Nothing Special   »   [go: up one dir, main page]

JP3091885B2 - High temperature secondary battery and battery module - Google Patents

High temperature secondary battery and battery module

Info

Publication number
JP3091885B2
JP3091885B2 JP03165521A JP16552191A JP3091885B2 JP 3091885 B2 JP3091885 B2 JP 3091885B2 JP 03165521 A JP03165521 A JP 03165521A JP 16552191 A JP16552191 A JP 16552191A JP 3091885 B2 JP3091885 B2 JP 3091885B2
Authority
JP
Japan
Prior art keywords
battery
temperature
cathode
module
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03165521A
Other languages
Japanese (ja)
Other versions
JPH0513103A (en
Inventor
正明 向出
正則 吉川
茂夫 前野
哲雄 小山
哲夫 中澤
成興 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03165521A priority Critical patent/JP3091885B2/en
Publication of JPH0513103A publication Critical patent/JPH0513103A/en
Application granted granted Critical
Publication of JP3091885B2 publication Critical patent/JP3091885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電力貯蔵用や電気自動車
バッテリ等に用いられる高温型二次電池及びそれらを用
いて組み立てた電池モジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-temperature secondary battery used for electric power storage, an electric vehicle battery and the like, and a battery module assembled using the same.

【0002】[0002]

【従来の技術】本発明でいう高温型二次電池とは、作動
温度が常温より高く、その作動温度で液体の金属陰極、
固体の電解質、及び一部または全部が液体の陽極を有す
る、繰返し充放電が可能な電池である。そのような電池
の一例としてナトリウム−硫黄電池がある。ナトリウム
−硫黄電池は、陽極と陰極は、それぞれ一般に金属製の
陽極容器と陰極容器に収納され、外部に電流を取り出す
陽極端子と陰極端子がそれらに設けられている。陰極の
活物質は金属ナトリウムであり、電池作動温度では液体
である。陽極の活物質には硫黄が用いられるが、電子伝
導性が無いために集電材であるフェルト状のグラファイ
トに含浸した形で用いられる。陽極容器と陰極容器は、
絶縁物で絶縁されており、一般には電池は密閉構造にな
っている。さらに電池内部において、陽極と陰極は固体
電解質で隔てられている。固体電解質は、陰極で形成さ
れる金属イオンの良伝導体であるが、電子伝導性が極め
て小さいことが必要で、一般にはベータアルミナ等が用
いられる。固体電解質は一般には電池反応を生じる面積
を広く取るために下端を閉じた管状に形成され、活物質
をその外側と内側に分離するように作られている。
2. Description of the Related Art A high-temperature type secondary battery according to the present invention has an operating temperature higher than room temperature and a liquid metal cathode at the operating temperature.
A battery capable of repeatedly charging and discharging, having a solid electrolyte and a partially or entirely liquid anode. One example of such a battery is a sodium-sulfur battery. In a sodium-sulfur battery, an anode and a cathode are generally housed in a metal anode container and a cathode container, respectively, and are provided with an anode terminal and a cathode terminal for taking out current to the outside. The active material of the cathode is metallic sodium, which is liquid at battery operating temperatures. Although sulfur is used as the active material of the anode, it is used in the form of being impregnated in felt-like graphite which is a current collector because of lack of electron conductivity. Anode container and cathode container
The battery is insulated with an insulator, and the battery generally has a sealed structure. Further, inside the battery, the anode and the cathode are separated by a solid electrolyte. The solid electrolyte is a good conductor of metal ions formed at the cathode, but needs to have extremely low electron conductivity. Generally, beta alumina or the like is used. The solid electrolyte is generally formed in a tubular shape having a closed lower end in order to increase the area where a battery reaction occurs, and is formed so as to separate the active material into its outside and inside.

【0003】こうした高温型二次電池は、単電池で用い
られることは少なく、多くは電池を複数本組み合わせた
モジュールの形で使われる。モジュールは単電池を直
列、並列に接続し、使用する目的に見合った電圧、電流
値によって充放電を行うように組み立てられる。電池が
高温で作動するために、電池モジュールは全体または一
部ずつが保温設備の中に置かれ、運転される。従来例と
して特開平1−253173号公報が挙げられる。
[0003] Such high-temperature secondary batteries are rarely used as single cells, and are often used in the form of a module in which a plurality of batteries are combined. The module is assembled so that cells are connected in series and in parallel, and charging and discharging are performed according to the voltage and current values suitable for the purpose of use. In order for the battery to operate at a high temperature, the battery module is placed in whole or in part in a heat insulation facility and operated. As a conventional example, JP-A-1-253173 is cited.

【0004】[0004]

【発明が解決しようとする課題】このような高温型二次
電池においては、常温における電池内への電流流れ込み
に起因する転極によって、固体電解質にデントライト生
成等の電気化学的劣化を生じ、ひいては固体電解質の破
損を引き起こし、最悪の場合はモジュール全体が運転不
能になるという問題があった。
In such a high-temperature type secondary battery, electrochemical deterioration such as generation of dentite occurs in the solid electrolyte due to inversion caused by current flowing into the battery at normal temperature. As a result, there is a problem that the solid electrolyte is damaged, and in the worst case, the entire module becomes inoperable.

【0005】常温での電池内への電流の流れ込みは、モ
ジュール組立時において単電池間に短絡が起こった場合
や、モジュール内の電池の結線、モジュールに付随する
計測線の結線等を確認するために電圧をかけた場合に生
じる。上記従来例はこの点についての考慮がなされてい
ない。前者については、電池同志の絶縁が不完全な場合
に起こる。図5には直列に接続された電池を示した。各
々の電池14、15、16は、絶縁材台座13を介して
保温容器を兼ねた金属製の設置台17の上に置かれてい
る。電池相互間は接続線12によって直列に接続されて
いる。この場合何らかの原因で電池14及び電池16の
2本の電池の絶縁材台座13の絶縁が不完全になり、電
池14、16と設置台17との間に導通があると、電池
15と電池16は短絡する。これを回路図として書く
と、図6のようになる。このような場合、電池15の陰
極の電位が陽極よりも高くなったとき(転極)逆充電が
生じる。その際には電池内の固体電解質にナトリウムデ
ンドライトが生成して固体電解質が破損したり、軽微な
場合でも固体電解質の強度が低下することから、運転温
度まで熱する際に他の電池構成材料との熱膨張差によっ
て固体電解質の破壊をもたらす。
[0005] The flow of current into the battery at room temperature is used to confirm the short-circuit between cells during the assembly of the module, the connection of the battery in the module, and the connection of the measurement line attached to the module. Occurs when voltage is applied to the The above conventional example does not consider this point. The former occurs when the insulation between batteries is incomplete. FIG. 5 shows batteries connected in series. Each of the batteries 14, 15, and 16 is placed on a metal mounting table 17 also serving as a heat insulating container via an insulating material pedestal 13. The batteries are connected in series by a connection line 12. In this case, if for some reason the insulation of the insulating pedestal 13 of the two batteries 14 and 16 becomes incomplete, and there is continuity between the batteries 14 and 16 and the installation base 17, the batteries 15 and 16 Short-circuits. If this is written as a circuit diagram, it will be as shown in FIG. In such a case, when the potential of the cathode of the battery 15 becomes higher than that of the anode (polarization), reverse charging occurs. In that case, sodium dendrite is generated in the solid electrolyte in the battery and the solid electrolyte is damaged, and even in a small case, the strength of the solid electrolyte is reduced. The thermal expansion difference causes the destruction of the solid electrolyte.

【0006】後者については、前述のようにモジュール
が保温容器に入った密閉構造であるため、メガーテスト
等の、電池同志の結線や電池の電圧電流を測定する計測
線の結線を確認する場合は、運転前に常温で行う必要が
あることから生じる。一方、これらの結線の確認をしな
いで運転を行う場合、もし結線に不具合が生じていたと
きには、それが判明するのは活物質が溶融する温度以上
であり、そこから再度温度を下げて常温で不具合を補修
しなければならないため、正常な運転までに非常に時間
がかかってしまうという問題がある。しかし通常は固体
電解質を保護するために、時間がかかることを前提に入
れて常温での結線の確認を行わないで温度を上げること
が行われており、常温で電池及びその固体電解質に悪影
響を与えず、これらの結線を確認する手法はなかった。
[0006] As for the latter, since the module has a sealed structure in which the module is placed in a heat insulating container as described above, it is necessary to check the connection of the batteries or the connection of the measurement line for measuring the voltage and current of the battery such as a megger test. , Which must be performed at room temperature before operation. On the other hand, if the operation is performed without checking these connections, if a problem occurs in the connections, it is only at the temperature at which the active material melts that is found, and then the temperature is lowered again at room temperature. Since the malfunction must be repaired, there is a problem that it takes a very long time until normal operation is performed. However, in order to protect the solid electrolyte, it is common practice to raise the temperature without confirming the connection at room temperature, assuming that it will take time, which may adversely affect the battery and its solid electrolyte at room temperature. There was no method to confirm these connections without giving.

【0007】本発明の目的は、電池及び固体電解質に悪
影響を与える、常温での電池内への電流の流れ込みを防
ぎ、複数本の電池間の短絡に強く、常温で結線の確認等
電気的な検査を行うことが可能な高温型二次電池及び電
池モジュールを提供することにある。
An object of the present invention is to prevent a current from flowing into a battery at room temperature, which has a bad effect on a battery and a solid electrolyte, to be resistant to a short circuit between a plurality of batteries, and to confirm connection at room temperature. An object of the present invention is to provide a high-temperature secondary battery and a battery module that can be inspected.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
本発明は、動作温度で液体の陽極活物質及び集電材を備
えた陽極と、この陽極を収納する陽極容器と、動作温度
で液体金属の陰極活物質を備えた陰極と、陰極をを収納
し該陰極と接触する陰極容器と、前記陽極容器と該陰極
容器とを絶縁する絶縁物と、前記陽極と陰極とを隔てる
固体電解質とを備えた高温型二次電池において、前記陽
極容器と陰極容器の間を、室温では室温における電池の
内部抵抗よりも低い抵抗値を有し、電池作動温度ではそ
の温度での電池の内部抵抗よりも高い抵抗値を有する接
続手段で接続したことを特徴とするものである。ここ
で、高温型二次電池は、陽極活物質が硫黄及び/または
多硫化ナトリウムであり、陰極活物質がナトリウムであ
り、固体電解質がβ−アルミナ及び/またはβ”−アル
ミナから構成されるナトリウム−硫黄電池であるものが
挙げられる。また、接続手段の抵抗が、室温において電
池の室温の内部抵抗の1/100以下であり、且つ電池
作動温度ではその温度での電池の内部抵抗の100倍以
上であるものがよい。また、接続手段は熱スイッチ又は
正特性(PTC)サーミスタ等が挙げられる。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an anode provided with an anode active material and a current collector which are liquid at an operating temperature, an anode container containing the anode, and a liquid metal at an operating temperature. A cathode provided with a cathode active material, a cathode container that houses the cathode and contacts the cathode, an insulator that insulates the anode container and the cathode container, and a solid electrolyte that separates the anode and the cathode. In the high-temperature secondary battery provided, between the anode container and the cathode container, at room temperature, has a lower resistance value than the internal resistance of the battery at room temperature, at the battery operating temperature than the internal resistance of the battery at that temperature It is characterized by being connected by connection means having a high resistance value. Here, in the high-temperature secondary battery, the anode active material is sulfur and / or sodium polysulfide, the cathode active material is sodium, and the solid electrolyte is β-alumina and / or β ″ -alumina. The resistance of the connection means at room temperature is not more than 1/100 of the internal resistance of the battery at room temperature, and at the operating temperature of the battery, 100 times the internal resistance of the battery at that temperature. The connection means may be a thermal switch or a positive temperature coefficient (PTC) thermistor.

【0009】また本発明は、複数本の高温型二次電池
と、この複数本の電池を収納するモジュール容器と、前
記電池の温度を高める昇温手段とを備えて、充放電を行
う電池モジュールにおいて、高温型二次電池は前記のい
ずれかであることを特徴とするものである。
According to another aspect of the present invention, there is provided a battery module for charging / discharging comprising a plurality of high temperature secondary batteries, a module container for accommodating the plurality of batteries, and a temperature increasing means for increasing the temperature of the batteries. Wherein the high-temperature secondary battery is any one of the above.

【0010】[0010]

【作用】上記のように単電池の陽極容器と陰極容器の間
に、室温では室温における電池の内部抵抗よりも低い抵
抗を有し、かつ電池作動温度ではその温度での電池の内
部抵抗よりも高い抵抗を有する物質または素子すなわち
接続手段を、電池と並列になるように接続してモジュー
ルを組み立てた場合、常温において結線の確認等でモジ
ュールに電圧がかかった時は、外部からモジュールにか
かる電圧に起因する電流は、室温での電池の内部抵抗に
比べて上記物質または素子の抵抗が低いことから、それ
ぞれの単電池を経由しないで上記接続手段を経由して流
れる。そのため電池には、固体電解質に悪影響を及ぼす
電流は流れ込まない。またこれらの電池を組み合わせた
モジュールの直列部分で短絡が起きた場合も、各々の単
電池で閉回路が形成されるため、他の電池に電流が流れ
込むことがなく、従って転極による電池の逆充電も起こ
らない。
As described above, between the anode container and the cathode container of the unit cell, at room temperature, the resistance is lower than the internal resistance of the battery at room temperature, and the operating temperature of the battery is lower than the internal resistance of the battery at that temperature. When assembling a module by connecting a substance or element having high resistance, that is, connection means, in parallel with the battery, if a voltage is applied to the module at room temperature, such as when checking the connection, the voltage applied to the module from the outside Current flows through the connection means without passing through each cell since the resistance of the substance or element is lower than the internal resistance of the battery at room temperature. Therefore, no current that adversely affects the solid electrolyte flows into the battery. Also, if a short circuit occurs in the series section of a module combining these batteries, a closed circuit is formed in each of the cells, so that no current flows into other batteries, and consequently the reverse of the battery due to reversal. No charging occurs.

【0011】一方、電池作動温度では、電池の内部抵抗
に比べて、上記接続手段の抵抗が高いことから、上記接
続手段は開いたスイッチのようになる。この場合、電流
は電池を経由して流れ、モジュールは接続手段が付いて
いないモジュールと同様の動作を示す。
On the other hand, at the battery operating temperature, since the resistance of the connection means is higher than the internal resistance of the battery, the connection means is like an open switch. In this case, current flows through the battery and the module behaves similarly to a module without connection means.

【0012】以上のような作用によって、本発明の電池
及び電池を用いたモジュールでは、電池作動温度での電
池の動作を損なうことなく、電池の電気化学的破壊を引
き起こす、常温での電池内への電流の流れ込みを防止す
ることができる。
By the above-described operation, in the battery of the present invention and the module using the battery, the battery can be electrochemically destroyed without impairing the operation of the battery at the battery operating temperature. Can be prevented from flowing.

【0013】なお、この作用を確実なものにして、さら
に高温型二次電池の特長である電池効率の良さを損なわ
ないために、室温での上記接続手段の抵抗値が、室温で
の電池の内部抵抗の1/100以下であり、かつ電池作
動温度ではその温度での電池の内部抵抗の100倍以上
であることが望ましい。その理由は、室温でのその抵抗
値が、室温での電池の内部抵抗の1/100より高い場
合には、電池に流れ込む電流の割合が高くなり、外部か
らかかる電圧または電池短絡の規模によっては、電池内
に固体電解質に電気化学的悪影響を及ぼす量の電流が流
れることがあるからである。また電池作動温度におい
て、上記接続手段の抵抗が電池の内部抵抗の100倍よ
り小さいと、上記接続手段に流れ込む電流が無視できな
くなり、モジュールの抵抗損が増大して電池効率が低下
しモジュール性能を落すためである。
In order to ensure this effect and not to impair the good battery efficiency which is a feature of the high-temperature type secondary battery, the resistance value of the connecting means at room temperature is set to be lower than that of the battery at room temperature. It is desirable that the internal resistance be 1/100 or less of the internal resistance and that the battery operating temperature be 100 times or more the internal resistance of the battery at that temperature. The reason is that when the resistance value at room temperature is higher than 1/100 of the internal resistance of the battery at room temperature, the ratio of the current flowing into the battery increases, and depending on the externally applied voltage or the magnitude of the battery short circuit, This is because a current may flow in the battery in an amount that has an adverse electrochemical effect on the solid electrolyte. When the resistance of the connection means is smaller than 100 times the internal resistance of the battery at the battery operating temperature, the current flowing into the connection means cannot be ignored, the resistance loss of the module increases, the battery efficiency decreases, and the module performance decreases. To drop it.

【0014】[0014]

【実施例】図3は本発明にかかるナトリウム−硫黄電池
の断面図を示す。陽極10、陰極5はそれぞれ一般に金
属製の陽極容器9、陰極容器6に収納され、外部に電流
を取り出す陽極端子8、陰極端子4がそれらについてい
る。陰極の活物質は金属ナトリウムであり、電池作動温
度では液体である。陽極の活物質には硫黄が用いられる
が、電子伝導性が無いために集電材であるフェルト状の
グラファイトに含浸した形で用いられる。陽極容器9と
陰極容器4は絶縁物7で絶縁されており、一般には電池
は密閉構造になっている。さらに電池内部において陽極
10と陰極5は固体電解質11で隔てられている。固体
電解質11は陰極で形成される金属イオンの良伝導体で
あるが、電子伝導性が極めて小さいことが必要で、一般
にはベータアルミナ等が用いられる。固体電解質11は
一般には電池反応を生じる面積を広く取るために下端を
閉じた管状に形成され、活物質をその外側と内側に分離
するように作られている。2が本発明に係る接続手段
で、該接続手段2は陽極容器9と陰極容器6の間を接続
するとともに、室温では室温における電池の内部抵抗よ
りも低い抵抗値を有し、電池作動温度ではその温度での
電池の内部抵抗よりも高い抵抗値を有する性質をもって
いる。
FIG. 3 is a sectional view of a sodium-sulfur battery according to the present invention. The anode 10 and the cathode 5 are generally housed in a metal anode container 9 and a cathode container 6, respectively, and are provided with an anode terminal 8 and a cathode terminal 4 for taking out current to the outside. The active material of the cathode is metallic sodium, which is liquid at battery operating temperatures. Although sulfur is used as the active material of the anode, it is used in the form of being impregnated in felt-like graphite which is a current collector because of lack of electron conductivity. The anode container 9 and the cathode container 4 are insulated by an insulator 7, and the battery generally has a sealed structure. Further, inside the battery, the anode 10 and the cathode 5 are separated by a solid electrolyte 11. Although the solid electrolyte 11 is a good conductor of metal ions formed at the cathode, it is necessary that the electron conductivity is extremely small, and beta alumina or the like is generally used. The solid electrolyte 11 is generally formed in a tubular shape having a closed lower end in order to increase the area in which a battery reaction occurs, and is formed so as to separate the active material into its outside and inside. 2 is a connection means according to the present invention, which connects between the anode container 9 and the cathode container 6 and has a lower resistance value at room temperature than the internal resistance of the battery at room temperature, It has the property of having a resistance value higher than the internal resistance of the battery at that temperature.

【0015】上記のように単電池の陽極容器9と陰極容
器6の間に、室温では室温における電池の内部抵抗より
も低い抵抗を有し、かつ電池作動温度ではその温度での
電池の内部抵抗よりも高い抵抗を有する接続手段2を、
電池と並列になるように接続して図4に示すような電池
モジュールを組み立てた場合を説明する。図4におい
て、複数本の当該電池1が絶縁材台座13の上に載置さ
れてモジュール容器19内に収納されている。該容器1
9の内面には断熱材20を介してヒータ線21が配設さ
れている。22は排気筒、23はブロアを示す。
As described above, between the anode container 9 and the cathode container 6 of the unit cell, at room temperature, the resistance is lower than the internal resistance of the battery at room temperature, and at the battery operating temperature, the internal resistance of the battery at that temperature is lower. Connecting means 2 having a higher resistance than
A case where the battery module as shown in FIG. 4 is assembled by connecting the battery in parallel will be described. In FIG. 4, a plurality of the batteries 1 are mounted on an insulating pedestal 13 and housed in a module container 19. The container 1
A heater wire 21 is provided on the inner surface of the heater 9 via a heat insulating material 20. Reference numeral 22 denotes an exhaust pipe, and 23 denotes a blower.

【0016】常温において結線の確認等でモジュールに
電圧がかかった状態の回路図を図1に示す。ここで上記
接続手段2は、その働きから閉じたスイッチとして記し
ている。この場合、外部からモジュールにかかる電圧3
に起因する電流は、室温での電池1の内部抵抗に比べて
上記接続手段2の抵抗が低いことから、それぞれの単電
池を経由しないで上記接続手段2を経由して流れる。そ
のため電池1には、固体電解質11に悪影響を及ぼす電
流は流れ込まない。また、これらの電池を組み合わせた
モジュールの直列部分で短絡が起きた場合も、各々の単
電池で閉回路が形成されるため、他の電池に電流が流れ
込むことがなく、従って転極による電池の逆充電も起こ
らない。
FIG. 1 is a circuit diagram showing a state in which a voltage is applied to the module at normal temperature for checking connections and the like. Here, the connection means 2 is described as a closed switch because of its function. In this case, the external voltage applied to the module 3
Since the resistance of the connection means 2 is lower than the internal resistance of the battery 1 at room temperature, the current flows through the connection means 2 without passing through each cell. Therefore, no current that adversely affects the solid electrolyte 11 flows into the battery 1. Also, when a short circuit occurs in the series part of a module combining these batteries, a closed circuit is formed in each of the cells, so that no current flows into other batteries, and therefore, the battery is not reversed due to the reversal of the polarity. There is no reverse charging.

【0017】一方、電池作動温度での電池モジュールの
回路図を図2に示す。電池1の内部抵抗に比べて、接続
手段2の抵抗が高いことから、接続手段2は開いたスイ
ッチとして記してある。この場合、電流は電池1を経由
して流れ、モジュールは接続手段2が付いていないモジ
ュールと同様の動作を示す。
On the other hand, a circuit diagram of the battery module at the battery operating temperature is shown in FIG. Since the resistance of the connecting means 2 is higher than the internal resistance of the battery 1, the connecting means 2 is described as an open switch. In this case, the current flows via the battery 1 and the module behaves similarly to the module without the connection means 2.

【0018】尚、本実施例では、電池に付加する接続手
段2の配置を、電池の外側に電池と並列に並べている
が、それら接続手段2が電池活物質に対して耐食性があ
り、また陰極活物質イオンの導体でなければ、電池内部
に組み込むこと、または電池の構成物の一つとすること
も可能である。例えばそのような接続手段を、陽極容器
と陰極容器の間の絶縁物として用いることが可能であ
る。以下に実施例を挙げて具体的に説明する。
In this embodiment, the arrangement of the connecting means 2 added to the battery is arranged outside the battery in parallel with the battery. However, the connecting means 2 has corrosion resistance to the battery active material and has a negative electrode. If it is not a conductor of the active material ion, it can be incorporated in the battery or be one of the components of the battery. For example, such connection means can be used as an insulator between the anode and cathode containers. Hereinafter, a specific description will be given with reference to examples.

【0019】(実施例1)500Whの容量をもつナト
リウム−硫黄電池を80本作成し、それぞれの陰極容器
と陽極容器の間に、室温で導通があり300℃では導通
がない、バイメタルを用いた熱スイッチを銀ろうで接合
した。このような電池を8本直列10並列に配して40
kWhの電池モジュールを作成した。それぞれの直列の
接続を調べるためにテスターで直列の8本の電池の両端
に電圧をかけて、導通があることを確認し、さらに電池
電圧の測定を行う計測線間の絶縁が良好であるか調べる
ために、300Vの電圧によってメガーテストを行っ
た。それを各々の直列の10組について繰り返した。毎
時5℃の速度で温度を上げて、330℃においてモジュ
ールの運転を行った。昇温過程で破損する電池は1本も
なく、300Aの電流で充電8時間、放電8時間を繰返
し、250サイクルの充放電を行った後も、全ての電池
が健全な特性を維持しており、電池の平均効率、すなわ
ち充電電気量に対する放電電気量の割合も87%と良好
であった。モジュールから取り出した電池を分解して、
固体電解質のベータアルミナを調べたところ、ナトリウ
ムに接触していた部分は若干灰白色に変色していたが、
そのほかの異常は観察されなかった。
(Embodiment 1) Eighty sodium-sulfur batteries having a capacity of 500 Wh were prepared, and a bimetal was used between each cathode vessel and anode vessel, which had conduction at room temperature and no conduction at 300 ° C. The heat switch was joined with silver solder. By arranging 8 such batteries in series and 10 in parallel, 40
A kWh battery module was prepared. Apply a voltage to both ends of the eight batteries in series with a tester to check each series connection, confirm that there is continuity, and make sure that the insulation between the measurement lines that measure the battery voltage is good. To check, a megger test was performed with a voltage of 300V. It was repeated for each series of 10 sets. The temperature was increased at a rate of 5 ° C. per hour and the module was operated at 330 ° C. No battery is damaged during the temperature rise process, and all batteries maintain sound characteristics even after charging and discharging for 250 cycles by repeating charging and discharging for 8 hours at a current of 300 A and 250 cycles. The average efficiency of the battery, that is, the ratio of the amount of discharged electricity to the amount of charged electricity was as good as 87%. Disassemble the battery taken out of the module,
Examination of the solid electrolyte beta-alumina revealed that the part that was in contact with sodium turned slightly grayish white,
No other abnormalities were observed.

【0020】(実施例2)実施例1と同様に、ただし熱
スイッチの代わりに室温で約5Ω、300℃で約1kΩ
の正特性サーミスタを陽極容器−陰極容器間に銀ろう付
けして、ナトリウム−硫黄電池を60本作成した。この
電池の内部抵抗は20℃において300Ω、300℃に
おいて4mΩであった。これを実施例1と同様に6本直
列10並列でモジュールに組立て、実施例1と同様にし
て直列の結線の接続の確認、及び電池電圧計測線の結線
の確認を行った。この電池モジュールについて実施例1
と同じ条件で試験を行った結果、試験終了時の電池の特
性は健全であり、電池の平均効率は80%であった。
(Embodiment 2) As in Embodiment 1, except that the thermal switch is replaced by about 5 Ω at room temperature and about 1 kΩ at 300 ° C.
The positive temperature coefficient thermistor was silver-brazed between the anode container and the cathode container to prepare 60 sodium-sulfur batteries. The internal resistance of this battery was 300Ω at 20 ° C. and 4 mΩ at 300 ° C. As in the case of the first embodiment, six cables were assembled into a module in a series of 10 parallel, and the connection of the series connection and the connection of the battery voltage measurement line were checked in the same manner as in the first embodiment. Example 1 of this battery module
As a result of performing the test under the same conditions as in the above, the characteristics of the battery at the end of the test were sound, and the average efficiency of the battery was 80%.

【0021】(比較例1)実施例1と同様に、ただし熱
スイッチの付加は行わないナトリウム−硫黄電池を80
本作成し、実施例1と同様に8本直列10並列の電池モ
ジュールを作成した。これを実施例1と同様にして、テ
スターによる直列の結線の接続の確認、及びメガーテス
トによる電池電圧計測線の結線の確認を行った。このモ
ジュールを毎時3℃の速度で昇温していく過程におい
て、23本の電池が約110℃付近で破損して電池電圧
が0Vとなり、モジュール全体の運転が不可能になっ
た。モジュールを降温した後、未破損の電池を分解して
調べてみたところ、固体電解質の陽極側に多数のナトリ
ウムデンドライトが確認された。また、軽微な破損の電
池について分解を行ったところ、クラック起点はナトリ
ウムデンドライトの部分に相当しており、このことから
室温で電池に電圧をかけることによって、ナトリウムイ
オンが固体電解質と陽極の界面で集電材のグラファイト
フェルトから電子を受取り、金属として固体電解質中に
析出したことによって、固体電解質の強度が低下し、陽
極の硫黄が溶融する際に発生する応力に抗しきれずに破
損が生じたと考えられる。このように実施例1や実施例
2のような対策を施さずに常温で電池モジュールに電圧
をかけると、固体電解質の電気化学的劣化に起因する電
池破損によって、モジュール全体の運転も不可能になる
ことがある。
Comparative Example 1 A sodium-sulfur battery as in Example 1 except that no heat switch was added
In this way, eight series and ten parallel battery modules were made in the same manner as in Example 1. In the same manner as in Example 1, the connection of the serial connection by the tester was confirmed, and the connection of the battery voltage measurement line was confirmed by the megger test. In the process of increasing the temperature of this module at a rate of 3 ° C./hour, 23 batteries were damaged at about 110 ° C., and the battery voltage became 0 V, making it impossible to operate the entire module. After the module was cooled down, the undamaged battery was disassembled and examined. As a result, many sodium dendrites were confirmed on the anode side of the solid electrolyte. In addition, when the battery was decomposed with slight damage, the crack origin was equivalent to the sodium dendrite part, and from this, by applying a voltage to the battery at room temperature, sodium ions were generated at the interface between the solid electrolyte and the anode. It is thought that the strength of the solid electrolyte was reduced by receiving electrons from the graphite felt of the current collector and precipitated as a metal in the solid electrolyte, and it was impossible to withstand the stress generated when the anode sulfur was melted, causing damage. Can be Thus, when voltage is applied to the battery module at room temperature without taking the countermeasures as in Example 1 and Example 2, operation of the entire module becomes impossible due to battery damage due to electrochemical deterioration of the solid electrolyte. May be.

【0022】(実施例3)実施例1と同様にバイメタル
の熱スイッチつきのナトリウム−硫黄電池を40本作成
し、8本直列5並列の電池モジュールを組み立てた。た
だしそのうち、1直列の8本の並びについては、両端の
2本の陽極端子間を結線し故意に短絡させた。このモジ
ュールについて、実施例1と同様にテスターによる導通
試験及びメガーテストを行い、昇温し120Aの電流で
通電実験を行った。短絡させた1つの並びは充放電が不
可能で、モジュール全体の電池効率はその分だけ落ちた
が、それが他の直列の並びに悪影響を及ぼすことはな
く、250サイクルの通電の後でも、他の電池は良好な
特性を維持していた。また、このモジュールを降温後、
故意に短絡させた結線を外して再度モジュールに組立
て、これを昇温、通電した結果、先に短絡によって充放
電ができなかった直列の8本についても、今度はそれ以
外の電池と同様に充放電でき、良好な特性を示した。 (比較例2)実施例3と同様に、ただし熱スイッチなし
のナトリウム−硫黄電池40本を用いて8本直列5並列
の電池モジュールを組み立て、そのうち1直列の8本の
並びについては、両端の2本の陽極端子間を結線し故意
に短絡させた。このモジュールについて実施例1と同様
に、テスターによる導通試験及びメガーテストを行っ
た。このモジュールは昇温の過程において、短絡させた
8本の電池の並びで陰極側から2番目の電池が破損し、
運転が不可能になった。モジュールを降温後、短絡させ
た並びにあった残り7本の電池について、1本ずつ昇温
し単電池として試験したところ、そのうち3本が昇温中
に破損した。また残りの4本も、明確な原因はわからな
いが、充電状態における電池の開路電圧が1.8V程度
と低くなっており、再びモジュールに組み込んで昇温中
に全数が破損した。
(Example 3) As in Example 1, forty sodium-sulfur batteries with a bimetallic thermal switch were prepared, and eight battery modules in series and five parallel were assembled. However, among the eight rows in one series, the two anode terminals at both ends were connected and deliberately short-circuited. With respect to this module, a continuity test and a megger test were performed by a tester in the same manner as in Example 1, and the temperature was increased and an energization experiment was performed with a current of 120 A. One of the short-circuited rows cannot be charged and discharged, and the battery efficiency of the entire module is reduced by that amount, but it does not adversely affect the other series, and even after 250 cycles of energization, Batteries maintained good characteristics. After cooling this module,
As a result of disconnecting the deliberately short-circuited wire and assembling it again into a module, heating and energizing it, the eight batteries in series that could not be charged or discharged due to the short-circuit first were charged in the same way as the other batteries. Discharge was possible and showed good characteristics. (Comparative Example 2) As in Example 3, but using 40 sodium-sulfur batteries without a thermal switch, an eight-series and five-parallel battery module was assembled. The two anode terminals were connected and intentionally short-circuited. This module was subjected to a continuity test and a megger test using a tester in the same manner as in Example 1. In this module, the second battery from the cathode side was damaged in the row of eight short-circuited batteries in the process of raising the temperature,
Driving became impossible. After the module was cooled down, the remaining seven batteries which were short-circuited were heated up one by one and tested as single cells, and three of them were damaged during the temperature rise. For the remaining four batteries, although the cause is not clear, the open circuit voltage of the batteries in the charged state was as low as about 1.8 V, and all batteries were reassembled in the module and damaged during temperature rise.

【0023】(実施例4)実施例2と同様に電池にサー
ミスタを付加して電池を製作した。ただし用いたサーミ
スタは3種類あって、それぞれ抵抗値は(i)25℃:
5Ω、300℃:10kΩ、(ii)25℃:100m
Ω、300℃:10mΩ、(iii)25℃:1Ω、30
0℃:100Ωであり、それぞれ10本ずつ計30本製
作した。また電池の、サーミスタを含まない内部抵抗
は、25℃で250Ω、300℃で4mΩであった。こ
れらの電池を(i)、(ii)、(iii)それぞれのサー
ミスタごとに5本直列2並列のモジュールに組んだ。そ
れぞれの直列の接続を調べるためにテスターで5本の電
池の両端に電圧をかけ、さらに電池電圧の測定を行う計
測線間の絶縁が良好であるか調べるために、1kVの電
圧によってメガーテストを行った。それを各々の直列の
組について繰り返した。
Example 4 A battery was manufactured in the same manner as in Example 2 except that a thermistor was added to the battery. However, there are three types of thermistors used, each having a resistance value of (i) 25 ° C .:
5 Ω, 300 ° C .: 10 kΩ, (ii) 25 ° C .: 100 m
Ω, 300 ° C .: 10 mΩ, (iii) 25 ° C .: 1 Ω, 30
0 ° C .: 100 Ω, and a total of 30 pieces were manufactured, 10 pieces each. The internal resistance of the battery not including the thermistor was 250 Ω at 25 ° C. and 4 mΩ at 300 ° C. These batteries were assembled into modules of 5 series and 2 parallel for each thermistor (i), (ii) and (iii). A voltage is applied to both ends of the five batteries with a tester to check each series connection, and a megger test is performed with a voltage of 1 kV to check whether insulation between the measurement lines for measuring the battery voltage is good. went. It was repeated for each series set.

【0024】これら3つのモジュールについて通電実験
を行うため、毎時5℃の速度で昇温したところ、(i)
のサーミスタをつけた電池を使って作成したモジュール
では、約110℃で1本の電池が破損して、1直列の運
転が不能になった。また(ii)のサーミスタを用いて作
成した電池のモジュールでは、昇温中の異常はなかった
が、電池運転時の効率が55%と非常に悪くなり、モジ
ュールとしての使用に困難をきたした。一方、(iii)
のサーミスタを組み入れた電池を用いて作成した電池モ
ジュールでは、昇温中の電池異常もなく、また電池効率
も85%と高い割合で、250サイクルの充放電の繰返
しによっても電池特性に異常は認められなかった。
In order to conduct an energization experiment on these three modules, the temperature was increased at a rate of 5 ° C./hour.
In the module made using the battery provided with the thermistor, one battery was damaged at about 110 ° C., and one series operation was impossible. In the battery module prepared by using the thermistor of (ii), there was no abnormality during temperature rise, but the efficiency during battery operation was extremely low at 55%, which made it difficult to use the module. On the other hand, (iii)
In the battery module made using the battery incorporating the thermistor, there was no battery abnormality during temperature rise, the battery efficiency was as high as 85%, and the battery characteristics were abnormal even after repeated charge / discharge cycles of 250 cycles. I couldn't.

【0025】(i)、(ii)のサーミスタの電池のモジ
ュールでの異常は、次のように考えることができる。す
なわち(i)のサーミスタの電池のモジュールでは、常
温で結線等の試験を行う際、電池の内部抵抗に比べてサ
ーミスタの抵抗値が十分大きくないので、外部からかけ
た電圧による電流が電池の方にも流れ込んで、固体電解
質を電気化学的に劣化させてしまい、破損にいたる電池
が生じたと考えられる。また(ii)のサーミスタの電池
のモジュールでは、電池運転温度において、電池の内部
抵抗に比べてサーミスタの抵抗値が十分に大きくないた
め、サーミスタに流れ込む電流が発生し、それが熱エネ
ルギーロスとして電池モジュールの効率を落したと考え
られる。このように、電池に付加するサーミスタの抵抗
値は、常温では電池の内部抵抗の1/100以下、電池
動作温度では電池の内部抵抗の100倍以上であること
が望ましい。
The abnormalities in the battery modules of the thermistors (i) and (ii) can be considered as follows. That is, in the battery module of the thermistor (i), when a connection test or the like is performed at room temperature, the resistance value of the thermistor is not sufficiently large compared to the internal resistance of the battery. It is considered that the solid electrolyte was electrochemically deteriorated and the battery was damaged. Also, in the battery module of the thermistor of (ii), at the battery operating temperature, the resistance value of the thermistor is not sufficiently large compared to the internal resistance of the battery, so that a current flowing into the thermistor is generated, which is a heat energy loss. It is considered that the efficiency of the module has been reduced. As described above, it is desirable that the resistance value of the thermistor added to the battery be 1/100 or less of the internal resistance of the battery at normal temperature and 100 times or more of the internal resistance of the battery at the operating temperature of the battery.

【0026】(実施例5)陽極に塩化ニッケルを、電解
液に塩化アルミニウム−塩化ナトリウムを用いた、50
0Whの容量のナトリウム−塩化ニッケル電池に、実施
例1と同様にして、室温で導通があり250℃で導通が
ない熱スイッチを付加したものを20本作成した。これ
を4本直列5並列のモジュールに組立て、実施例1と同
様に結線の確認をして、毎時5℃の速度で250℃まで
昇温し、50Aで充電充放電試験を行った。昇温過程で
破損する電池は1本もなく、100サイクルの充放電を
行った後も、個々の電池の特性には異常は見られなかっ
た。
Example 5 Nickel chloride was used for the anode and aluminum chloride-sodium chloride for the electrolyte.
In the same manner as in Example 1, twenty sodium-nickel chloride batteries having a capacity of 0 Wh and a heat switch that conducts at room temperature and does not conduct at 250 ° C. were added. These were assembled into four modules in series and five parallel, and the connection was confirmed in the same manner as in Example 1. The temperature was increased to 250 ° C. at a rate of 5 ° C./hour, and a charge / discharge test was performed at 50 A. No battery was damaged during the heating process, and no abnormalities were found in the characteristics of the individual batteries even after 100 cycles of charging and discharging.

【0027】[0027]

【発明の効果】本発明によれば、ナトリウム−硫黄電池
等の高温型二次電池モジュールの、電池及び固体電解質
に悪影響を与える、常温での電池内への電流の流れ込み
を防ぐことができるので、複数本の電池間の短絡に強
く、常温で結線の確認等電気的な検査を行うことが可能
な高温型二次電池及び電池モジュールが得られる。
According to the present invention, it is possible to prevent current from flowing into a battery at room temperature, which adversely affects a battery and a solid electrolyte, in a high-temperature type secondary battery module such as a sodium-sulfur battery. Thus, a high-temperature secondary battery and a battery module that are resistant to a short circuit between a plurality of batteries and that can perform electrical inspection such as confirmation of connection at normal temperature can be obtained.

【0028】本発明の実施例においては、電池に付加す
る接続手段として、熱スイッチ及びサーミスタのみが示
されているが、他の物質または素子であっても、常温で
電池の内部抵抗に比べて十分小さく、かつ電池作動温度
で電池の内部抵抗に比べて十分小さいものであれば、同
様に用いることができる。
In the embodiment of the present invention, only a thermal switch and a thermistor are shown as connection means to be added to the battery. However, even if other substances or elements are used at room temperature, the internal resistance of the battery is lower than that of the battery. As long as it is sufficiently small and sufficiently smaller than the internal resistance of the battery at the battery operating temperature, it can be used similarly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電池を用いたモジュールに、常温で外
部から電圧をかけた際の回路図である。
FIG. 1 is a circuit diagram when a voltage is externally applied at normal temperature to a module using a battery of the present invention.

【図2】本発明の電池を用いたモジュールの、電池作動
温度での回路図である。
FIG. 2 is a circuit diagram at a battery operating temperature of a module using the battery of the present invention.

【図3】本発明のナトリウム−硫黄電池の構造を示した
図である。
FIG. 3 is a diagram showing a structure of a sodium-sulfur battery of the present invention.

【図4】本発明の電池モジュールの斜視図である。FIG. 4 is a perspective view of the battery module of the present invention.

【図5】電池同志の絶縁が不完全な場合に、直列に接続
された電池に起こる短絡を示した図である。
FIG. 5 is a diagram illustrating a short circuit that occurs in series-connected batteries when the insulation between the batteries is incomplete.

【図6】電池同志の絶縁が不完全な場合に、直列に接続
された電池に起こる短絡を示した回路図である。
FIG. 6 is a circuit diagram illustrating a short circuit that occurs in series-connected batteries when the insulation between the batteries is incomplete.

【符号の説明】[Explanation of symbols]

1 電池 2 接続手段 3 外部からかけた電圧 4 陰極端子 5 陰極 6 陰極容器 7 絶縁材 8 陽極端子 9 陽極容器 10 陽極 11 固体電解質 12 接続線 13 絶縁材台座 14 電池 15 電池 16 電池 17 設置台 18 外部抵抗 DESCRIPTION OF SYMBOLS 1 Battery 2 Connecting means 3 Externally applied voltage 4 Cathode terminal 5 Cathode 6 Cathode container 7 Insulation material 8 Anode terminal 9 Anode container 10 Anode 11 Solid electrolyte 12 Connection line 13 Insulator base 14 Battery 15 Battery 16 Battery 17 Battery stand 18 External resistance

フロントページの続き (72)発明者 小山 哲雄 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (72)発明者 中澤 哲夫 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (72)発明者 西村 成興 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (56)参考文献 特開 昭62−210841(JP,A) 特開 昭62−221826(JP,A) 特開 平1−122575(JP,A) 実開 昭57−40254(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01M 10/39 H01M 10/42 - 10/44 Continued on the front page (72) Inventor Tetsuo Koyama 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. ) Inventor: Seiko Nishimura 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (56) References JP-A-62-110841 (JP, A) JP-A-62-1221826 (JP, A) JP Hei 1-122575 (JP, A) Actually open 57-57,254 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/39 H01M 10/42-10/44

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 動作温度で液体の陽極活物質及び集電材
を備えた陽極と、この陽極を収納する陽極容器と、動作
温度で液体金属の陰極活物質を備えた陰極と、陰極をを
収納し該陰極と接触する陰極容器と、前記陽極容器と該
陰極容器とを絶縁する絶縁物と、前記陽極と陰極とを隔
てる固体電解質とを備えた高温型二次電池において、 前記陽極容器と陰極容器の間を、室温では室温における
電池の内部抵抗よりも低い抵抗値を有し、電池作動温度
ではその温度での電池の内部抵抗よりも高い抵抗値を有
する接続手段で接続したことを特徴とする高温型二次電
池。
An anode provided with an anode active material and a current collector which is liquid at an operating temperature, an anode container containing the anode, a cathode provided with a cathode active material of a liquid metal at an operating temperature, and a cathode housed therein A high-temperature secondary battery comprising: a cathode container in contact with the cathode; an insulator for insulating the anode container and the cathode container; and a solid electrolyte separating the anode and the cathode. The containers are connected by a connecting means having a resistance value lower than the internal resistance of the battery at room temperature at room temperature, and having a resistance value higher than the internal resistance of the battery at the battery operating temperature at the room temperature. High temperature type secondary battery.
【請求項2】 請求項1に記載の高温型二次電池におい
て、陽極活物質が硫黄及び/または多硫化ナトリウムで
あり、陰極活物質がナトリウムであり、固体電解質がβ
−アルミナ及び/またはβ”−アルミナから構成される
ナトリウム−硫黄電池である高温型二次電池。
2. The high-temperature secondary battery according to claim 1, wherein the anode active material is sulfur and / or sodium polysulfide, the cathode active material is sodium, and the solid electrolyte is β.
A high-temperature secondary battery that is a sodium-sulfur battery composed of alumina and / or β ″ -alumina;
【請求項3】 請求項1又は2に記載の高温型二次電池
において、接続手段の抵抗が、室温において電池の室温
の内部抵抗の1/100以下であり、且つ電池作動温度
ではその温度での電池の内部抵抗の100倍以上である
高温型二次電池。
3. The high-temperature secondary battery according to claim 1, wherein the resistance of the connection means is 1/100 or less of the internal resistance of the battery at room temperature at room temperature, and at that temperature at the battery operating temperature. High-temperature secondary battery that is 100 times or more the internal resistance of the battery of claim 1.
【請求項4】 請求項1〜3のいずれかに記載の高温型
二次電池において、接続手段は熱スイッチ又は正特性
(PTC)サーミスタである高温型二次電池。
4. The high-temperature secondary battery according to claim 1, wherein the connection means is a thermal switch or a positive temperature coefficient (PTC) thermistor.
【請求項5】 複数本の高温型二次電池と、この複数本
の電池を収納するモジュール容器と、前記電池の温度を
高める昇温手段とを備えて、充放電を行う電池モジュー
ルにおいて、高温型二次電池は請求項1〜4のいずれか
に記載のものであることを特徴とする電池モジュール。
5. A battery module for charging and discharging, comprising: a plurality of high-temperature secondary batteries; a module container accommodating the plurality of batteries; and a temperature raising means for increasing the temperature of the batteries. A battery module, wherein the type secondary battery is one according to any one of claims 1 to 4.
JP03165521A 1991-07-05 1991-07-05 High temperature secondary battery and battery module Expired - Fee Related JP3091885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03165521A JP3091885B2 (en) 1991-07-05 1991-07-05 High temperature secondary battery and battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03165521A JP3091885B2 (en) 1991-07-05 1991-07-05 High temperature secondary battery and battery module

Publications (2)

Publication Number Publication Date
JPH0513103A JPH0513103A (en) 1993-01-22
JP3091885B2 true JP3091885B2 (en) 2000-09-25

Family

ID=15813973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03165521A Expired - Fee Related JP3091885B2 (en) 1991-07-05 1991-07-05 High temperature secondary battery and battery module

Country Status (1)

Country Link
JP (1) JP3091885B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4638635B2 (en) * 2001-09-25 2011-02-23 新日本製鐵株式会社 Sacrificial electrode and cathodic protection method
MY182178A (en) 2011-09-01 2021-01-18 Chugai Pharmaceutical Co Ltd Method for preparing a composition comprising highly concentrated antibodies by ultrafiltration
KR101353599B1 (en) * 2011-12-27 2014-01-27 재단법인 포항산업과학연구원 Hybride sodium battery
KR102173238B1 (en) * 2013-06-05 2020-11-03 에스케이이노베이션 주식회사 Sodium secondary battery with organic electrode

Also Published As

Publication number Publication date
JPH0513103A (en) 1993-01-22

Similar Documents

Publication Publication Date Title
CA2577295C (en) Member for measurement of cell voltage and temperature in battery pack
KR100749567B1 (en) Stacked-type lithium-ion rechargeable battery
US8564244B2 (en) Battery with battery cells and method for monitoring and controlling the battery cells of the battery
US6858345B2 (en) Wound bipolar lithium polymer batteries
US4879188A (en) Bypass element for safeguarding battery cells
CN103608951B (en) Soldering connection device, there is the battery module of this soldering connection device and include the set of cells of this battery module
JP2008047510A (en) Power storage device
US6087035A (en) Low-voltage-drop diode bypass of failed battery cell
US4849806A (en) Shunting element
CN109638210B (en) Series-parallel converter for storage battery pack
JP3091885B2 (en) High temperature secondary battery and battery module
WO2013118989A1 (en) Manufacturing method for battery cells having novel structure
JP2001511633A (en) On-site failure detection device for container storage type energy storage device
KR20240028498A (en) How to heat a battery and batteries
JP7290126B2 (en) Method for manufacturing all-solid-state battery
JPH0636373B2 (en) Bridge element
CN101315989A (en) Module battery
JPH04284351A (en) High temperature battery device
JP2733404B2 (en) Chemical battery and power storage system
CN217426898U (en) Battery core and battery module
CN221126183U (en) Battery pack
CN116111292A (en) Aluminum battery
CN116953535A (en) Nondestructive testing method and system for electrical connection of output ends of multi-stack parallel thermal batteries
CN109613439A (en) A kind of detection method and device of conveyance capacity
JP2001185107A (en) Case and holder of sealed lead battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees