入した。後者のベクターpFOS1 を用いた場合には結合
終了後のDNAをGIGA Pack Gold(ストラタジーン社
製)により試験管内でλファージ粒子内に詰め込み、こ
の粒子を大腸菌に感染させることによりDNAを大腸菌
内に導入した。これらの方法により得られた抗生物質ク
ロラムフェニコール耐性の大腸菌集団をBAC 及びFosmid
ライブラリーとした。ライブラリーからJCM9974 の染色
体をカバーするのに適したクローンを選択して、クロー
ンの整列化を行った。
(Example 3) Preparation of library clone containing chromosomal DNA The chromosomal DNA obtained in Example 2 was partially digested with a restriction enzyme HindIII, and then a fragment of about 40 kb was prepared by agarose gel electrophoresis. This DNA fragment and the restriction enzyme HindIII
Vector pBAC108L (Stratage
ne) and pFOS1 (Stratagene) using T4 ligase. When the former vector was used, the DNA after the completion of ligation was immediately introduced into E. coli by electroporation. When the latter vector pFOS1 was used, the DNA after completion of the ligation was packed into λ phage particles in a test tube using GIGA Pack Gold (manufactured by Stratagene), and the particles were infected into E. coli by transferring the DNA into E. coli. Introduced. The E. coli population resistant to the antibiotic chloramphenicol obtained by these methods was isolated from BAC and Fosmid.
A library. Clones suitable for covering the chromosome of JCM9974 were selected from the library and clones were sorted.

【0016】(実施例4)各BAC 或いはFosmidクローン
の塩基配列決定 整列化されたBAC 或いはFosmidクローンについて順次以
下の方法で塩基配列を決定していった。大腸菌より回収
した各BAC 或いはFosmidクローンのDNAを超音波処理
することにより断片化し、アガロースゲル電気泳動によ
り1kb及び2kb長のDNA断片を回収した。この断片を
プラスミドベクターpUC118(タカラ製)のHincII制限酵
素部位に挿入したショットガンクローンを各BAC 或いは
Fosmidクローン当たり 500クローン作製した。各ショッ
トガンクローンの塩基配列をパーキンエルマー、ABI
社製自動塩基配列読み取り装置373 または377 を用いて
決定していった。各ショットガンクローンから得られた
塩基配列を塩基配列自動連結ソフトSequencherを用いて
連結編集し、各BAC 或いはFosmidクローンの全塩基配列
を決定していった。
(Example 4) Determining the nucleotide sequence of each BAC or Fosmid clone The nucleotide sequence of the aligned BAC or Fosmid clone was determined sequentially by the following method. The DNA of each BAC or Fosmid clone recovered from E. coli was fragmented by sonication, and DNA fragments of 1 kb and 2 kb in length were recovered by agarose gel electrophoresis. This fragment was inserted into the HincII restriction enzyme site of the plasmid vector pUC118 (manufactured by Takara), and the shotgun clone was inserted into each BAC or
500 clones were prepared per Fosmid clone. The nucleotide sequence of each shotgun clone was determined by PerkinElmer, ABI
The determination was made using an automatic nucleotide sequence reader 373 or 377 manufactured by the company. The base sequence obtained from each shotgun clone was linked and edited using base sequence automatic linking software Sequencher, and the entire base sequence of each BAC or Fosmid clone was determined.

【0017】(実施例5)本発明の遺伝子の同定 上記で決定された各BAC 或いはFosmidクローンの塩基配
列の大型計算機による解析を行い、本発明の遺伝子の塩
基配列を決定した。塩基配列は、配列番号2に、それか
ら推定されるアミノ酸配列は、配列番号1に示す。
Example 5 Identification of the Gene of the Present Invention The nucleotide sequence of each of the BAC or Fosmid clones determined above was analyzed by a large-scale computer to determine the nucleotide sequence of the gene of the present invention. The nucleotide sequence is shown in SEQ ID NO: 2, and the deduced amino acid sequence is shown in SEQ ID NO: 1.

【0018】(実施例6)発現プラスミドの構築 本発明の遺伝子の構造遺伝子領域の前後に制限酵素(Nd
eIとXhoI) サイトを構築する目的で下記のDNAプライ
マーを合成し、PCRでその遺伝子の前後に制限酵素サ
イトを導入した。 upper Primer:5'-TTTTGAATTCTTTCATATGGATGAGTTTATAAT
TAAAAGAGC-3' lower Primer:5'-TTTTAGATCTTGATCACTCGAGTCAAAGGGAGA
GGTAGTGATAAGTCAGAA-3' PCR反応後、制限酵素(NdeIとXhoI) で完全分解(37
℃で2時間)した後、その構造遺伝子を精製した。
Example 6 Construction of Expression Plasmid A restriction enzyme (Nd) was added before and after the structural gene region of the gene of the present invention.
The following DNA primers were synthesized for the purpose of constructing eI and XhoI) sites, and restriction enzyme sites were introduced before and after the gene by PCR. upper Primer: 5'-TTTTGAATTCTTTCATATGGATGAGTTTATAAT
TAAAAGAGC-3 'lower Primer: 5'-TTTTAGATCTTGATCACTCGAGTCAAAGGGAGA
After GGTAGTGATAAGTCAGAA-3 'PCR reaction, complete digestion with restriction enzymes (NdeI and XhoI) (37
(2 hours at C), the structural gene was purified.

【0019】pET-11a 、(Novagen社製) を制限酵素NdeI
とXhoIで切断・精製した後、上記の構造遺伝子とT4リガ
ーゼで16℃、2時間反応させ連結した。連結したDNA
の一部をE.coli-XL1-BlueMRF' のコンピテントセルに導
入し形質転換体のコロニーを得た。得られたコロニーか
ら発現プラスミドをアルカリ法で精製した。
PET-11a, (Novagen) was replaced with the restriction enzyme NdeI
After digestion and purification with XhoI, the above-described structural gene was ligated with T4 ligase at 16 ° C. for 2 hours. Ligated DNA
Was introduced into competent cells of E. coli-XL1-BlueMRF ′ to obtain transformant colonies. The expression plasmid was purified from the obtained colonies by an alkaline method.

【0020】(実施例7)組換え遺伝子の発現 この発現プラスミドを用いて大腸菌(E.coli BL21(DE
3)、Novagen 社製) を形質転換した。当形質転換体をア
ンピシリンを含む2YT培地で600nm の吸収が1に達す
るまで培養した後、IPTG(Isopropyl-b-D-thiogala
ctopyranoside)を加えさらに6時間培養した。培養後遠
心分離(6,000rpm、20min)で集菌した。
Example 7 Expression of Recombinant Gene Using this expression plasmid, E. coli BL21 (DE
3), Novagen). The transformant was cultured in 2YT medium containing ampicillin until the absorbance at 600 nm reached 1, followed by IPTG (Isopropyl-bD-thiogala).
ctopyranoside) was added, and the cells were further cultured for 6 hours. After the culture, the cells were collected by centrifugation (6,000 rpm, 20 min).

【0021】(実施例8)耐熱性酵素の精製 集菌した菌体の2倍量のアルミナを加え、菌体を粉砕し
た後、5倍量の10mMトリス塩酸緩衝液(pH8.0)を加え
懸濁液を得た。得られた懸濁液を85℃で30min加熱後遠
心分離(11,000rpm 、20min)し、上澄をHiTrapQ(ファル
マシア社製)カラムに吸着させ活性画分を得た。得られ
た活性画分溶液をセントリコン(アミコン社製)で濃縮
後ゲル濾過カラムSuperdex200(ファルマシア社製)に通
すことにより精製酵素を得た。
Example 8 Purification of Heat-Stable Enzyme Twice the amount of alumina was added to the collected cells, and the cells were pulverized. Then, 5 times 10 mM Tris-HCl buffer (pH 8.0) was added. A suspension was obtained. The obtained suspension was heated at 85 ° C. for 30 minutes, centrifuged (11,000 rpm, 20 minutes), and the supernatant was adsorbed on a HiTrapQ (Pharmacia) column to obtain an active fraction. The obtained active fraction solution was concentrated with Centricon (manufactured by Amicon) and passed through a gel filtration column Superdex200 (manufactured by Pharmacia) to obtain a purified enzyme.

【0022】(実施例9)酵素の諸性質 (1)至適pH 酵素活性の至適pHの測定は、50mM酢酸ナトリウム緩衝
液、50mMリン酸緩衝液および50mMほう酸緩衝液でpH4〜
9までの基質(ベンジルオキシカルボニル-Gly-Gly-Ph
e、カルボキシペプチダーゼの合成基質)20mM溶液を調
整し、85℃で酵素の加水分解活性の初速度を測定するこ
とにより求めた。pH7.5近傍で最大初速度が得られたた
め、最適pHは7.5と結論した。
Example 9 Properties of Enzyme (1) Optimum pH The optimum pH of the enzyme activity was measured using a 50 mM sodium acetate buffer, a 50 mM phosphate buffer, and a 50 mM borate buffer at pH 4 to 4.
9 substrates (benzyloxycarbonyl-Gly-Gly-Ph
e, Synthetic substrate for carboxypeptidase) A 20 mM solution was prepared, and the initial rate of the hydrolysis activity of the enzyme was measured at 85 ° C. to determine the rate. Since the maximum initial velocity was obtained near pH 7.5, the optimum pH was concluded to be 7.5.

【0023】(2)至適温度 基質として20mM ベンジルオキシカルボニル-Gly-Gly-P
heを使用し、50mMリン酸緩衝液(pH7.5) 中に一定量の
酵素を加えて30分反応させ、相対活性を調べた。最大活
性(至適温度)は90℃であった(図1)。 (3)耐熱性 当該酵素溶液(0.1mg/mL) を50mMリン酸緩衝液(pH7.
5) 中、95℃で3時間加熱後、温度を85℃に低下させ残
存活性を調べたが、活性の低下は見られなかった。ま
た、円偏向二色性(CD)の測定を25〜90℃で測定した
が、スペクトルに変化は見られなかった。
(2) Optimal temperature 20 mM benzyloxycarbonyl-Gly-Gly-P
Using he, a certain amount of the enzyme was added to a 50 mM phosphate buffer (pH 7.5) and reacted for 30 minutes, and the relative activity was examined. The maximum activity (optimal temperature) was 90 ° C. (FIG. 1). (3) Heat resistance The enzyme solution (0.1 mg / mL) was added to a 50 mM phosphate buffer (pH 7.
5) After heating at 95 ° C for 3 hours, the temperature was lowered to 85 ° C and the residual activity was examined, but no decrease in activity was observed. Circular dichroism (CD) was measured at 25 to 90 ° C., but no change was found in the spectrum.

【0024】[0024]

【発明の効果】本発明は、アミノアシラーゼおよびカル
ボキシペプチダーゼ活性を有する耐熱性酵素を提供す
る。この酵素により、高温下での合成アミノ酸のD体L
体の分割、並びにタンパク質およびペプチドのカルボキ
シル基末端分析ができるようになる。また、この酵素
は、酵素分子が安定であるということから耐有機溶媒性
の向上も期待できる。
The present invention provides a thermostable enzyme having aminoacylase and carboxypeptidase activities. By this enzyme, D-form L of synthetic amino acid under high temperature
It will allow for body splitting and carboxyl terminal analysis of proteins and peptides. In addition, this enzyme can be expected to have improved organic solvent resistance because the enzyme molecule is stable.

【0025】[0025]

【配列表】[Sequence list]

配列番号:1 配列の長さ:388 配列の型:タンパク質 トポロジー:不明 起源: 生物名:パイロコッカス・ホリコシ 配列 Met Asp Glu Phe Ile Ile Lys Arg Ala Lys Glu Leu Gln Gly Tyr Ile 1 5 10 15 Val Glu Lys Arg Arg Asp Phe His Met Tyr Pro Glu Leu Lys Tyr Glu 20 25 30 Glu Glu Arg Thr Ser Lys Ile Val Glu Glu Glu Leu Lys Lys Leu Gly 35 40 45 Tyr Glu Val Val Arg Thr Ala Lys Thr Gly Val Ile Gly Ile Leu Lys 50 55 60 Gly Lys Glu Asp Gly Lys Thr Val Ala Leu Arg Ala Asp Met Asp Ala 65 70 75 80 Leu Pro Ile Gln Glu Glu Asn Asp Val Pro Tyr Lys Ser Leu Gly Phe 85 90 95 Pro Gly Lys Met His Ala Cys Gly His Asp Ala His Thr Ala Met Leu 100 105 110 Leu Gly Ala Ala Lys Ile Leu Ala Glu Met Lys Asp Glu Leu Gln Gly 115 120 125 Thr Val Lys Leu Ile Phe Gln Pro Ala Glu Glu Gly Gly Leu Gly Ala 130 135 140 Lys Lys Ile Val Glu Glu Gly His Leu Asp Asp Val Asp Ala Ile Phe 145 150 155 160 Gly Ile His Val Trp Ala Glu Leu Pro Ser Gly Ile Ile Gly Ile Lys 165 170 175 Ser Gly Pro Leu Leu Ala Ser Ala Asp Ala Phe Arg Val Leu Ile Lys 180 185 190 Gly Lys Gly Gly His Gly Ala Ala Pro His Leu Ser Ile Asp Pro Ile 195 200 205 Ala Leu Ala Val Asp Leu Val Asn Ala Tyr Gln Lys Ile Ile Ser Arg 210 215 220 Glu Val Asp Pro Leu Gln Pro Ala Val Leu Ser Val Thr Ser Ile Lys 225 230 235 240 Ala Gly Thr Thr Phe Asn Val Ile Pro Glu Ser Ala Glu Ile Leu Gly 245 250 255 Thr Ile Arg Thr Phe Asp Glu Glu Val Arg Asp Tyr Ile Val Arg Arg 260 265 270 Met Lys Glu Ile Thr Glu Asn Phe Ala Asn Gly Met Arg Cys Glu Gly 275 280 285 Lys Phe Glu Leu Thr Ile Glu His Ile Pro Pro Thr Ile Asn Asn Glu 290 295 300 Lys Leu Ala Asn Phe Ala Arg Asp Val Leu Lys Val Leu Gly Glu Ile 305 310 315 320 Arg Glu Pro Lys Pro Thr Met Gly Ala Glu Asp Phe Ala Phe Tyr Thr 325 330 335 Thr Lys Ala Pro Gly Leu Phe Ile Phe Leu Gly Ile Arg Asn Glu Glu 340 345 350 Lys Gly Ile Ile Tyr Pro His His His Pro Lys Phe Asn Val Asp Glu 355 360 365 Asp Ile Leu Trp Met Gly Ala Ala Ile His Ser Leu Leu Thr Tyr His 370 375 380 Tyr Leu Ser Leu 385  SEQ ID NO: 1 Sequence length: 388 Sequence type: Protein Topology: Unknown Origin: Organism name: Pyrococcus horikoshi Met Asp Glu Phe Ile Ile Lys Arg Ala Lys Glu Leu Gln Gly Tyr Ile 1 5 10 15 Val Glu Lys Arg Arg Asp Phe His Met Tyr Pro Glu Leu Lys Tyr Glu 20 25 30 Glu Glu Arg Thr Ser Lys Ile Val Glu Glu Glu Leu Lys Lys Leu Gly 35 40 45 Tyr Glu Val Val Arg Thr Ala Lys Thr Gly Val Ile Gly Ile Leu Lys 50 55 60 Gly Lys Glu Asp Gly Lys Thr Val Ala Leu Arg Ala Asp Met Asp Ala 65 70 75 80 Leu Pro Ile Gln Glu Glu Asn Asp Val Pro Tyr Lys Ser Leu Gly Phe 85 90 95 Pro Gly Lys Met His Ala Cys Gly His Asp Ala His Thr Ala Met Leu 100 105 110 Leu Gly Ala Ala Lys Ile Leu Ala Glu Met Lys Asp Glu Leu Gln Gly 115 120 125 Thr Val Lys Leu Ile Phe Gln Pro Ala Glu Glu Gly Gly Leu Gly Ala 130 135 140 Lys Lys Ile Val Glu Glu Gly His Leu Asp Asp Val Asp Ala Ile Phe 145 150 155 160 Gly Ile His Val Trp Ala Glu Leu Pro Ser Gly Ile Ile Gly Ile Lys 165 170 175 Ser Gly Pro Leu Leu Ala Ser Ala Asp Ala Phe Arg Val Leu Ile Lys 180 185 190 Gly Lys Gly Gly His Gly Ala Ala Pro His Leu Ser Ile Asp Pro Ile 195 200 205 Ala Leu Ala Val Asp Leu Val Asn Ala Tyr Gln Lys Ile Ile Ser Arg 210 215 220 Glu Val Asp Pro Leu Gln Pro Ala Val Leu Ser Val Thr Ser Ile Lys 225 230 235 240 Ala Gly Thr Thr Phe Asn Val Ile Pro Glu Ser Ala Glu Ile Leu Gly 245 250 255 Thr Ile Arg Thr Phe Asp Glu Glu Val Arg Asp Tyr Ile Val Arg Arg 260 265 270 Met Lys Glu Ile Thr Glu Asn Phe Ala Asn Gly Met Arg Cys Glu Gly 275 280 285 Lys Phe Glu Leu Thr Ile Glu His Ile Pro Pro Thr Ile Asn Asn Glu 290 295 300 Lys Leu Ala Asn Phe Ala Arg Asp Val Leu Lys Val Leu Gly Glu Ile 305 310 315 320 Arg Glu Pro Lys Pro Thr Met Gly Ala Glu Asp Phe Ala Phe Tyr Thr 325 330 335 Thr Lys Ala Pro Gly Leu Phe Ile Phe Leu Gly Ile Arg Asn Glu Glu 340 345 350 Lys Gly Ile Ile Tyr Pro His His His Pro Lys Phe Asn Val Asp Glu 355 360 365 Asp Ile Leu Trp Met Gly Ala Ala Ile His Ser Leu Leu Thr Tyr His 370 375 380 Tyr LeuSer Leu 385

【0026】配列番号:2 配列の長さ:1176 配列の型:Genomic DNA トポロジー:直鎖状 起源: 生物名:パイロコッカス・ホリコシ 配列 ATG GAT GAG TTT ATA ATT AAA AGA GCA AAA GAG TTG CAG GGG TAT ATA GTT GAG AAG AGG AGA GAT TTC CAC ATG TAC CCA GAG CTG AAG TAT GAG GAA GAG AGG ACT TCT AAA ATA GTG GAG GAA GAA TTA AAA AAG CTC GGA TAT GAA GTT GTC AGA ACT GCA AAA ACA GGG GTT ATA GGT ATC CTT AAA GGA AAA GAA GAC GGA AAA ACC GTG GCT TTA AGG GCT GAT ATG GAT GCT TTG CCT ATT CAG GAG GAG AAT GAT GTT CCT TAT AAG TCC TTA GGG TTC CCT GGG AAG ATG CAT GCT TGT GGT CAC GAC GCC CAC ACA GCA ATG CTA CTA GGA GCA GCA AAG ATA TTA GCG GAG ATG AAA GAT GAG TTG CAG GGA ACC GTT AAA TTA ATA TTC CAA CCT GCT GAG GAA GGA GGA CTT GGA GCA AAG AAG ATA GTT GAA GAA GGG CAC TTG GAT GAT GTA GAT GCT ATC TTT GGG ATC CAC GTA TGG GCC GAG CTA CCT TCG GGA ATC ATA GGA ATC AAG AGC GGG CCA CTA CTA GCG TCT GCA GAT GCA TTT AGG GTT TTG ATA AAG GGG AAG GGA GGT CAC GGA GCA GCA CCG CAC CTC TCG ATA GAC CCA ATA GCT TTA GCT GTA GAT TTA GTG AAT GCC TAT CAG AAG ATA ATA TCG AGG GAA GTA GAT CCA CTA CAA CCA GCG GTT CTT AGC GTT ACC TCG ATA AAA GCT GGA ACG ACA TTT AAT GTA ATT CCA GAA TCC GCG GAG ATA CTT GGA ACC ATA AGG ACA TTC GAT GAG GAA GTT AGG GAT TAT ATA GTA AGG AGA ATG AAG GAG ATT ACT GAA AAC TTT GCC AAT GGG ATG AGG TGC GAG GGG AAG TTT GAA CTA ACG ATA GAG CAT ATA CCC CCA ACT ATA AAT AAT GAA AAG CTG GCG AAT TTT GCG AGG GAT GTG CTA AAG GTT CTG GGC GAA ATT AGG GAG CCT AAA CCA ACG ATG GGA GCT GAA GAT TTT GCC TTT TAT ACA ACC AAA GCC CCA GGA CTG TTC ATA TTC CTG GGA ATA AGA AAC GAA GAA AAG GGA ATA ATT TAC CCA CAC CAC CAT CCA AAG TTT AAT GTG GAT GAG GAC ATC TTG TGG ATG GGA GCA GCG ATC CAT TCT CTT CTG ACT TAT CAC TAC CTC TCC CTT TGATTTTTTCACSEQ ID NO: 2 Sequence length: 1176 Sequence type: Genomic DNA Topology: linear Origin: Organism name: Pyrococcus horikoshii Sequence ATG GAT GAG TTT ATA ATT AAA AGA GCA AAA GAG TTG CAG GGG TAT ATA GTT GAG AAG AGG AGA GAT TTC CAC ATG TAC CCA GAG CTG AAG TAT GAG GAA GAG AGG ACT TCT AAA ATA GTG GAG GAA GAA TTA AAA AAG CTC GGA TAT GAA GTT GTC AGA ACT GCA AAA ACA GGG GTT ATA GGT ATC CTT AAA GGA AAA GAA GAC GGA AAA ACC GTG GCT TTA AGG GCT GAT ATG GAT GCT TTG CCT ATT CAG GAG GAG AAT GAT GTT CCT TAT AAG TCC TTA GGG TTC CCT GGG AAG ATG CAT GCT TGT GGT CAC GAC GCC CAC ACA GCA ATG CTA CTA GGA GCA AAG ATA TTA GCG GAG ATG AAA GAT GAG TTG CAG GGA ACC GTT AAA TTA ATA TTC CAA CCT GCT GAG GAA GGA GGA CTT GGA GCA AAG AAG ATA GTT GAA GAA GGG CAC TTG GAT GAT GTA GAT GCT ATC TTT GGG ATC CAC GTAGGCC GAG CTA CCT TCG GGA ATC ATA GGA ATC AAG AGC GGG CCA CTA CTA GCG TCT GCA GAT GCA TTT AGG GTT TTG ATA AAG GGG AAG GGA GGT CAC GGA GCA GCA CCG CAC CTC TCG ATA GAC CCA ATA GCT TTA GCT GTA GAT TTA GTG AAT GCC TAT CAG AAG ATA ATA TCG AGG GAA GTA GAT CCA CTA CAA CCA GCG GTT CTT AGC GTT ACC TCG ATA AAA GCT GGA ACG ACA TTT AAT GTA ATT CCA GAA GCC GCG ATA CTT GGA ACC ATA AGG ACA TTC GAT GAG GAA GTT AGG GAT TAT ATA GTA AGG AGA ATG AAG GAG ATT ACT GAA AAC TTT GCC AAT GGG ATG AGG TGC GAG GGG AAG TTT GAA CTA ACG ATA GAG CAT ATA CCC ACA ATA ATA AAT GAA AAG CTG GCG AAT TTT GCG AGG GAT GTG CTA AAG GTT CTG GGC GAA ATT AGG GAG CCT AAA CCA ACG ATG GGA GCT GAA GAT TTT GCC TTT TAT ACA ACC AAA GCC CCA GGA CTG TTC ATA TTC CTG GGA ATA AGA AAG GAA AGA GGA ATA ATT TAC CCA CAC CAC CAT CCA AAG TTT AAT GTG GAT GAG GAC ATC TTG TGG ATG GGA GCA GCG ATC CAT TCT CTT CTG ACT TAT CAC TAC CTC TCC CTT TGATTTTTTCAC

【図面の簡単な説明】[Brief description of the drawings]

【図1】 温度変化に伴う酵素活性の変化を示す図であ
る。
FIG. 1 is a diagram showing a change in enzyme activity with a change in temperature.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C12R 1:19) (C12N 9/80 C12R 1:19) (C12N 15/09 ZNA C12R 1:01) (72)発明者 小杉 佳次 茨城県つくば市東1丁目1番3 工業技 術院生命工学工業技術研究所内 (72)発明者 樋口 勝彦 茨城県つくば市東1丁目1番3 工業技 術院生命工学工業技術研究所内 (56)参考文献 特開 平6−46866(JP,A) 特開 昭63−216481(JP,A) 特開 昭62−44181(JP,A) 特開 昭63−219379(JP,A) 特開 平4−278086(JP,A) 特開 平3−224483(JP,A) Appl.Environ.Micr obiol.,Vol.59(11),p. 3878−3888(1993) (58)調査した分野(Int.Cl.7,DB名) C12N 15/00 C12N 9/48 BIOSIS(DIALOG) CA(STN) WPIDS(STN) GenBank/EMBL/DDBJ(G ENETYX) PIR/Swissprot Geneseq──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI C12R 1:19) (C12N 9/80 C12R 1:19) (C12N 15/09 ZNA C12R 1:01) (72) Inventor Kosugi Kaji 1-3-1 Higashi, Tsukuba, Ibaraki Pref., Institute of Biotechnology, Industrial Technology Institute (72) Inventor Katsuhiko Higuchi 1-3-1, Higashi, Tsukuba, Ibaraki Pref., Institute of Biotechnology, Industrial Technology Institute (56) References JP-A-6-46866 (JP, A) JP-A-63-216481 (JP, A) JP-A-62-44181 (JP, A) JP-A-63-219379 (JP, A) -278086 (JP, A) JP-A-3-224483 (JP, A) Appl. Environ. Microbiol. , Vol. 59 (11), p. 3878-3888 (1993) (58) Fields investigated (Int. Cl. 7 , DB name) C12N 15/00 C12N 9/48 BIOSIS (DIALOG) CA (STN) WPIDS (STN) GenBank / EMBL / DDBJ (GENETYX) PIR / Swisprot Geneseq

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記の性質を有する酵素。 (1)アミノアシラーゼ活性およびカルボキシペプチダ
ーゼ活性を有する (2)至適温度は90〜95℃ (3)至適pHは6.5 〜8.0 (4)95℃で3時間加熱(pH 7.5)しても活性を失わな
い (5)分子量は40,000(SDSポリアクリルアミド電気
泳動法)
An enzyme having the following properties: (1) Has aminoacylase activity and carboxypeptidase activity (2) Optimal temperature is 90-95 ° C (3) Optimal pH is 6.5-8.0 (4) Activity even after heating at 95 ° C for 3 hours (pH 7.5) (5) Molecular weight is 40,000 (SDS polyacrylamide electrophoresis)
【請求項2】 配列番号1記載のアミノ酸配列、又は配
列番号1において1若しくは数個のアミノ酸が欠失、置
換若しくは付加されたアミノ酸配列により表される請求
項1記載の酵素。
2. The enzyme according to claim 1, which is represented by the amino acid sequence of SEQ ID NO: 1 or the amino acid sequence in which one or several amino acids have been deleted, substituted or added in SEQ ID NO: 1.
【請求項3】 以下の(a) 又は(b) のタンパク質をコー
ドする遺伝子。 (a) 配列番号1記載のアミノ酸配列からなるタンパク質 (b) 配列番号1記載のアミノ酸配列において1若しくは
数個のアミノ酸が欠失、置換若しくは付加されたアミノ
酸配列からなり、かつアミノアシラーゼ活性およびカル
ボキシペプチダーゼ活性を有するタンパク質
3. A gene encoding the following protein (a) or (b): (a) a protein consisting of the amino acid sequence of SEQ ID NO: 1; (b) a protein consisting of the amino acid sequence of SEQ ID NO: 1 in which one or several amino acids have been deleted, substituted or added; and Protein having peptidase activity
JP9018380A 1997-01-31 1997-01-31 Thermostable enzyme having aminoacylase and carboxypeptidase activities, and gene encoding the same Expired - Lifetime JP3012919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9018380A JP3012919B2 (en) 1997-01-31 1997-01-31 Thermostable enzyme having aminoacylase and carboxypeptidase activities, and gene encoding the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9018380A JP3012919B2 (en) 1997-01-31 1997-01-31 Thermostable enzyme having aminoacylase and carboxypeptidase activities, and gene encoding the same

Publications (2)

Publication Number Publication Date
JPH10210976A JPH10210976A (en) 1998-08-11
JP3012919B2 true JP3012919B2 (en) 2000-02-28

Family

ID=11970117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9018380A Expired - Lifetime JP3012919B2 (en) 1997-01-31 1997-01-31 Thermostable enzyme having aminoacylase and carboxypeptidase activities, and gene encoding the same

Country Status (1)

Country Link
JP (1) JP3012919B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4502295B2 (en) 2000-08-02 2010-07-14 ダイセル化学工業株式会社 Thermostable D-aminoacylase
JP2008307006A (en) * 2007-06-15 2008-12-25 Toyobo Co Ltd Method for producing l-amino acid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Appl.Environ.Microbiol.,Vol.59(11),p.3878−3888(1993)

Also Published As

Publication number Publication date
JPH10210976A (en) 1998-08-11

Similar Documents

Publication Publication Date Title
DiRuggiero et al. Characterization, cloning, and in vitro expression of the extremely thermostable glutamate dehydrogenase from the hyperthermophilic Archaeon, ES4.
JP3150335B2 (en) Novel polypeptide, DNA sequence enabling its expression, preparation method and use thereof
JP3453397B2 (en) Purified thermostable DNA polymerase obtained from Pyrococcus species
JP3012919B2 (en) Thermostable enzyme having aminoacylase and carboxypeptidase activities, and gene encoding the same
Jack et al. Overexpression, purification and crystallization of Bam HI endonuclease
JP2754975B2 (en) Farnesyl diphosphate synthase and DNA sequence encoding the same
JP2961245B2 (en) Thermostable acyl peptide hydrolase and gene encoding the same
JP3015878B2 (en) Thermostable enzyme having DNA polymerase activity
US6251649B1 (en) Thermostable flap endonuclease derived from a hyperthermophile bacterium belonging to the genus pyrococcus
JP3486942B2 (en) Thermostable esterase
Steffen et al. Purification and characterization of the single-stranded DNA binding protein from Streptococcus pneumoniae
US5019509A (en) Method and compositions for the production of l-alanine and derivatives thereof
EP1070132B1 (en) Recombinant l-n-carbamoylase derived from arthrobacter aurescens, and a method for producing l-amino acids by using the same
JP3498808B2 (en) DNA polymerase gene
JP3536049B2 (en) Mutant kanamycin nucleotidyltransferase and method for screening thermophilic bacteria using the same
JP2923771B1 (en) Thermostable enzyme having aminotransferase activity and gene encoding the same
US6255081B1 (en) Thermostable flap endonuclease derived from hyperthermophile bacterium belonging to the genus pyrococcus
JP3477746B2 (en) Transglutaminase gene from fish
JPH05292961A (en) Purified para-nitrobenzyl esterase derived from bacillus
JP3197355B2 (en) Asparaginyl endopeptidase gene
JP3473985B2 (en) Method for producing D-proline
JP3335287B2 (en) Hexokinase gene
JP3440954B2 (en) DNA polymerase gene
JPH06113839A (en) Aldehyde dehydrogenase
Quirk Studies on the Escherichia coli deoxyguanosine triphosphate triphosphohydrolase: from gene to enzyme

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term