Nothing Special   »   [go: up one dir, main page]

JP3091944B2 - Method for producing carbon particles for negative electrode of lithium ion secondary battery - Google Patents

Method for producing carbon particles for negative electrode of lithium ion secondary battery

Info

Publication number
JP3091944B2
JP3091944B2 JP06119624A JP11962494A JP3091944B2 JP 3091944 B2 JP3091944 B2 JP 3091944B2 JP 06119624 A JP06119624 A JP 06119624A JP 11962494 A JP11962494 A JP 11962494A JP 3091944 B2 JP3091944 B2 JP 3091944B2
Authority
JP
Japan
Prior art keywords
weight
parts
negative electrode
secondary battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06119624A
Other languages
Japanese (ja)
Other versions
JPH07302595A (en
Inventor
勲 甲斐
光巨 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP06119624A priority Critical patent/JP3091944B2/en
Publication of JPH07302595A publication Critical patent/JPH07302595A/en
Application granted granted Critical
Publication of JP3091944B2 publication Critical patent/JP3091944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウムイオン二次電
池負極用カーボン粒子の製造方法に関する。
The present invention relates to a lithium ion secondary battery.
The present invention relates to a method for producing carbon particles for a negative electrode of a pond.

【0002】[0002]

【従来の技術】近年、リチウムイオン二次電池は、小型
・軽量化を図り得る高エネルギー蓄電池であるために、
携帯用電子機器用電源として注目されている。そして、
このリチウムイオン二次電池にあっては、正極活物質に
は、LixMyOz(Mは遷移金属元素を主とする1種
または2種以上の金属元素、0.5≦x≦2,1≦y≦
2,2≦z≦4)で示されるリチウム金属複合酸化物粒
子が用いられ、負極には、石油ピッチコークス、石炭ピ
ッチコークスの粒子等の炭素質材料が用いられる。
2. Description of the Related Art In recent years, a lithium ion secondary battery is a high energy storage battery which can be reduced in size and weight.
It is attracting attention as a power source for portable electronic devices. And
In this lithium ion secondary battery, the positive electrode active material includes LixMyOz (M is one or more metal elements mainly composed of a transition metal element, 0.5 ≦ x ≦ 2, 1 ≦ y ≦
2, 2 ≦ z ≦ 4) lithium metal composite oxide particles are used, and a carbonaceous material such as petroleum pitch coke or coal pitch coke particles is used for the negative electrode.

【0003】その電池性能を示すエネルギー密度は、負
極の活物質である炭素質材料のリチウムイオンのドーピ
ング(吸蔵)度合に依存する。正極活物質は充電時にリ
チウムイオンを放出し、負極の炭素質材料にドーピング
(充電)され、放電時に炭素質材料からリチウムイオン
が脱ドーピング(放電)される。電池缶の限られた内容
積に、より多くの活物質を充填することが電池の高容量
化につながることから、炭素質材料をより高比重とする
ことが好ましい。また電流効率、すなわちドーピング電
気量に対する脱ドーピング電気量の百分率が高いほど正
極のリチウム・金属複合酸化物中のリチウムが充放電以
外に消費されないこととなって望ましい。
The energy density indicating the battery performance depends on the degree of lithium ion doping (occluding) of a carbonaceous material as an active material of a negative electrode. The positive electrode active material emits lithium ions during charging, is doped (charged) into the carbonaceous material of the negative electrode, and is dedoped (discharged) from the carbonaceous material during discharge. Since filling the limited internal volume of the battery can with more active material leads to an increase in the capacity of the battery, it is preferable that the carbonaceous material has a higher specific gravity. Further, it is desirable that the higher the current efficiency, that is, the higher the percentage of the amount of dedoping electricity with respect to the amount of doping electricity, the less lithium in the lithium-metal composite oxide of the positive electrode is consumed except for charging and discharging.

【0004】そして、各種電子・電気機器の電源用とし
ては、より高容量化を図った電池の出現が待望されてい
る。天然黒鉛、人工黒鉛は、2.23〜2.25と高比
重であり、電解液として非プロトン性有機溶媒を選択す
ることにより高容量化を図ることができる。そして、こ
れら黒鉛の粒子径を小さくするほど単位重量当りの表面
積が増大して高容量化するものの、黒鉛表面がより活性
化しリチウムを析出させやすくなってデンドライトショ
ート等の電池の安全性に問題を生ずる恐れがあり、また
電解液を分解しやすくなることから溶媒の選択が制約さ
れることとなる。そこで、この黒鉛表面の改質が種々提
案されている。
[0004] As a power source for various electronic and electric devices, the appearance of batteries with higher capacity is expected. Natural graphite and artificial graphite have high specific gravities of 2.23 to 2.25, and high capacity can be achieved by selecting an aprotic organic solvent as the electrolytic solution. And, as the particle size of these graphites decreases, the surface area per unit weight increases and the capacity increases, but the graphite surface becomes more active and lithium is easily precipitated, which causes a problem in battery safety such as dendrite short-circuit. There is a possibility that this may occur, and the electrolyte solution is easily decomposed, which limits the choice of the solvent. Therefore, various modifications of the graphite surface have been proposed.

【0005】すなわち、特開平4−368778号にお
ける、炭化水素等を加熱炉内で熱分解し、黒鉛表面に堆
積させて乱層構造の非晶質炭素で覆う方法、特開平5−
121066号における、バインダーピッチをキノリン
等に溶解し、黒鉛粒子浸漬した後、キノリンを蒸発さ
せ、加熱焼成して炭素層間距離(d002)が0.33
7nm以上の炭素質で被覆する方法、特開平5−190
209号における、ポリアクリルニトリルのジメチルホ
ルムアミド溶液と粉末黒鉛とを混合し、溶媒を蒸発さ
せ、ポリアクリルニトリル堆積層を形成することによっ
て、黒鉛より無秩序な炭素層を備える方法、特開平4−
370662号における、ペリレン−3,4,9,10
テトラカルン酸二無水物を2800℃まで熱処理し
た、真密度2.20g/cm 3 、平均粒子径5μm、炭
素層間距離(d002)が3.39Å、C軸方向の結晶
子の厚さLcが250Åである粒子と、ペリレン−3,
4,9,10テトラカル三無水物とを混合し、
900℃まで昇温し多相構造をつくる方法等がある。更
に特開平5−94838号では、d002が3.36Å
以上3.45Å未満、特開平5−159771号では、
d002が3.35Å以上3.45Å未満、特開平5−
307959号では、d002が3.40Å未満の粒子
にフェノール樹脂等の高分子物質を被覆し、加熱分解す
る方法が提案されている。
[0005] That is, JP-A-4-368778 discloses a method in which hydrocarbons and the like are thermally decomposed in a heating furnace, deposited on a graphite surface, and covered with amorphous carbon having a turbostratic structure.
No. 121066, binder pitch is dissolved in quinoline or the like, graphite particles are immersed, quinoline is evaporated and calcined by heating to reduce the carbon interlayer distance (d002) to 0.33.
Coating with carbonaceous material of 7 nm or more
209, a method of providing a carbon layer that is more disordered than graphite by mixing a dimethylformamide solution of polyacrylonitrile and powdered graphite and evaporating the solvent to form a polyacrylonitrile deposition layer.
No. 370662, perylene-3,4,9,10
- the Tetorakaru Bonn dianhydride was heat treated to 2800 ° C., true density 2.20 g / cm 3, an average particle diameter of 5 [mu] m, the carbon interlayer distance (d002) is 3.39A, the thickness Lc in the C-axis direction of crystallites Is 250 °, and perylene-3,
4, 9, 10 - mixing the Tetorakaru Bonn tribasic anhydride,
There is a method of raising the temperature to 900 ° C. to form a multiphase structure. Further, in JP-A-5-94838, d002 is 3.36 °.
Above 3.45 ° and in JP-A-5-159771,
d002 is greater than or equal to 3.35 ° and less than 3.45 °;
No. 307959 proposes a method of coating particles having a d002 of less than 3.40 ° with a high molecular substance such as a phenol resin and subjecting them to thermal decomposition.

【0006】しかし、高分子物質の加熱分解による炭化
する方法では、多孔質となりやすく、孔道を通じて黒鉛
質表面への有機溶媒の接触による分解を起こしやすいの
で、これを防止するために比較的多量の高分子物質被覆
が必要となる。一方、バインダーピッチ等の被覆物の焼
成ではピッチの焼結による黒鉛粒子融着が起こり、再粉
砕による粒子化が必要となる。その際、黒鉛粒子表面が
粉砕により再度露出し、黒鉛の欠点が出る危険性があっ
た。
However, in the method of carbonizing a polymer substance by thermal decomposition, it tends to be porous and easily decomposed by contact of an organic solvent to a graphite surface through pores, so that a relatively large amount is used to prevent this. A polymer coating is required. On the other hand, in the firing of a coating such as a binder pitch, graphite particles are fused by sintering of the pitch, and it is necessary to re-pulverize the particles. At that time, the surface of the graphite particles was exposed again by the pulverization, and there was a risk that a defect of graphite might appear.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、急速
充電性に優れ、高い電気容量を有し安全性に優れたリチ
ウムイオン二次電池負極用カーボン粒子を工業的に有用
な高い経済性にて製造する方法を提供することにある。
An object of the present invention is to provide a rapid
Excellent charging property, industrially useful excellent lithium ion secondary battery negative electrode carbon particles in safety have capacitance have high
It is an object of the present invention to provide a method of manufacturing with high economic efficiency .

【0008】[0008]

【課題を解決するための手段】本発明者らは、前記目的
を達成するため鋭意検討した結果、タールピッチ(A)
硬化性フェノール樹脂(B)とを特定の炭素質材料
(C)の粒子表面に融着、縮合、架橋させた後、熱処理
するカーボン粒子の製造方法、又はタールピッチ(A)
硬化性フェノール樹脂(B)とを特定の炭素質材料
(C)とグリーンメソフェーズピッチ小球体とグリーン
メソフェーズピッチ粉砕粒子から選ばれた少なくとも1
種との混合物(D)の表面に融着、縮合、架橋させた
後、熱処理するカーボン粒子の製造方法が、前記課題の
解決に極めて有効であることを見い出し、本発明の完成
に至った。すなわち本発明は、タールピッチ(A)と
化性フェノール樹脂(B)とを、平均粒子径が1〜20
μm、炭素層間距離(d002)が0.336〜0.3
40nm、C軸方向の結晶子の厚さ(Lc)が8〜70
nmの範囲にある炭素質材料(C)の粒子表面に融着、
縮合、架橋させた後、熱処理するにあたり、(C)10
0重量部に対する(A+B)が30〜100重量部、
(A)/(B)の比が5/1〜0.5/1であるリチウ
ムイオン二次電池負極用カーボン粒子の製造方法、又は
タールピッチ(A)と硬化性フェノール樹脂(B)と
を、平均粒子径が1〜20μm、炭素層間距離(d00
2)が0.336〜0.340nm、C軸方向の結晶子
の厚さ(Lc)が8〜70nmの範囲にある炭素質材料
(C)の粒子トルエン不溶分85〜98重量%、キノ
リン可溶分15〜5重量%、揮発分6〜14重量%の範
囲にあるグリーンメソフェーズピッチ小球体とグリーン
メソフェーズピッチ粉砕粒子から選ばれた少なくとも1
種との混合物(D)の表面に融着、縮合、架橋させた
後、熱処理するにあたり、(C)+(D)100重量部
に対する(A)+(B)が30〜100重量部であり
(A)/(B)の比が5/1〜0.5/1及び(C)/
(D)の比が95/5〜5/95であるリチウムイオン
二次電池負極用カーボン粒子の製造方法である。
Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and as a result, have found that tar pitch (A)
And a heat curable phenolic resin (B) are fused, condensed, and cross-linked to the particle surface of the specific carbonaceous material (C), and then heat-treated, or tar pitch (A)
And a curable phenolic resin (B) at least one selected from a specific carbonaceous material (C) , green mesophase pitch small spheres, and green mesophase pitch ground particles.
The present inventors have found that a method for producing carbon particles that is subjected to heat treatment after fusion, condensation, and cross-linking to the surface of the mixture (D) with the seed is extremely effective in solving the above-described problems, and has completed the present invention. That is, the present invention is hard and tar pitch (A)
A resistance phenolic resin (B), an average particle diameter of from 1 to 20
μm, distance between carbon layers (d002) is 0.336 to 0.3
40 nm, the crystallite thickness (Lc) in the C-axis direction is 8 to 70
fusion to the particle surface of the carbonaceous material (C) in the range of nm,
After condensation and cross-linking, heat treatment (C) 10
(A + B) is 30 to 100 parts by weight relative to 0 parts by weight,
(A) / ratio of (B) is 5/1 to 0.5 / 1 lithium
A method for producing carbon particles for a negative electrode of a secondary battery , or a method in which a tar pitch (A) and a curable phenol resin (B) are mixed with an average particle diameter of 1 to 20 μm and a carbon interlayer distance (d00
2) particles of carbonaceous material (C) having a crystallite thickness in the range of 0.336 to 0.340 nm and a crystallite in the C-axis direction (Lc) of 8 to 70 nm , toluene-insoluble content of 85 to 98% by weight, quinoline At least one selected from green mesophase pitch small spheres and green mesophase pitch ground particles having a soluble content of 15 to 5% by weight and a volatile content of 6 to 14% by weight.
After being fused, condensed, and cross-linked to the surface of the mixture (D) with the seed , upon heat treatment, (A) + (B) is 30 to 100 parts by weight with respect to 100 parts by weight of (C) + (D). (A) / (B) ratio of 5/1 to 0.5 / 1 and (C) /
Lithium ion having a ratio of (D) of from 95/5 to 5/95
Is a manufacturing how the secondary battery negative electrode carbon particles.

【0009】以下、本発明について詳細に説明する。本
発明に用いられるタールピッチ(A)としては、例とし
てナフサ分解、原油分解、石炭の熱分解、アスファルト
分解等による石油系タールピッチ、石炭系タールピッチ
等があげられる。
Hereinafter, the present invention will be described in detail. Examples of the tar pitch (A) used in the present invention include petroleum tar pitch, coal tar pitch and the like by naphtha cracking, crude oil cracking, thermal cracking of coal, asphalt cracking and the like.

【0010】本発明で用いられる硬化性フェノール樹脂
(B)は、硬化剤や硬化促進剤の存在下で常温ないし加
熱により縮合、架橋する性質、すなわち硬化性を有する
ものであれば特に限定されず、例えばノボラック型、レ
ゾール型もしくはベンジリックエーテル型のフェノール
樹脂、及びこれらをフラン樹脂、フルフリルアルコー
ル、メラミン樹脂、キシレン樹脂等で変性した樹脂など
挙げられる。
The curable phenolic resin (B) used in the present invention is not particularly limited as long as it has a property of condensing and crosslinking at room temperature or under heating in the presence of a curing agent or a curing accelerator, that is, a curability. Examples thereof include phenolic resins of novolak type, resol type or benzylic ether type, and resins obtained by modifying these with furan resin, furfuryl alcohol, melamine resin, xylene resin and the like.

【0011】特定の炭素質材料(C)としては、2時間
以内の急速充電性を求めることから、平均粒子径1〜2
0μm、好ましくは3〜10μm、また炭素層間距離
(d002)が0.336〜0.340nmかつC軸方
向の結晶子の厚さ(Lc)が8〜70nmの範囲のもの
を用いる。平均粒子径が1μm未満では、粒子表面に融
着するタールピッチ(A)及び硬化性フェノール樹脂
(B)との量が多くなり過ぎて、炭化した後の粒子の電
気容量が小さくなり、また20μmを越えると、急速充
電性が損なわれ好ましくない。好ましい粒子径は、3〜
10μmである。また、炭素層間距離(d002)が
0.336〜0.340nmかつC軸方向の結晶子の厚
さ(Lc)が8〜70nmの範囲の炭素質材料(C)
は、例えば天然黒鉛、人工黒鉛を衝撃粉砕するか濃硫酸
等でステージ1のインターカレーションさせた後、水洗
する等によりつくられる。炭素層間距離(d002)が
0.336nm未満か、C軸方向の結晶子の厚さ(L
c)が70nmを越えると、急速充電性が損なわれ、炭
素層間距離(d002)が0.340nmを越えるか、
C軸方向の結晶子の厚さ(Lc)が8nm未満では電気
容量が小さくなることから、上述した範囲内が好まし
い。
Since the specific carbonaceous material (C) is required to have a quick chargeability within 2 hours, an average particle diameter of 1-2
0 μm, preferably 3 to 10 μm, a carbon interlayer distance (d002) of 0.336 to 0.340 nm, and a crystallite thickness (Lc) in the C-axis direction of 8 to 70 nm are used. When the average particle diameter is less than 1 μm, the amount of the tar pitch (A) and the curable phenol resin (B) fused to the particle surface becomes too large, and the electric capacity of the carbonized particles becomes small. If it exceeds, the quick chargeability is impaired, which is not preferable. Preferred particle size is 3 to
10 μm. Further, a carbonaceous material (C) having a carbon interlayer distance (d002) of 0.336 to 0.340 nm and a crystallite thickness (Lc) in the C-axis direction of 8 to 70 nm.
Is made by, for example, impact-crushing natural graphite or artificial graphite or intercalating the stage 1 with concentrated sulfuric acid or the like, followed by washing with water. The distance between carbon layers (d002) is less than 0.336 nm, or the thickness of crystallite (L
If c) exceeds 70 nm, the rapid charging property is impaired, and the carbon interlayer distance (d002) exceeds 0.340 nm, or
When the thickness (Lc) of the crystallite in the C-axis direction is less than 8 nm, the electric capacity is small, so that the above range is preferable.

【0012】本発明に用いられるグリーンメソフェーズ
ピッチ小球体又はグリーンメソフェーズピッチ粉砕粒
、前記タールピッチを300〜500℃に加熱した際
に生成するメソフェーズピッチ小球体を遠心分離したも
の、あるいは更に小球体が融合したものを塊状として分
離した後、粉砕したものであり、トルエン不溶分85〜
98重量%、キノリン可溶分15〜5重量%、揮発分
(800℃、7分間にて減少する重量比率)6〜14重
量%に制御されたもので、その平均粒子径としては1〜
15μm、好ましくは3〜10μmのものである。
[0012] Green mesophase pitch globules or green mesophase pitch milled grain child used in the present invention
Is obtained by centrifuging the mesophase pitch microspheres generated when the tar pitch is heated to 300 to 500 ° C., or further, by isolating the mesophase pitch microspheres into a lump and then pulverizing them. Min 85
98% by weight, a quinoline-soluble content of 15 to 5% by weight, and a volatile content (weight ratio reduced in 800 ° C. for 7 minutes) of 6 to 14% by weight.
It is 15 μm, preferably 3 to 10 μm.

【0013】そして、タールピッチ(A)と硬化性フェ
ノール樹脂(B)との合計使用量は、炭素質材料(C)
又は炭素質材料(C)と前記グリーンメソフェーズピッ
チ小球体及びグリーンメソフェーズピッチ粉砕粒子から
選ばれた少なくとも1種との混合物(D)との合計量1
00重量部に対して固形分換算で30〜100重量部、
好ましくは45〜90重量部である。30重量部未満で
は、高温時(60℃)劣化する電気容量が大きくなる。
また90重量部を越えると、電気容量が小さくなり、本
目的を達成しえない。
The total amount of the tar pitch (A) and the curable phenolic resin (B) used is the same as that of the carbonaceous material (C).
Or carbonaceous material and (C) from the green mesophase pitch globules and Green mesophase pitch milled particles
Total amount of the mixture (D) with at least one selected one is 1
30 to 100 parts by weight in terms of solid content with respect to 00 parts by weight,
Preferably it is 45 to 90 parts by weight. If the amount is less than 30 parts by weight, the electric capacity deteriorated at high temperature (60 ° C.) becomes large.
On the other hand, when the amount exceeds 90 parts by weight, the electric capacity becomes small and the object cannot be achieved.

【0014】最も高い電気容量を得るには、前述した特
定の炭素質材料(C)に、グリーンメソフェーズピッチ
小球体とグリーンメソフェーズピッチ粉砕粒子のいずれ
かまたは混合物(D)を併用する。その際、(C)/
(D)の比率は95/5〜5/95の範囲で調整するこ
とができる。(C)の比率が高いと、放電電圧がより平
坦となった高容量化が図られ、(D)の比率が高いと、
より高容量化と急速充電性が得られ、かつ(D)単独で
は得られない放電電圧の平坦化が可能となる。
In order to obtain the highest electric capacity, either the green mesophase pitch small spheres or the green mesophase pitch ground particles or the mixture (D) is used in combination with the specific carbonaceous material (C) described above. At that time, (C) /
The ratio of (D) can be adjusted in the range of 95/5 to 5/95. When the ratio of (C) is high, the discharge voltage is more flattened to increase the capacity, and when the ratio of (D) is high,
Higher capacity and quick chargeability can be obtained, and flattening of the discharge voltage, which cannot be obtained by (D) alone, becomes possible.

【0015】本発明のカーボン粒子は、前記タールピッ
チと硬化性フェノール樹脂を、炭素質材料、又は該炭素
質材料とグリーンメソフェーズピッチ小球体及びグリー
ンメソフェーズピッチ粉砕粒子から選ばれた少なくとも
1種との混合物とともに撹拌混合可能な混練機、例えば
加熱式ニーダー等に投入した後、例えば120〜180
℃の温度まで撹拌混合処理されたものを熱処理炉に移
し、これを酸化を生じにくい雰囲気、例えば窒素、アル
ゴン等の雰囲気下で、常温から所定の温度まで適宜な昇
温速度で加熱処理を行うことにより得られる。
[0015] The carbon particles of the present invention are obtained by mixing the tar pitch and the curable phenol resin with a carbonaceous material or the carbonaceous material .
At least selected from quality material and green mesophase pitch globules and Green <br/> down mesophase pitch milled particles
After putting into a kneader capable of stirring and mixing with the mixture with one kind , for example, a heating kneader or the like, for example, 120 to 180
The mixture which has been stirred and mixed to a temperature of ° C. is transferred to a heat treatment furnace, and is subjected to a heat treatment at an appropriate heating rate from a normal temperature to a predetermined temperature in an atmosphere in which oxidation is unlikely to occur, for example, an atmosphere of nitrogen, argon, or the like. It can be obtained by:

【0016】本発明のリチウムイオン二次電池用負極
は、前記カーボン粒子と、バインダー、例えばカルボキ
シメチルセルローズ、フッ素ゴム、ポリフッ化ビニリデ
ン、ポリビニルピリジン、ポリビニルアルコール、ポリ
アクリル酸塩、EPDMゴム、ジエン系ゴム等との分散
液を、例えば1〜50μmの厚みを有する銅、ステンレ
ス、ニッケルの金属箔、網状体、多孔体等の集電体の上
に塗布し、乾燥し、プレスして得られる。
The negative electrode for a lithium ion secondary battery according to the present invention is characterized in that the carbon particles and a binder such as carboxymethyl cellulose, fluoro rubber, polyvinylidene fluoride, polyvinyl pyridine, polyvinyl alcohol, polyacrylate, EPDM rubber, diene-based A dispersion liquid of rubber or the like is obtained by applying, for example, a copper, stainless steel or nickel metal foil having a thickness of 1 to 50 μm on a current collector such as a net or a porous body, followed by drying and pressing.

【0017】本発明でいう非水系二次電池にあっては、
正極が、リチウムコバルト酸化物として、例えばLix
CoyMzO2(ただし、MはAl,In,Sn,M
n,Fe,Ti,Zr,Ceの中から選ばれた少なくと
も1種の金属を表し、x,y,zは各々0<x≦1.
1、0.5<y≦1、z≦0.15の数を表す)、Li
xCoO2(0<x≦1)、LixCoyNizO2
(0<x≦1、y+z=1)、リチウムニッケル酸化物
として、例えばLixNiO2(0<x≦1)、Lix
NiyMzO2(ただし、MはMn,Ti,Feの中か
ら選ばれた少なくとも1種の金属を表し、x,zは各々
0<x≦1、0.1<z≦0.3の数を表す)、リチウ
ムマンガン酸化物として、例えばLiMnO3、Lix
MnO2(0<x≦1)、LixMn2O4(0<x<
2)、LiCoxMn2−xO4(0<x≦0.5)、
LixMn2−yMyO4(ただし、MはNi,Co,
Ti,Feの中から選ばれた少なくとも1種の金属を表
し、x,yは各々0.5≦x≦2、0.1<y≦0.2
の数を表す)、電解液は、電解質が例えばLiClO
4,LiAsF6,LiPF6,LiBF4,CH3S
O3Li,CF3SO3Li,(CF3SO2)2NL
i等のリチウム塩のいずれか1種又は2種以上を混合し
たもの、溶媒が例えばプロピレンカーボネート、エチレ
ンカーボネート、ジメチルカーボネート、ジエチルカー
ボネート、1,2−ジメトキシエタン、1,2−ジエト
キシエタン、γ−ブチロラクトン、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン、1,3−ジオキソ
ラン、スルホラン、メチルスルホラン、アセトニトリ
ル、プロピオニトリル、ギ酸メチル、ギ酸エチル、酢酸
メチル、酢酸エチル、酢酸ブチル、酢酸ヘキシル、プロ
ピオン酸メチル、プロピオン酸エチル、プロピオン酸ブ
チル、プロピオン酸ヘキシル、リン酸トリエチル、リン
酸トリエチルヘキシル、リン酸トリラウレル等のいずれ
か1種又は2種以上を混合したもの、セパレーターが、
ポリエチレン、ポリプロピレン等のポリオレフィン微多
孔膜の1種の単独膜或いはそれらの1種又は2種以上の
貼り合わせ膜、そして負極として炭素質材料を活物質と
して用いるものをいう。
In the non-aqueous secondary battery according to the present invention,
The positive electrode is made of lithium cobalt oxide, for example, Lix
CoyMzO2 (where M is Al, In, Sn, M
represents at least one metal selected from n, Fe, Ti, Zr, and Ce, where x, y, and z are each 0 <x ≦ 1.
1, representing 0.5 <y ≦ 1, z ≦ 0.15), Li
xCoO2 (0 <x ≦ 1), LixCoyNizO2
(0 <x ≦ 1, y + z = 1), for example, LixNiO 2 (0 <x ≦ 1), Lix
NiyMzO2 (where M represents at least one metal selected from Mn, Ti, and Fe, and x and z represent the numbers 0 <x ≦ 1, 0.1 <z ≦ 0.3, respectively) , As lithium manganese oxide, for example, LiMnO3, Lix
MnO2 (0 <x ≦ 1), LixMn2O4 (0 <x <
2), LiCoxMn2-xO4 (0 <x ≦ 0.5),
LixMn2-yMyO4 (where M is Ni, Co,
Represents at least one metal selected from Ti and Fe, and x and y are 0.5 ≦ x ≦ 2 and 0.1 <y ≦ 0.2, respectively.
The electrolyte is, for example, LiClO.
4, LiAsF6, LiPF6, LiBF4, CH3S
O3Li, CF3SO3Li, (CF3SO2) 2NL
a mixture of any one or two or more lithium salts such as i, and a solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ -Butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, sulfolane, methylsulfolane, acetonitrile, propionitrile, methyl formate, ethyl formate, methyl acetate, ethyl acetate, butyl acetate, hexyl acetate, methyl propionate, propionate Ethyl acid, butyl propionate, hexyl propionate, triethyl phosphate, triethylhexyl phosphate, a mixture of two or more of trilaurel phosphate and the like, separator,
It refers to a single film of a polyolefin microporous film such as polyethylene or polypropylene, a single film or a bonded film of one or more of them, and a film using a carbonaceous material as an active material as a negative electrode.

【0018】本発明に係るカーボン粒子を含むリチウム
イオン二次電池用負極は、そのまま上述の正極、電解
液、セパレーターと用いて、初充電時に正極からのリチ
ウムイオンをドーピングしてもよいし、予めリチウムイ
オンをリチウム金属、リチウム合金、ヨウ化リチウムと
接触させてドーピングしておいてもよい。
The negative electrode for a lithium ion secondary battery containing carbon particles according to the present invention may be doped with lithium ions from the positive electrode during the initial charge using the above-described positive electrode, electrolyte and separator as it is, Lithium ions may be contacted with lithium metal, a lithium alloy, or lithium iodide for doping.

【0019】[0019]

【実施例】以下実施例、比較例により本発明を更に詳し
く説明するが、本発明はこれらに限定されるものではな
い。 (測定法) 電流効率(%)は、放電電気量/充電電気量×100
で表す。負極活物質の放電容量(mAh/g)は、活
物質重量当りの放電電気量としてもとめる。C軸方向
の炭素網面の積層厚みLc(nm)、炭素網面の面間隔
d002(nm)は、「日本学術振興会法」に準じたX
線回折法により算出する。 リチウムイオン二次電池用負極の作成 実施例及び比較例で得られたカーボン粒子100重量部
に対して、バインダーとしてカルボキシメチルセルロー
ズ0.8重量部と、スチレン−ブタジエンの架橋ゴムラ
テックス粒子2.0重量部とからなる水溶液を100重
量部加えて分散液とし、これを厚さ18μmの電解銅箔
の片面に塗工し、乾燥し、圧縮プレスする。これを作用
極とし、ポリエチレン微多孔膜を介してステンレスネッ
トに押しつけたリチウムシートを対極とし、1.0モル
のLiBF4のプロピレンカーボネート25%、エチレ
ンカーボネート25%、γ−ブチロラクトン50%の容
積分率の混合溶媒中で、最大1.0mA/cm2の電流
密度で充電を開始し8時間充電する。対Li/Li+電
位10mVまでドーピング(充電)する。放電は、対L
i/Li+電位1.0Vまで行い放電容量をもとめ、活
物質重量当りの放電電気量としてmAh/gで表示す
る。 急速充電性 3.0mA/cm2の電流密度で2時間充電し、1.0
mA/cm2の電流密度で2時間充電した場合との放電
電気量の比を百分率として表示する。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples, but the present invention is not limited thereto. (Measurement method) The current efficiency (%) is the amount of discharged electricity / the amount of charged electricity × 100.
Expressed by The discharge capacity (mAh / g) of the negative electrode active material is determined as the amount of discharge electricity per weight of the active material. The lamination thickness Lc (nm) of the carbon mesh plane in the C-axis direction and the spacing d002 (nm) of the carbon mesh plane are X in accordance with the “Japan Society for the Promotion of Science”.
It is calculated by the line diffraction method. Preparation of negative electrode for lithium ion secondary battery 0.8 parts by weight of carboxymethyl cellulose as a binder and 100 parts by weight of carbon particles obtained in Examples and Comparative Examples, and crosslinked rubber latex particles of styrene-butadiene 2.0 100 parts by weight of an aqueous solution consisting of parts by weight is added to form a dispersion, which is coated on one surface of an electrolytic copper foil having a thickness of 18 μm, dried, and pressed by compression. Using this as a working electrode, a lithium sheet pressed against a stainless steel net via a polyethylene microporous membrane was used as a counter electrode, and the volume fraction of 1.0 mol of LiBF4 propylene carbonate 25%, ethylene carbonate 25%, and γ-butyrolactone 50% In the mixed solvent of (1), charging is started at a maximum current density of 1.0 mA / cm2, and charging is performed for 8 hours. Doping (charging) is performed up to a Li / Li + potential of 10 mV. The discharge is
The discharge capacity is determined by performing the process up to an i / Li + potential of 1.0 V, and expressed as mAh / g as the amount of discharge electricity per weight of the active material. Quick chargeability Charge at a current density of 3.0 mA / cm 2 for 2 hours,
The ratio of the amount of discharged electricity to the case where the battery was charged at a current density of mA / cm 2 for 2 hours is expressed as a percentage.

【0020】(実施例1) タールピッチ(A)として石炭系バインダーピッチ(軟
化点89℃)を45重量部と、硬化性フェノール樹脂
(B)としてレゾール型フェノール樹脂水溶液50重量
部(固形分として30重量部)と、炭素質材料(C)と
して人工黒鉛の濃硫酸処理品(平均粒子径5μm、炭素
層間距離(d002)0.336nm、C軸方向の結晶
子の厚さ(Lc)55nm)90重量部と、グリーンメ
ソフェーズピッチ小球体(D)(トルエン不溶分91重
量%、キノリン可溶分11重量%、揮発分9重量%、平
均粒子径4μm)10重量部とを加熱式ニーダーに入れ
て、常温から160℃まで2時間かけて漸次上昇させ、
縮合、架橋し、脱水する。更に30分間160℃に保持
した後、冷却し、取り出して電気炉へ移す。そして窒素
雰囲気下で、0.2℃/分の昇温速度で常温から900
℃まで昇温し、炭化させる。これを電気炉から取り出
し、ほぐした後、200メッシュのふるいにかけてパス
品の比率を求めた。200メッシュパス品による負極評
価結果を含めて、実施結果を表1に示す。
(Example 1) A coal-based binder pitch (softening point: 89 ° C) of 45 parts by weight as a tar pitch (A) and a resole type phenol resin aqueous solution of 50 parts by weight (solid content) as a curable phenol resin (B) 30 parts by weight) and a concentrated sulfuric acid-treated product of artificial graphite as a carbonaceous material (C) (average particle diameter: 5 μm, distance between carbon layers (d002): 0.336 nm, crystallite thickness in the C-axis direction (Lc): 55 nm) 90 parts by weight and green
10 parts by weight of sophase pitch microspheres (D) (toluene-insoluble matter 91% by weight, quinoline-soluble matter 11% by weight, volatile matter 9% by weight, average particle diameter 4 μm) are put into a heating kneader and heated to 160 Gradually increase to 2 ° C over 2 hours,
Condensate, crosslink and dehydrate. After maintaining the temperature at 160 ° C. for another 30 minutes, it is cooled, taken out and transferred to an electric furnace. Then, under a nitrogen atmosphere, the temperature is raised from room temperature to 900 ° C. at a rate of 0.2 ° C./min.
C. and carbonized. This was taken out of the electric furnace, unraveled, and passed through a 200-mesh sieve to determine the ratio of pass products. Table 1 shows the results of the implementation, including the results of the negative electrode evaluation using a 200 mesh pass product.

【0021】(実施例2) タールピッチ(A)及び硬化性フェノール樹脂(B)は
実施例1と同一のものを用い、これらと、炭素質材料
(C)として天然黒鉛のジェットミル粉砕品(平均粒子
径3μm、炭素層間距離(d002)0.336nm、
C軸方向の結晶子の厚さ(Lc)38nm)45重量部
と、実施例1と同一のグリーンメソフェーズピッチ小球
体(D)55重量部とを加熱式ニーダーに入れて、常温
から150℃まで1.5時間かけて漸次上昇させ、縮
合、架橋し、脱水する。更に1時間150℃に保持した
後、冷却し、取り出し、電気炉へ移す。そして窒素雰囲
気下で、2℃/分で常温から200℃まで上昇させ、以
降0.2℃/分の昇温速度で900℃まで熱処理した後
実施例1と同様に行った。その評価結果を表1に示す。
(Example 2) The same tar pitch (A) and curable phenolic resin (B) as those in Example 1 were used, and these were used as the carbonaceous material (C) in a jet-milled product of natural graphite (C). Average particle diameter 3 μm, distance between carbon layers (d002) 0.336 nm,
45 parts by weight of the thickness of the crystallite in the C-axis direction (Lc) of 38 nm) and the same green mesophase pitch sphere as in Example 1.
55 parts by weight of the body (D) is placed in a heating kneader, gradually raised from room temperature to 150 ° C. over 1.5 hours, condensed, crosslinked, and dehydrated. After keeping the temperature at 150 ° C. for another hour, it is cooled, taken out, and transferred to an electric furnace. Then, the temperature was increased from room temperature to 200 ° C. at a rate of 2 ° C./min in a nitrogen atmosphere, and then heat-treated to 900 ° C. at a rate of 0.2 ° C./min. Table 1 shows the evaluation results.

【0022】(実施例3) 実施例1と同一のタールピッチ(A)40重量部と、
化性フェノール樹脂(B)として硬化性を有するノボラ
ック型フェノール樹脂20重量部(硬化剤としてヘキサ
メチレンテトラミンを2重量部含む)と、炭素質材料
(C)として人工黒鉛のジェットミル粉砕品(平均粒子
径7μm、炭素層間距離(d002)0.337nm、
C軸方向の結晶子の厚さ(Lc)48nm)100重量
部とを加熱式ニーダーに入れて、常温から160℃まで
2時間かけて昇温し、架橋する。更に30分間160℃
に保持した後、電気炉に移し、窒素雰囲気下で、5℃/
分で常温から200℃まで昇温し、以降0.2℃/分で
1000℃まで熱処理した後実施例1と同様に行った。
その評価結果を表1に示す。
[0022] and Example 3 Example 1 the same tar pitch and (A) 40 parts by weight, hardness
Of novolak type phenolic resin 20 parts by weight with a curable phenol resin (B) (including 2 parts by weight of hexamethylenetetramine as a curing agent), a carbonaceous material (C) as artificial graphite jet milling products (average Particle diameter 7 μm, carbon interlayer distance (d002) 0.337 nm,
100 parts by weight of the crystallite thickness (Lc) in the C-axis direction (Lc) of 48 nm) is placed in a heating kneader, and the temperature is raised from room temperature to 160 ° C. over 2 hours to effect crosslinking. 160 ° C for another 30 minutes
, And then transferred to an electric furnace at 5 ° C /
Then, the temperature was raised from room temperature to 200 ° C. per minute, and then heat-treated to 1000 ° C. at a rate of 0.2 ° C./min.
Table 1 shows the evaluation results.

【0023】(実施例4) 実施例1と同一のタールピッチ(A)と硬化性フェノー
ル樹脂(B)とを、実施例1と同一の炭素質材料(C)
及び実施例1と同一のグリーンメソフェーズピッチ小球
体(D)を用いて、まず加熱式ニーダーで炭素質材料
(C)とグリーンメソフェーズピッチ小球体(D)10
0重量部に対してタールピッチ20重量部と硬化性フェ
ノール樹脂(固形分)10重量部を、常温から2時間か
けて160℃まで昇温し、縮合、架橋、脱水した後、6
0℃まで冷やし、更にタールピッチ45重量部と硬化性
フェノール樹脂(固形分)10重量部を添加し、150
℃まで2時間かけて再昇温し、縮合、架橋、脱水する。
そして電気炉にて0.2℃/分で常温から1000℃ま
で昇温し熱処理した後実施例1と同様に行った。その評
価結果を表1に示す。
(Example 4) The same tar pitch (A) and curable phenol resin (B) as in Example 1 were combined with the same carbonaceous material (C) as in Example 1.
And the same green mesophase pitch globules as in Example 1.
Using the body (D) , first, the carbonaceous material (C) and the green mesophase pitch small sphere (D) are heated by a heating kneader.
20 parts by weight of tar pitch and 10 parts by weight of a curable phenol resin (solid content) are heated from room temperature to 160 ° C. over 2 hours, condensed, crosslinked and dehydrated based on 0 part by weight. , 6
After cooling to 0 ° C., 45 parts by weight of tar pitch and 10 parts by weight of a curable phenol resin (solid content) were added, and 150 parts by weight were added.
The temperature was raised again to 2 ° C. over 2 hours, followed by condensation, crosslinking and dehydration.
Then, the temperature was raised from room temperature to 1000 ° C. at a rate of 0.2 ° C./min in an electric furnace, and heat treatment was performed. Table 1 shows the evaluation results.

【0024】(実施例5) 実施例1と同一のタールピッチ(A)60重量部と硬化
フェノール樹脂(B)15重量部(固形分)とを加熱
式ニーダーに入れ、グリーンメソフェーズピッチ粉砕粒
(トルエン不溶分93重量%、キノリン可溶分10重
量%、揮発分8重量%、平均粒子径5μm)20重量部
と、人工黒鉛の衝撃粉砕品(平均粒子径5μm、炭素層
間距離(d002)0.336nm、C軸方向の結晶子
の厚さ(Lc)46nm)80重量部とを加熱式ニーダ
ーに入れて、常温から160℃まで2時間かけて昇温
し、縮合、架橋、脱水する。更に30分間160℃に保
持した後、電気炉に移し、窒素雰囲気下0.2℃/分で
常温から900℃まで熱処理した後実施例1と同様に行
った。その評価結果を表1に示す。
Example 5 The same tar pitch (A) as in Example 1 and 60 parts by weight were cured.
Put sex phenolic resin (B) 15 parts by weight and (solids) in the heating kneader, green mesophase pitch milled grain
Child (toluene insoluble content 93 wt%, a quinoline-soluble component 10 weight%, a volatile content 8% by weight, average particle diameter 5 [mu] m) and 20 parts by weight, artificial graphite shock pulverized product (average particle size 5 [mu] m, the carbon interlayer distance (d002 ) 0.336 nm, the thickness of the crystallite in the C-axis direction (Lc) 46 nm) and 80 parts by weight are placed in a heating kneader, and the temperature is raised from room temperature to 160 ° C. over 2 hours, followed by condensation, crosslinking and dehydration. . After further maintaining the temperature at 160 ° C. for 30 minutes, it was transferred to an electric furnace and heat-treated from room temperature to 900 ° C. at a rate of 0.2 ° C./min in a nitrogen atmosphere. Table 1 shows the evaluation results.

【0025】(比較例1) 実施例1と同一の硬化性フェノール樹脂45重量部(固
形分)と、天然黒鉛(平均粒子径15μm、炭素層間距
離(d002)0.335nm、C軸方向の結晶子の厚
さ(Lc)100nm以上)100重量部とを加熱式ニ
ーダーに入れ、常温から160℃まで2時間かけて昇温
し、縮合、架橋し、脱水する。更に30分間160℃に
保持した後、冷却し、取り出して電気炉へ移す。そして
窒素雰囲気下で、2℃/分の昇温速度で常温から120
0℃まで昇温させ、炭化させる。これを電気炉から取り
出し、ほぐした後、200メッシュのふるいにかけてパ
ス品の比率を求めた。200メッシュパス品による負極
評価を含めて実施結果を表1に示す。
Comparative Example 1 The same curable phenol resin as in Example 1 (45 parts by weight (solid content)) and natural graphite (average particle diameter 15 μm, carbon interlayer distance (d002) 0.335 nm, crystal in the C-axis direction) 100 parts by weight (thickness (Lc) of 100 nm or more) is placed in a heating kneader, and the temperature is raised from room temperature to 160 ° C. over 2 hours to condense, crosslink, and dehydrate. After maintaining the temperature at 160 ° C. for another 30 minutes, it is cooled, taken out and transferred to an electric furnace. Then, under a nitrogen atmosphere, the temperature is raised from room temperature to 120 ° C. at a rate of 2 ° C./min.
The temperature is raised to 0 ° C. and carbonized. This was taken out of the electric furnace, unraveled, and passed through a 200-mesh sieve to determine the ratio of pass products. Table 1 shows the results of the evaluation, including the evaluation of the negative electrode using a 200 mesh pass product.

【0026】(比較例2) タールピッチ(A)として石炭系バインダーピッチ45
重量部と、比較例1と同一の天然黒鉛100重量部とを
加熱式ニーダーに入れて、常温から150℃まで2時間
かけて漸次上昇させる。更に30分間160℃に保持し
た後、冷却し、取り出し、電気炉へ移す。そして窒素雰
囲気下で、2℃/分で常温から1200℃まで上昇さ
せ、炭化させる。これを電気炉から取り出し、ほぐした
後、200メッシュのふるいにかけてパス品の比率を求
めた。200メッシュパス品による負極評価を含めて評
価結果を表1に示す。
Comparative Example 2 Coal binder pitch 45 as tar pitch (A)
Parts by weight and 100 parts by weight of the same natural graphite as in Comparative Example 1 are put into a heating kneader and gradually raised from room temperature to 150 ° C. over 2 hours. After holding at 160 ° C. for another 30 minutes, cool, take out, and transfer to an electric furnace. Then, in a nitrogen atmosphere, the temperature is raised from room temperature to 1200 ° C. at a rate of 2 ° C./min to carbonize. This was taken out of the electric furnace, unraveled, and passed through a 200-mesh sieve to determine the ratio of pass products. Table 1 shows the evaluation results including the evaluation of the negative electrode using a 200 mesh pass product.

【0027】(比較例3) 実施例1と同一のタールピッチ10重量部および、硬化
フェノール樹脂10重量部(固形分)と、比較例1と
同一の天然黒鉛100重量部とを加熱式ニーダーに入れ
て、常温から150℃まで1.5時間かけて漸次上昇さ
せ、縮合、架橋し、脱水する。更に1時間150℃に保
持した後、冷却し、取り出し、電気炉へ移す。そして窒
素雰囲気下で、2℃/分で常温から1200℃まで上昇
させ、炭化させる。これを電気炉から取り出し、ほぐし
た後、200メッシュのふるいにかけてパス品の比率を
求めた。200メッシュパス品による負極評価を含めて
評価結果を表1に示す。
Comparative Example 3 The same tar pitch of 10 parts by weight as in Example 1 and curing
10 parts by weight (solid content) of a water- soluble phenol resin and 100 parts by weight of the same natural graphite as in Comparative Example 1 were gradually heated from room temperature to 150 ° C. over 1.5 hours, and then condensed and crosslinked. And dehydrate. After keeping the temperature at 150 ° C. for another hour, it is cooled, taken out, and transferred to an electric furnace. Then, in a nitrogen atmosphere, the temperature is raised from room temperature to 1200 ° C. at a rate of 2 ° C./min to carbonize. This was taken out of the electric furnace, unraveled, and passed through a 200-mesh sieve to determine the ratio of pass products. Table 1 shows the evaluation results including the evaluation of the negative electrode using a 200 mesh pass product.

【0028】(比較例4) 従来技術である石油系ニードルコークス粉砕品(平均粒
子径10μm、炭素層間距離(d002)0.347n
m、C軸方向の結晶子の厚さ(Lc)5.2nm)によ
る負極評価を行った。その結果を表1に示す
(Comparative Example 4) A petroleum-based needle coke pulverized product which is a conventional technique (average particle diameter: 10 μm, carbon layer distance (d002): 0.347 n)
The negative electrode was evaluated based on the crystallite thickness (Lc) of 5.2 m in the m and C axis directions. The results are shown in Table 1.

【0029】これらの結果については、表1に示す如
く、本発明に係る実施例1乃至実施例5にあっては、比
較例1乃至比較例3と比較して急速充電性が全て100
%と優れるとともに、比較例4の従来技術である石油系
ニードルコークスと比較して、初回放電容量が極めて大
きいものである。
As shown in Table 1, in Examples 1 to 5 according to the present invention, the quick chargeability was 100% less than that in Comparative Examples 1 to 3.
%, And has an extremely large initial discharge capacity as compared with the petroleum-based needle coke of Comparative Example 4 which is a conventional technique.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】本発明によれば、タールピッチと硬化性
フェノール樹脂とを、平均粒子径が1〜20μm、炭素
層間距離(d002)が0.336〜0.340nm、
C軸方向の結晶子の厚さ(Lc)が8〜70nmの範囲
にある炭素質材料の粒子表面に融着、縮合、架橋させた
後、熱処理することにより、又はタールピッチと硬化性
フェノール樹脂とを、平均粒子径が1〜20μm、炭素
層間距離(d002)が0.336〜0.340nm、
C軸方向の結晶子の厚さ(Lc)が8〜70nmの範囲
にある炭素質材料グリーンメソフェーズピッチ小球体
グリーンメソフェーズピッチ粉砕粒子から選ばれた少
なくとも1種との混合物の表面に融着、縮合、架橋させ
た後、熱処理することにより、急速充電性に優れ高い電
気容量を有するとともに、表面を不活性化させたことに
より安全性に優れたリチウムイオン二次電池用負極に適
したカーボン粒子を廉価に製造することができる。
According to the present invention, the tar pitch and the curable phenol resin are mixed with each other at an average particle diameter of 1 to 20 μm, a carbon interlayer distance (d002) of 0.336 to 0.340 nm,
After being fused, condensed and cross-linked to the particle surface of the carbonaceous material having a crystallite thickness (Lc) in the range of 8 to 70 nm in the C-axis direction, heat treatment is performed, or tar pitch and curability are obtained. A phenolic resin having an average particle diameter of 1 to 20 μm, a carbon interlayer distance (d002) of 0.336 to 0.340 nm,
Carbonaceous material and green mesophase pitch small spheres having a crystallite thickness (Lc) in the C-axis direction in the range of 8 to 70 nm
Small selected from a green mesophase pitch milled particles
At least one type is fused, condensed and cross-linked to the surface of the mixture , and then heat-treated to have excellent rapid chargeability and high electric capacity, and to have excellent safety by deactivating the surface. In addition, carbon particles suitable for a negative electrode for a lithium ion secondary battery can be produced at low cost.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−307959(JP,A) 特開 昭48−94709(JP,A) 特開 平2−26818(JP,A) 特開 平4−188559(JP,A) 特開 平4−280068(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/02 C04B 41/85 C04B 35/52 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-307959 (JP, A) JP-A-48-94709 (JP, A) JP-A-2-26818 (JP, A) JP-A-4- 188559 (JP, A) JP-A-4-280068 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/58 H01M 4/02 C04B 41/85 C04B 35/52

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 タールピッチ(A)と硬化性フェノール
樹脂(B)とを、平均粒子径が1〜20μm、炭素層間
距離(d002)が0.336〜0.340nm、C軸
方向の結晶子の厚さ(Lc)が8〜70nmの範囲にあ
る炭素質材料(C)の粒子表面に融着、縮合、架橋させ
た後、熱処理するにあたり、(C)100重量部に対す
(A+B)が30〜100重量部、かつ(A)/
(B)の比が5/1〜0.5/1であることを特徴とす
リチウムイオン二次電池負極用カーボン粒子の製造方
法。
1. A crystallite having a tar pitch (A) and a curable phenol resin (B) having an average particle diameter of 1 to 20 μm, a carbon interlayer distance (d002) of 0.336 to 0.340 nm, and a C-axis direction. Is fused, condensed and cross-linked to the particle surface of the carbonaceous material (C) having a thickness (Lc) in the range of 8 to 70 nm, and then subjected to a heat treatment, where (A + B) is 30 per 100 parts by weight of (C). ~ 100 parts by weight and (A) /
A method for producing carbon particles for a negative electrode of a lithium ion secondary battery , wherein the ratio of (B) is from 5/1 to 0.5 / 1.
【請求項2】 タールピッチ(A)と硬化性フェノール
樹脂(B)とを、平均粒子径が1〜20μm、炭素層間
距離(d002)が0.336〜0.340nm、C軸
方向の結晶子の厚さ(Lc)が8〜70nmの範囲にあ
る炭素質材料(C)の粒子トルエン不溶分85〜98
重量%、キノリン可溶分15〜5重量%、揮発分6〜1
4重量%の範囲にあるグリーンメソフェーズピッチ小球
及びグリーンメソフェーズピッチ粉砕粒子から選ばれ
た少なくとも1種との混合物(D)の表面に融着、縮
合、架橋させた後、熱処理するにあたり、(C+D)
00重量部に対する(A+B)が30〜100重量部で
あり(A)/(B)の比が5/1〜0.5/1及び
(C)/(D)の比が95/5〜5/95であることを
特徴とするリチウムイオン二次電池負極用カーボン粒子
の製造方法。
2. Tar tar (A)CurabilityPhenol
Resin (B) having an average particle size of 1 to 20 μm,
Distance (d002) is 0.336 to 0.340 nm, C axis
The crystallite thickness (Lc) in the direction is in the range of 8 to 70 nm.
Of carbonaceous material (C)WhenToluene insolubles 85-98
Wt%, quinoline soluble content 15-5 wt%, volatile content 6-1
Green mesophase pitch globules in the range of 4% by weight
bodyas well asGreen mesophase pitch ground particlesChosen from
Mixtures with at least oneFused and shrunk to the surface of (D)
In the case of heat treatment after crosslinking,(C + D)1
To 00 parts by weight(A + B)But 30 to 100 parts by weight
Yes, the ratio of (A) / (B) is 5/1 to 0.5 / 1as well as
That the ratio of (C) / (D) is 95/5 to 5/95
FeatureFor negative electrode of lithium ion secondary batteryCarbon particles
Manufacturing method.
JP06119624A 1994-05-09 1994-05-09 Method for producing carbon particles for negative electrode of lithium ion secondary battery Expired - Fee Related JP3091944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06119624A JP3091944B2 (en) 1994-05-09 1994-05-09 Method for producing carbon particles for negative electrode of lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06119624A JP3091944B2 (en) 1994-05-09 1994-05-09 Method for producing carbon particles for negative electrode of lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JPH07302595A JPH07302595A (en) 1995-11-14
JP3091944B2 true JP3091944B2 (en) 2000-09-25

Family

ID=14766054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06119624A Expired - Fee Related JP3091944B2 (en) 1994-05-09 1994-05-09 Method for producing carbon particles for negative electrode of lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP3091944B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025376A1 (en) * 2004-08-30 2006-03-09 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3508464B2 (en) * 1996-05-09 2004-03-22 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
ID18173A (en) 1996-05-09 1998-03-12 Matsushita Electric Ind Co Ltd SECONDARY ELECTROLITE BATTERIES ARE NOT WATERED
JPH1111919A (en) * 1997-06-25 1999-01-19 Hitachi Chem Co Ltd Production method of conjugated carbon particle, conjugated carbon particle obtained by this production method, carbon paste using the conjugated carbon particle, negative pole for lithium secondary battery and lithium secondary battery
JP4215633B2 (en) * 2002-12-19 2009-01-28 Jfeケミカル株式会社 Method for producing composite graphite particles
CN100422077C (en) * 2002-12-19 2008-10-01 杰富意化学株式会社 Composite graphite particle, its production method, Li ion secondary battery cathode material and Li ion secondary battery
JP4915687B2 (en) * 2005-12-28 2012-04-11 東海カーボン株式会社 Method for producing negative electrode material for lithium ion secondary battery
JP5596254B2 (en) * 2006-08-31 2014-09-24 東洋炭素株式会社 Carbon material for negative electrode of lithium ion secondary battery, carbon material for negative electrode of low crystalline carbon impregnated lithium ion secondary battery, negative electrode plate, and lithium ion secondary battery
CN102823029A (en) * 2010-02-03 2012-12-12 日本瑞翁株式会社 Lithium ion secondary battery negative electrode slurry composition, a lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP5680191B2 (en) * 2010-06-18 2015-03-04 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 Composite hard carbon negative electrode material for lithium ion battery and manufacturing method thereof
KR101887952B1 (en) * 2012-08-06 2018-08-13 쇼와 덴코 가부시키가이샤 Negative-electrode material for lithium-ion secondary battery
JP6194276B2 (en) * 2013-05-28 2017-09-06 Jfeケミカル株式会社 Method for producing composite graphite particles for negative electrode of lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025376A1 (en) * 2004-08-30 2006-03-09 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
US8404383B2 (en) 2004-08-30 2013-03-26 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell

Also Published As

Publication number Publication date
JPH07302595A (en) 1995-11-14

Similar Documents

Publication Publication Date Title
JP4446510B2 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery
JP4161376B2 (en) Non-aqueous electrolyte secondary battery
KR101667125B1 (en) Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2000203818A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JPH11199211A (en) Graphite particle, its production, lithium secondary battery and negative pole thereof
JP3091944B2 (en) Method for producing carbon particles for negative electrode of lithium ion secondary battery
JPH10284080A (en) Lithium ion secondary battery
JP4792618B2 (en) Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery
JP3054379B2 (en) Graphite powder coated with graphite for negative electrode material of lithium secondary battery and its manufacturing method
JP2011081960A (en) Nonaqueous secondary battery
JP3289231B2 (en) Negative electrode for lithium ion secondary battery
JP3091949B2 (en) Method for producing silicon-containing carbon particles and negative electrode comprising the carbon particles
JPH07302594A (en) Carbonaceous particle and negative electrode for nonaqueous lithium ion secondary battery using this carbonaceous particle
JP5192657B2 (en) Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP3091943B2 (en) Method for producing carbon particles for negative electrode of non-aqueous secondary battery and carbon particles obtained by the method
JP3402656B2 (en) Non-aqueous electrolyte battery
JP2003346803A (en) Negative electrode material, method for manufacturing the same, and battery element
JPH11279785A (en) Composite carbon material for electrode, its production and nonaqueous electrolytic solution secondary cell using that
JPH1111919A (en) Production method of conjugated carbon particle, conjugated carbon particle obtained by this production method, carbon paste using the conjugated carbon particle, negative pole for lithium secondary battery and lithium secondary battery
WO2022172585A1 (en) Negative electrode active material, method for manufacturing negative electrode active material, and non-aqueous electrolyte secondary battery
JP3633094B2 (en) Lithium ion secondary battery
JP3719286B2 (en) Negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JPH06275270A (en) High-capacity nonaqueous secondary battery
JP4944472B2 (en) Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP3637676B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees