Nothing Special   »   [go: up one dir, main page]

JP3080795B2 - Power system frequency simulation method and power system training simulator - Google Patents

Power system frequency simulation method and power system training simulator

Info

Publication number
JP3080795B2
JP3080795B2 JP04300128A JP30012892A JP3080795B2 JP 3080795 B2 JP3080795 B2 JP 3080795B2 JP 04300128 A JP04300128 A JP 04300128A JP 30012892 A JP30012892 A JP 30012892A JP 3080795 B2 JP3080795 B2 JP 3080795B2
Authority
JP
Japan
Prior art keywords
frequency
generator
power system
relay
demand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04300128A
Other languages
Japanese (ja)
Other versions
JPH06153396A (en
Inventor
稔 図師
健二 西脇
幸悦 対馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP04300128A priority Critical patent/JP3080795B2/en
Publication of JPH06153396A publication Critical patent/JPH06153396A/en
Application granted granted Critical
Publication of JP3080795B2 publication Critical patent/JP3080795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】電力系統の、平常時および系統事
故等の訓練用シミュレータに関し、特に、マルチシステ
ムの待機系計算機を訓練用シミュレータとして流用する
場合において、系統事故現象を正確かつリアルタイムで
模擬する必要のある訓練用シミュレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a simulator for power system training during normal times and system accidents, and more particularly, to accurately and in real time simulate system accident phenomena when a multi-system standby computer is used as a training simulator. Training simulators that need to be done.

【0002】[0002]

【従来の技術】図2に、従来の電力系統訓練用シミュレ
ータのシステム構成例を示す。また、図3に本発明の創
作対象となった、従来の系統模擬計算処理フローを示
す。なお、ここで系統模擬計算とは、例えば、訓練を行
なうために必要な電力系統の2値(オンとオフ)情報、
数値情報の模擬計算等を指す。また、2値情報とは、例
えばリレーのオン・オフ動作、CB状態変化等を指し、
数値情報とは、例えば系統周波数、電力、無効電力、電
圧、位相角、電流等の各種情報を指す。また、ここで訓
練とは、電力系統・設備の運用、運転等を担当する運転
者が、実際に事故等に発生する緊急事態に迅速かつ的確
に対処するための訓練を意味する。従来のシステムは、
例えば計算機1、系統盤2、訓練教官用卓4、被訓練者
用卓3、系統模擬用計算機5を有して構成されている。
さらに、計算機は、例えば表示出力処理手段、マンマシ
ン処理手段、需要供給力計算処理手段、現在系統状態ベ
ース、系統定義データベースを有して構成されている。
マンマシン処理手段は、訓練教官用卓4より入力される
系統運用のための情報、系統の接続状態情報、系統事故
等の訓練内容に関するデータ等を、計算機1に内蔵され
ている記憶エリア内に格納する。需要・供給力計算処理
手段は、計算機内の記憶エリア内に格納された現在系統
状態データベース、系統定義データベース等に基づい
て、総需要量、発電供給力等の計算処理を行い、例えば
発電機に出力の指令データ等を送るか否かを決定する。
系統模擬計算処理手段は、需要・供給力計算処理手段で
の処理結果等を入力データとし、例えば系統の潮流(有
効電力・無効電力の流れを称する)、電圧、周波数等、
訓練者の訓練に必要なデータを算出する。表示出力処理
手段は、訓練教官および被訓練者のために、最終処理結
果のデータを表示用データに編集した後、系統盤、CR
T等に出力する。また、系統事故の忠実な模擬(以下
「シミュレーション」とも称する)を可能とするために
は、上述の系統模擬計算処理手段で行っている系統安定
化装置の動作模擬、および「周波数リレー・CB(Ci
rcuit Breaker:遮断器)状態変数組み合
わせ」(最初に検出した周波数リレーの動作を基準とし
て、所定時間内にCBのオフ状態変化があった場合に、
条件成立として事故として扱う処理をいう)による事故
状態変化模擬をリアルタイムで処理する必要がある。
2. Description of the Related Art FIG. 2 shows a system configuration example of a conventional simulator for power system training. FIG. 3 shows a flow of a conventional system simulation calculation process, which is a creation target of the present invention. Here, the system simulation calculation is, for example, binary (on and off) information of an electric power system required for performing training,
Refers to simulation of numerical information. In addition, the binary information indicates, for example, on / off operation of a relay, CB state change, and the like.
Numerical information refers to various information such as system frequency, power, reactive power, voltage, phase angle, and current. Here, the training means training for a driver who is in charge of operation and operation of the power system / equipment to quickly and accurately deal with an emergency situation actually occurring due to an accident or the like. Conventional systems are:
For example, it comprises a computer 1, a system board 2, a training instructor's desk 4, a trainee's table 3, and a system simulation computer 5.
Further, the computer is configured to include, for example, a display output processing unit, a man-machine processing unit, a demand / supply capacity calculation processing unit, a current system state base, and a system definition database.
The man-machine processing means stores information for system operation input from the training instructor's desk 4, system connection status information, data on training contents such as system accidents in a storage area built in the computer 1. Store. The demand / supply capacity calculation processing means performs calculation processing of total demand, power generation supply capacity, and the like based on a current system state database, a system definition database, and the like stored in a storage area in the computer. Determines whether to send output command data or the like.
The system simulation calculation processing means uses processing results and the like in the demand / supply power calculation processing means as input data and, for example, power flow (referred to as active power / reactive power flow), voltage, frequency, etc.
Calculate the data required for trainee training. The display output processing means edits the final processing result data into display data for the training instructor and the trainee,
Output to T etc. Further, in order to enable a faithful simulation (hereinafter, also referred to as “simulation”) of a system accident, the operation simulation of the system stabilizing device performed by the above-described system simulation calculation processing means and the “frequency relay / CB ( Ci
rbreak Breaker: state variable combination "(when the off state of the CB changes within a predetermined time based on the operation of the frequency relay detected first,
It is necessary to process an accident state change simulation by real-time processing, which is a process that is treated as an accident when the condition is satisfied.

【0003】さらに、系統安定化装置は、電源脱落(以
下、「発電機トリップ」とも称し、発電機の事故で発電
機CBがオフとなり発電機が電力系統から分離するこ
と)、系統分離等の事故において、それを事前に想定
し、必要な制御対策として各フィーダ(配電用変電所か
ら引き出されて、最初の分岐点までで負荷の接続されて
いない配電線を称する)毎に、周波数リレーの動作条件
となる整定周波数(「整定」とは、予め設定しておくこ
とを称する)を、例えば0.1(Hz)単位で、また整
定時間を0.1〜0.3秒単位で設定しておき、これに
より、整定周波数と整定時間に基づいた系統状態の監視
を常時行い、動作条件を満足する周波数リレーが存在す
る場合は、該周波数リレーを動作させて、負荷遮断(負
荷側と需要側との系統を分離することを称する)を行う
ことにより系統周波数の回復を図る装置であった。な
お、ここで周波数リレーとは、系統周波数の維持安定の
ためのリレーの総称であり、周波数低下リレー(UF
R)、周波数上昇リレー(OFR)等がある。さらに、
周波数低下リレー(UFR)は、周波数異常低下時にフ
ィーダCBをオフにして負荷遮断を行なうリレーであ
り、周波数上昇リレー(OFR)は、周波数異常上昇時
に発電機CBをオフにして発電機トリップを行なうリレ
ーである。 以上の説明から、系統安定化装置の動作を
実際の系統と同様に模擬するためには、系統周波数の模
擬処理は、過渡現象を考慮し、0.1(Hz)単位の周
波数を0.1〜0.3秒毎にリアルタイムにて算出し、
模擬しなければならない。このため、従来の電力系統訓
練用シミュレータでは、図2、図3に示すように系統模
擬計算処理は、処理能力の高い高速計算機、または、演
算プロセッサを使用することにより、処理の複雑な交流
法潮流計算、周波数計算、周波数リレー動作模擬等を
0.1〜0.3秒周期といった短い周期にて行ってい
た。
[0003] Further, the system stabilizing device includes a power loss (hereinafter, also referred to as a "generator trip", in which the generator CB is turned off due to a generator accident and the generator is separated from the power system), system separation, and the like. In the event of an accident, it is assumed in advance, and as a necessary control measure, each feeder (referred to a distribution line that is drawn from the distribution substation and has no load connected to the first branch point) is connected to the frequency relay. The settling frequency ("settling" means to be set in advance) as the operating condition is set, for example, in units of 0.1 (Hz), and the settling time is set in units of 0.1 to 0.3 seconds. In this way, the system status is constantly monitored based on the settling frequency and the settling time, and if there is a frequency relay that satisfies the operating conditions, the frequency relay is operated and the load is rejected (between the load side and the demand). System with the side And a device to achieve a recovery of the system frequency by performing a designated) separating. Here, the frequency relay is a general term for a relay for maintaining and stabilizing a system frequency, and is a frequency reduction relay (UF).
R), a frequency increase relay (OFR), and the like. further,
The frequency lowering relay (UFR) is a relay that turns off the feeder CB when the frequency is abnormally low to cut off the load, and the frequency increasing relay (OFR) turns off the generator CB when the frequency is abnormally high and trips the generator. It is a relay. From the above description, in order to simulate the operation of the system stabilization device in the same manner as the actual system, the system frequency simulation process takes the frequency of 0.1 (Hz) unit into 0.1 by considering the transient phenomenon. Calculated in real time every 0.3 seconds,
Must simulate. For this reason, in the conventional simulator for power system training, as shown in FIGS. 2 and 3, the system simulation calculation process uses a high-speed computer with a high processing capability or an arithmetic processor to perform a complicated AC method. Power flow calculation, frequency calculation, frequency relay operation simulation, and the like have been performed in a short cycle such as a 0.1 to 0.3 second cycle.

【0004】[0004]

【発明が解決しようとする課題】近年、マルチシステム
の待機系計算機を使った電力系統訓練用シミュレータで
も、系統事故の忠実な模擬を可能とし、実系統と同等の
臨場感あふれる環境において、事故復旧等の訓練が可能
なシステムの提供が望まれていた。しかし、従来の電力
系統訓練用シミュレータで採用されてきた処理能力の大
きい高速計算機、演算プロセッサ等を用いずに、マルチ
システムの待機系計算機のみを流用して、系統事故等の
忠実な模擬を、従来と同様の処理ロジックで行うと処理
オーバーを招き、リアルタイムで模擬処理を行なえな
い。このため、事故復旧等の訓練を行う上で最低限必要
となる下記の模擬処理において、実系統と同様な模擬に
はならないという問題があった。まず、第一に、系統安
定化装置の動作模擬に関してであるが、図5に示すよう
に、系統周波数の模擬が、リアルタイム処理できない場
合には、整定周波数と整定時間に基づいた周波数リレー
の動作が、実系統と同様の動作とならない。図5は、リ
アルタイムの模擬が行なえないため、FCB、FCB
が余分な動作模擬となることを示している。
In recent years, even with a simulator for power system training using a multi-system standby system computer, it has become possible to faithfully simulate a system accident, and to recover from an accident in an environment full of realistic sensation equivalent to an actual system. It has been desired to provide a system capable of training such as training. However, instead of using a high-speed computer with a large processing capacity, an arithmetic processor, and the like, which have been employed in conventional simulators for electric power system training, only a multi-system standby computer is diverted to faithfully simulate a system accident or the like. If the processing is performed using the same processing logic as in the past, the processing will be over, and the simulation processing cannot be performed in real time. For this reason, there is a problem that a simulation similar to that of an actual system is not performed in the following simulation processing that is required at least for performing training such as accident recovery. First, regarding the operation simulation of the system stabilization device, as shown in FIG. 5, when the system frequency cannot be simulated in real time, the operation of the frequency relay based on the settling frequency and the settling time is performed. However, the operation is not the same as that of the actual system. FIG. 5 shows that FCB and FCB cannot be simulated in real time.
Indicates that extra operation simulation is performed.

【0005】第二に、「周波数リレー・CB状態変化組
み合わせ」等による事故検出模擬に関してである。ここ
で事故検出のため、周波数リレーとその動作により連動
するCBの組み合わせを、「周波数リレー・CB状態変
化組み合わせ」として、また、その組み合わせ毎に、
1.0秒単位の関連事故判定時間を設定して、該関連事
故判定時間において事故検出処理を行なうこととする。
すなわち、「周波数リレー・CB状態変化組み合わせ」
で定義されている周波数リレー、CBの組み合わせが、
関連事故判定時間内に動作した場合を、事故として検出
し、事故の発生を警報等でオペレーターに知らせるとと
もに、事故関連情報を作成するものである。したがっ
て、図6に示すように周波数リレー、およびCBの状態
変化模擬が、リアルタイム処理できない場合には、事故
検出の取りこぼしが発生し(フィーダCB、フィーダ
CBの事故検出の取こぼしが発生している)、オンラ
インと同様の処理とはならない。本発明の目的は、マル
チシステムの待機系計算機を訓練用シミュレータとして
流用する場合において、平常状態および系統事故状態の
系統模擬のいずれであっても、リアルタイムと同様な処
理を可能とすることにより、上述の問題点を解決し、被
訓練者に対して実系統と同じような訓練環境を提供する
ことにある。
[0005] Second, a simulation of accident detection by "combination of frequency relay and CB state change" is described. Here, in order to detect an accident, a combination of a frequency relay and a CB linked by its operation is referred to as a “frequency relay / CB state change combination”, and for each combination,
The related accident determination time is set in units of 1.0 second, and the accident detection processing is performed at the related accident determination time.
That is, “frequency relay / CB state change combination”
The combination of the frequency relay and CB defined in
If the operation is performed within the related accident determination time, the accident is detected as an accident, the occurrence of the accident is notified to an operator by an alarm or the like, and accident related information is created. Therefore, as shown in FIG. 6, when the simulation of the state change of the frequency relay and the CB cannot be performed in real time, the accident detection is missed (the feeder CB and the accident of the feeder CB are missed). ), The processing is not the same as online processing. An object of the present invention is to use a standby computer of a multi-system as a training simulator, and in any case of system simulation of a normal state and a system accident state, by enabling processing similar to real time, It is an object of the present invention to solve the above-mentioned problems and to provide a trainee with a training environment similar to a real system.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、以下の方法が考えられる。電力系統の周波数をシミ
ュレーションする方法であって、事故、周波数リレーの
動作、および時間経過を含む事象を発生させ、電力の需
要供給のアンバランスが生じた場合に、発電機の慣性定
数をM、内部相差角をδ、制動係数をD、定格角速度を
ωn、発電機の電気的出力をP、発電機の機械的入力を
PM、発電機の機械的入力の変化量をΔPM、調速機時定
数をTG、電源の周波数特性定数をKG、周波数変化量を
Δfとして、発電機の運動方程式を、 (M/ωn)・(d2δ/dt2)+(D/ωn)・(d
δ/dt)+P=PM とし、発電機に備えられる調速機の過渡特性を、 TG・(dΔPM/dt)+ΔPM+KG・Δf=0 として、前記2式から所定時間後の周波数を計算する方
法である。また、待機系を有する電力系統の周波数をシ
ミュレーションする方法であって、事故、周波数リレー
の動作、および時間経過を含む事象を発生させ、電力の
需要供給のアンバランスが生じた場合に、発電機の慣性
定数をM、内部相差角をδ、制動係数をD、定格角速度
をωn、発電機の電気的出力をP、発電機の機械的入力
をPM、発電機の機械的入力の変化量をΔPM、調速機時
定数をTG、電源の周波数特性定数をKG、周波数変化量
をΔfとして、発電機の運動方程式を、 (M/ωn)・(d2δ/dt2)+(D/ωn)・(d
δ/dt)+P=PM とし、発電機に備えられる調速機の過渡特性を、 TG・(dΔPM/dt)+ΔPM+KG・Δf=0 として、前記2式から所定時間後の周波数を、待機系の
計算手段を使用して計算する方法も考えられる。さら
に、上記方法において、周波数の計算結果を表示手段に
表示する方法が好ましい。また、上記方法を使用した手
段として、以下に記載するものが考えられる。計算機と
被訓練者用卓と訓練教官用卓を有して構成され、待機系
を備える電力系統訓練用シミュレータにおいて、待機系
の計算機が、発電機の慣性定数をM、内部相差角をδ、
制動係数をD、定格角速度をωn、発電機の電気的出力
をP、発電機の機械的入力をPM、発電機の機械的入力
の変化量をΔPM、調速機時定数をTG、電源の周波数特
性定数をKG、周波数変化量をΔfとした場合、発電機
の運動方程式を、 (M/ωn)・(d2δ/dt2)+(D/ωn)・(d
δ/dt)+P=PM とし、発電機に備えられる調速機の過渡特性を、 TG・(dΔPM/dt)+ΔPM+KG・Δf=0 として、前記2式から所定時間後の周波数を計算する機
能を有し、さらに、前記被訓練者用卓および前記訓練教
官用卓のうち少なくとも一つは、前記周波数の算出結果
を表示する機能を有する電力系統訓練用シミュレータで
ある。
To solve the above-mentioned problems, the following methods are conceivable. A method of simulating the frequency of an electric power system, in which an event including an accident, an operation of a frequency relay, and a lapse of time occurs, and when an imbalance in power supply and demand occurs, the inertia constant of the generator is set to M, When the internal phase difference angle is δ, the braking coefficient is D, the rated angular velocity is ωn, the electrical output of the generator is P, the mechanical input of the generator is PM, the variation of the mechanical input of the generator is ΔPM, Assuming that the constant is TG, the frequency characteristic constant of the power supply is KG, and the amount of frequency change is Δf, the equation of motion of the generator is (M / ωn) · (d 2 δ / dt 2 ) + (D / ωn) · (d
δ / dt) + P = PM, and the transient characteristic of the governor provided in the generator is TG · (dΔPM / dt) + ΔPM + KG · Δf = 0, and the frequency after a predetermined time is calculated from the above equation (2). is there. A method for simulating the frequency of a power system having a standby system, comprising generating an event including an accident, an operation of a frequency relay, and time lapse, and generating an Is the inertia constant of M, the internal phase difference angle is δ, the damping coefficient is D, the rated angular velocity is ωn, the electrical output of the generator is P, the mechanical input of the generator is PM, and the variation of the mechanical input of the generator is Assuming that ΔPM, the governor time constant is TG, the frequency characteristic constant of the power supply is KG, and the frequency change is Δf, the equation of motion of the generator is (M / ωn) · (d 2 δ / dt 2 ) + (D / ωn) ・ (d
δ / dt) + P = PM, and the transient characteristic of the governor provided in the generator is TG · (dΔPM / dt) + ΔPM + KG · Δf = 0. A method of calculating using a calculation means is also conceivable. Further, in the above method, a method of displaying the calculation result of the frequency on the display means is preferable. The means described below can be considered as means using the above method. In a power system training simulator comprising a computer, a trainee's desk and a training instructor's desk, and having a standby system, in the standby system computer, the inertia constant of the generator is M, the internal phase difference angle is δ,
The braking coefficient is D, the rated angular velocity is ωn, the electrical output of the generator is P, the mechanical input of the generator is PM, the variation of the mechanical input of the generator is ΔPM, the time constant of the governor is TG, When the frequency characteristic constant is KG and the amount of frequency change is Δf, the equation of motion of the generator is expressed as (M / ωn) · (d 2 δ / dt 2 ) + (D / ωn) · (d
δ / dt) + P = PM, and the transient characteristic of the governor provided in the generator is set as TG · (dΔPM / dt) + ΔPM + KG · Δf = 0. Further, at least one of the trainee desk and the training instructor desk is a power system training simulator having a function of displaying the frequency calculation result.

【0007】[0007]

【作用】上記本発明の目的は、計算機の処理オーバーの
主原因である系統安定化装置の動作模擬のための周波数
計算処理を被訓練者が、違和感を感じない程度に簡略
し、高速化することにより達成される。本発明で採用し
た技術的手段について説明しながら、作用について説明
する。
The object of the present invention is to simplify and speed up the frequency calculation process for simulating the operation of the system stabilization device, which is the main cause of the over-processing of the computer, so that the trainee does not feel uncomfortable. This is achieved by: The operation will be described while explaining the technical means employed in the present invention.

【0008】系統安定化装置の動作模擬を正確に処理す
るために、周波数計算処理は過渡現象を考慮し、例えば
0.1(Hz)単位の周波数を、0.1〜0.3秒毎に
リアルタイムに算出しなければならない。しかし、必要
な総負荷量を、従来技術である交流法潮流計算を使用し
て求めた場合には、系統事故等の模擬のリアルタイム処
理に大きな影響を与える。したがって、本発明において
は、周波数計算処理で周波数リレー動作による負荷遮断
を模擬することで、総負荷量を求めることにした。これ
により、短時間で過渡現象を考慮した系統周波数を求め
ることが可能となる。さらに、周波数計算が短時間で処
理できることを利用し、例えば0.1〜0.3秒毎に周
波数リレー動作による負荷遮断と、それに伴う周波数変
動の模擬を、例えば数秒〜10数秒先の将来の処理分ま
でを、1回の処理タイミングで行う。かかる処理結果
は、計算機内の記憶エリアに一時格納しておき、対応す
る時間の模擬データを順次アクセスして系統の模擬を行
なう。このように将来分の周波数計算を事前に行なった
おくことにより、保護リレー動作等の事故多重状態変化
(1つの事故が発生すると、関連する動作が発生するこ
とを称する)模擬と処理が、オーバーラップしてしまう
頻度を低く抑え、計算機処理を時間的に分散し、計算機
の負荷の平均化を図るようにする。以上の処理により、
被訓練者に違和感を与えずに、系統安定化装置の動作模
擬、および「周波数リレー・CB状態変化組み合わせ」
による事故検出模擬を高速に処理することが可能とな
る。これにより、マルチシステムにおける待機系計算機
を訓練用シミュレータとして流用する場合において、平
常状態および系統事故状態のいずれの系統模擬において
も、リアルタイム処理が可能となり、被訓練者に対して
実系統と同じような臨場感あふれる訓練環境を提供する
が可能となった。
In order to accurately process the simulation of the operation of the system stabilizing device, the frequency calculation process considers transient phenomena and, for example, changes the frequency in units of 0.1 (Hz) every 0.1 to 0.3 seconds. Must be calculated in real time. However, when the required total load is obtained by using the AC method power flow calculation, which is a conventional technique, it has a large effect on the real-time processing of simulating a system accident or the like. Therefore, in the present invention, the total load is determined by simulating load shedding by the frequency relay operation in the frequency calculation process. As a result, it is possible to obtain the system frequency in consideration of the transient phenomenon in a short time. Further, utilizing the fact that the frequency calculation can be processed in a short time, for example, the load shedding by the frequency relay operation every 0.1 to 0.3 seconds and the simulation of the frequency fluctuation accompanying it, for example, a few seconds to several tens seconds ahead of the future The processing up to the processing is performed at one processing timing. Such a processing result is temporarily stored in a storage area in the computer, and simulation of a system is performed by sequentially accessing simulation data at corresponding times. In this way, by performing the frequency calculation for the future in advance, the simulation and processing of an accident multi-state change (referred to as the occurrence of a related operation when one accident occurs) such as the operation of a protection relay is overrun. The frequency of wrapping is kept low, computer processing is distributed over time, and computer loads are averaged. By the above processing,
Simulate the operation of the system stabilization device without giving the trainee a sense of incongruity, and "combination of frequency relay and CB state change"
It is possible to process the accident detection simulation by the high speed. As a result, when the standby computer in the multi-system is diverted as a training simulator, real-time processing can be performed in both the system simulation of the normal state and the system accident state, and the trainee can be trained in the same manner as the real system. It has become possible to provide a highly realistic training environment.

【0009】[0009]

【実施例】以下、本発明の実施例を図を参照して説明す
る。図1に、本発明にかかる電力系統訓練用シミュレー
タのシステム構成を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a system configuration of a power system training simulator according to the present invention.

【0010】本電力系統訓練用シミュレータは、計算機
1と系統盤2と被訓練者用卓3と訓練教官用卓4を有し
て構成される。系統盤2は、電力系統全体の状態をマク
ロ的に監視するための手段であり、主要CBの開閉状
態、主要箇所の電力、無効電力、電圧、電流等の各種表
示器により実現される。従来の電力系統訓練用シミュレ
ータでは、図2に示すように、系統模擬計算処理手段
を、スループットの高い高速計算機、あるいは、演算プ
ロセッサで構成していた。これに対し、本発明にかかる
電力系統訓練用シミュレータにおいては、系統模擬計算
処理手段における周波数計算処理の高速化が可能となっ
たため、専用の計算機が不要となった。訓練教官用卓4
は、例えばキーボード等の入力手段、CRT等の出力手
段等を備えた構成となっている。教官は、例えば各種の
事故、周波数リレーのオン・オフ等の各種の事象を、入
力手段を介して入力し、シミュレータ内で電力の需要供
給のアンバランス状態をを模擬発生させるように操作を
行なう。被訓練者用卓3は、例えばキーボード等の入力
手段、CRT等の出力手段等を備えた構成となってい
る。訓練者は、発生した需要供給のアンバランス状態を
回避すべく、複数の操作を入力手段を介して行なう。該
操作に基づく需要供給バランスの変化、電力系統周波数
の変化等の主要情報の時間変化は、出力手段に表示する
ように構成しておくことが好ましい。なお、かかる主要
情報の時間変化は、訓練教官用卓4に備えた出力手段に
も表示する構成にしても良い。図4に本発明の系統模擬
計算フローの一例を示す。図3に示す従来処理フローに
対し、1回の処理タイミングで、例えば10数秒先まで
の周波数リレーの動作を考慮した周波数を予測計算する
ことによって、例えば0.1〜0.3秒の周期、あるい
は、1〜数秒の周期等の短周期で周波数計算、周波数リ
レー動作模擬、および、交流法潮流計算処理等を行って
いた系統模擬計算を、訓練教官および被訓練者に違和感
を与えないような系統模擬精度、例えば10秒周期、で
行えるようにした。この周波数予測計算について詳細に
説明する。電力系統に、何らかの要因による発電量と負
荷量との需給アンバランスが生じた場合に、需給アンバ
ランスと系統特性定数によって得られる周波数変化が生
じるが、かかる周波数変化は、即座に発生するのではな
く、発電機の慣性定数、(発電機の)調速機制御系の動
作遅れ等の各種パラメータにより、前記周波数は、時々
刻々と変動し、例えば、数秒から10数秒後に定常状態
となる。また、一般に、電力系統では、周波数の異常変
動による事故防止のために、負荷制御を行う周波数リレ
ーを設置し、発電機トリップ、負荷遮断等の処理を行う
ため、周波数変動はさらに複雑なものとなる。本発明で
は、需給アンバランスが発生した場合の周波数変動を
0.1〜0.3秒の幅で計算していくと同時に、周波数
リレーの動作を行なうか否かの判定を行い、周波数リレ
ーを動作させる場合には、動作させる毎に、負荷遮断に
よる周波数変動を同様に、例えば0.1〜0.3秒の幅
で計算し、それらを順次合成していくことにより、1回
の計算で、例えば10数秒先の全体の周波数変動を予測
する。需給アンバランスによる周波数変動は、電源およ
び負荷の系統特性定数、発電機特性、調速機特性により
決定され、発電機特性の模擬方法、調速機モデルの与え
方は、各種考えられているが、これらは要求される厳密
度により選択される。
The power system training simulator comprises a computer 1, a system board 2, a trainee's desk 3, and a training instructor's desk 4. The system board 2 is a means for macro-monitoring the state of the entire power system, and is realized by various indicators such as the open / closed state of the main CB, electric power, reactive power, voltage, current and the like of main parts. In a conventional simulator for electric power system training, as shown in FIG. 2, the system simulation calculation processing means is constituted by a high-speed computer having a high throughput or an arithmetic processor. On the other hand, in the electric power system training simulator according to the present invention, since the frequency calculation processing in the system simulation calculation processing means can be speeded up, a dedicated computer is not required. Training instructor's desk 4
Has a configuration including input means such as a keyboard, output means such as a CRT, and the like. The instructor inputs various events such as various accidents and ON / OFF of the frequency relay through the input means, and performs an operation in the simulator to simulate an imbalance state of power supply and demand. . The trainee's desk 3 is configured to include, for example, input means such as a keyboard and output means such as a CRT. The trainee performs a plurality of operations via the input means in order to avoid the imbalance between supply and demand that has occurred. It is preferable that the time change of the main information such as the change of the supply and demand balance and the change of the power system frequency based on the operation is displayed on the output means. The time change of the main information may be displayed on an output unit provided in the training instructor's desk 4. FIG. 4 shows an example of a system simulation calculation flow according to the present invention. With respect to the conventional processing flow shown in FIG. 3, for example, a cycle of 0.1 to 0.3 seconds is calculated by predicting and calculating the frequency in consideration of the operation of the frequency relay up to ten and several seconds ahead at one processing timing. Alternatively, the frequency calculation in a short cycle such as one to several seconds, the simulation of the operation of the frequency relay, and the system simulation calculation in which the AC method power flow calculation processing and the like are performed are performed so that the training instructor and the trainee do not feel uncomfortable. The simulation can be performed with system simulation accuracy, for example, at a cycle of 10 seconds. This frequency prediction calculation will be described in detail. When a power supply and demand imbalance occurs between the power generation and the load due to some factor in the power system, a frequency change obtained by the supply and demand imbalance and the system characteristic constant occurs, but such a frequency change may occur immediately. Instead, the frequency fluctuates every moment due to various parameters such as the inertia constant of the generator and the operation delay of the governor control system (of the generator). For example, the frequency becomes steady after several seconds to several tens of seconds. In addition, in general, in the power system, a frequency relay that performs load control is installed to prevent accidents due to abnormal frequency fluctuations, and processing such as generator trip and load shedding is performed. Become. In the present invention, the frequency fluctuation when the supply and demand imbalance occurs is calculated in the range of 0.1 to 0.3 seconds, and at the same time, it is determined whether or not to operate the frequency relay. In the case of operation, each time the operation is performed, the frequency fluctuation due to the load rejection is similarly calculated, for example, in a range of 0.1 to 0.3 seconds, and these are sequentially synthesized, so that one calculation can be performed. For example, the entire frequency fluctuation of a few ten seconds ahead is predicted. Frequency fluctuations due to supply and demand imbalance are determined by the power supply and load system characteristic constants, generator characteristics, and governor characteristics, and various methods of simulating generator characteristics and providing governor models have been considered. , These are selected according to the required rigor.

【0011】今回は、最も簡単な一例である、発電機特
性の模擬方法を、発電機特性の運動特性、突極性、界磁
巻線回路、制動巻線等の過渡特性を近似式で模擬する過
渡モデルとし、調速機を時定数TGの一次遅れで近似す
るものとした。これにより、発電機の運動方程式は、次
式1で、調速機の過渡特性は、次式2で与えられる。 (M/ωn)・(d2δ/dt2)+(D/ωn)・(dδ/dt)+P=PM (式1) (ただし、Mは、発電機の慣性定数、δは、内部相差
角、Dは、制動係数、ωnは、定格角速度、Pは、発電
機の電気的出力、PMは、発電機の機械的入力である) TG・(dΔPM/dt)+ΔPM+KG・Δf=0 (式2) (ただし、ΔPMは、発電機の機械的入力の変化量、TG
は、調速機時定数、KGは、電源の周波数特性定数、Δ
fは、周波数変化量である)ここで、電源脱落事故等の
要因により、需給アンバランスが発生したとして、この
需給アンバランス以外の条件は、変化しないものとする
と、式1と式2を連立させて解を求めることにより、簡
単に事故発生時に図7(a)に示すような事故発生直後か
ら10数秒後までの、過渡時の周波数変動を予測するこ
とができる。この周波数変動を、例えば0.1〜0.3
秒の幅で計算すると同時に、周波数リレーを動作させる
か否かの判定を行う。周波数リレーは、作動周波数と作
動時間が、予め整定されており、作動周波数以下(ある
いは「以上」)の周波数が、作動時間以上継続した場合
に、動作する構成になっている。
In this example, a method for simulating the generator characteristics, which is one of the simplest examples, simulates the dynamic characteristics of the generator characteristics, the saliency, the transient characteristics of the field winding circuit, the damping winding, and the like by an approximate expression. As a transient model, the governor was approximated by a first-order delay of the time constant TG. Thus, the equation of motion of the generator is given by the following equation 1, and the transient characteristic of the governor is given by the following equation 2. (M / ωn) · (d 2 δ / dt 2 ) + (D / ωn) · (dδ / dt) + P = PM (Equation 1) (where M is the inertia constant of the generator, and δ is the internal phase difference Angular, D is the braking coefficient, ωn is the rated angular velocity, P is the electrical output of the generator, and PM is the mechanical input of the generator.) TG ・ (d / PM / dt) + ΔPM + KG ・ = f = 0 2) (where ΔPM is the amount of change in the mechanical input of the generator, TG
Is the governor time constant, KG is the frequency characteristic constant of the power supply, Δ
f is the amount of frequency change) Here, assuming that a supply-demand imbalance has occurred due to a factor such as a power loss accident, if the conditions other than the supply-demand imbalance do not change, equations 1 and 2 are simultaneously established. By calculating the solution in this way, it is possible to easily predict the frequency fluctuation during the transition from immediately after the occurrence of the accident as shown in FIG. This frequency variation is, for example, 0.1 to 0.3
At the same time as calculating in seconds, it is determined whether to activate the frequency relay. The frequency relay has an operation frequency and an operation time set in advance, and is configured to operate when a frequency equal to or lower than the operation frequency (or “over”) continues for the operation time or longer.

【0012】例えば0.1〜0.3秒の幅で周波数を計
算するごとに、全ての周波数リレーについて、該周波数
リレーの周波数が、作動周波数を逸脱しているか否かを
判定し、逸脱している周波数リレーについては、逸脱継
続時間をカウントし、逸脱していない周波数リレーにつ
いては逸脱継続時間を「0」とする。逸脱継続時間が、
予め整定された作動時間以上となった時点で、当該周波
数リレーを動作させ、当該周波数リレーの動作により遮
断される負荷量を算出する。
For example, every time the frequency is calculated in the range of 0.1 to 0.3 seconds, it is determined whether or not the frequency of all the frequency relays deviates from the operating frequency. The departure continuation time is counted for the frequency relay that has deviated, and the departure continuation time is set to “0” for the frequency relay that has not deviated. The departure duration is
When the operation time becomes equal to or longer than the preset operation time, the frequency relay is operated, and the amount of load interrupted by the operation of the frequency relay is calculated.

【0013】算出された遮断負荷は、新たな需給アンバ
ランスを生ぜしめることとなるが、遮断された負荷のみ
の影響による周波数変動を、式1と式2を連立させて求
めることにより、負荷遮断から10数秒後までの、過渡
時の周波数変動を予測することが可能となる。
The calculated interrupted load causes a new supply-demand imbalance. However, by calculating the frequency fluctuation caused by only the interrupted load by simultaneously formulas (1) and (2), the load is rejected. It is possible to predict the frequency fluctuation at the time of transition from 10 to several seconds later.

【0014】事故発生からt1秒後に、ある周波数リレ
ーが動作したとすると、t1秒後の計算を行う時点で、
図7(b)に示すような負荷遮断のみの影響による周波数
変動が予測される。実際には、事故によって発生した需
給アンバランスによる周波数変動と、負荷遮断による周
波数変動が発生するわけであるが、これらの模擬を各々
の周波数変動を合成していくことにより、全体の周波数
変化量を随時補正していく方式とすればよい。前記例に
て、t1秒以降は、図7(a)と図7(b)を合成した図7(c)
に示すように、周波数変動が新しく予測されるので、t
1秒後は、新しく予測される周波数変動に従って、周波
数の計算、周波数リレーの動作有無の判定を行う。この
結果、新たに別の周波数リレーが動作した場合には、同
様の方法にて周波数変動を予測し、さらに合成していく
ことにより、周波数の過渡変化を予測する。 この様な
処理により、最終的には、周波数予測計算にて図8に示
すような周波数変動が予測されることになる。このよう
に、本発明では1回の処理タイミングで、例えば0.1
〜0.3秒の幅で、例えば10数秒先までの周波数の過
渡変化および周波数リレー動作状況を決定する。また、
周波数予測計算にて動作した周波数リレー、および、そ
の動作時刻、遮断されたCB、遮断負荷量等の情報は、
計算機内の記憶エリアに、一時格納しておき、系統模擬
計算処理は、この情報を参照して系統のリレー動作の模
擬を行う。 以上の各種処理結果は、例えばCRT等の
表示装置に表示し、運転者等の操作性の向上を図れば良
い。以上本発明によれば、第一に、系統周波数の計算結
果を、実系統のモニタと同様に、リアルタイムにCRT
等に表示でき、訓練用シミュレータとしての臨場感を高
めることができる(従来5〜10秒を要していた計算
が、本発明では1秒以内に終わる)。
Assuming that a certain frequency relay operates after t1 seconds from the occurrence of the accident, at the time when the calculation is performed after t1 seconds,
A frequency change due to only the effect of load shedding as shown in FIG. 7B is predicted. Actually, frequency fluctuations due to supply-demand imbalance caused by an accident and frequency fluctuations due to load shedding occur. By combining these simulations, the total frequency change May be corrected as needed. In the above example, after t1 seconds, FIG. 7 (c) is a composite of FIG. 7 (a) and FIG. 7 (b).
As shown in the figure, since the frequency fluctuation is newly predicted, t
After one second, according to the newly predicted frequency fluctuation, the calculation of the frequency and the determination of the operation of the frequency relay are performed. As a result, when another frequency relay is newly operated, a frequency change is predicted by predicting the frequency fluctuation by the same method and further combining them. By such processing, finally, a frequency fluctuation as shown in FIG. 8 is predicted by the frequency prediction calculation. As described above, in the present invention, for example, 0.1 processing is performed at one processing timing.
With a width of up to 0.3 seconds, for example, a frequency transient change and a frequency relay operation state up to several tens of seconds ahead are determined. Also,
Information such as the frequency relay operated by the frequency prediction calculation, the operation time thereof, the cutoff CB, the cutoff load amount, etc.
The system is temporarily stored in a storage area in the computer, and the system simulation calculation process simulates the relay operation of the system with reference to this information. The various processing results described above may be displayed on a display device such as a CRT to improve the operability of the driver or the like. As described above, according to the present invention, first, the calculation result of the system frequency is converted to the CRT in real time in the same manner as the monitor of the real system.
And the like, and the sense of presence as a training simulator can be enhanced (calculation which conventionally required 5 to 10 seconds is completed within 1 second in the present invention).

【0015】また、第二に、事故発生時には、周波数計
算で系統の過渡曲線を算出し、例えば、数秒〜十数秒先
までの周波数推移が把握できるため、リレー動作のタイ
ミングがわかる。このことは、従来数十(msec)の
周期で行っていた周波数計算を、事故発生時に1回行う
だけで済むことになり、事故模擬時の計算負荷の大幅な
軽減となる。さらに、第三に、周波数計算を簡易な処理
で行なえるため、マルチシステムの待機系を使用した訓
練用シミュレータにおいても、周波数計算ができる等の
機能向上が図れる。したがって、待機系を使用するシミ
ュレータの場合、オンライン業務の上にシミュレータで
も周波数計算が行なえる等の機能向上が図れることにな
る。また、待機系を使用するシミュレータの場合、オン
ライン業務の上に、シミュレータ機能を追加する構成に
なるため、処理負荷が高く、簡易な模擬しか行なえない
システムが多かったが、本発明により、周波数計算も実
現できる。
Second, when an accident occurs, a transient curve of the system is calculated by frequency calculation, and a frequency transition from several seconds to several tens of seconds can be grasped, so that the timing of the relay operation can be known. This means that the frequency calculation which has been conventionally performed with a period of several tens of milliseconds (msec) need only be performed once when an accident occurs, and the calculation load at the time of simulating an accident is greatly reduced. Third, since frequency calculation can be performed by simple processing, functions such as frequency calculation can be improved even in a training simulator using a multi-system standby system. Therefore, in the case of the simulator using the standby system, it is possible to improve the functions such as performing the frequency calculation by the simulator in addition to the online business. Also, in the case of a simulator using a standby system, a configuration in which a simulator function is added on top of online work has a high processing load, and in many systems, only simple simulations can be performed. Can also be realized.

【0016】[0016]

【発明の効果】本発明によれば、平常状態および系統事
故状態のいずれの系統模擬においても、リアルタイムの
周波数計算処理が可能となり、被訓練者に対して実系統
と同じようなダイナミックな訓練環境を提供できる。
According to the present invention, real-time frequency calculation processing can be performed in system simulations in both a normal state and a system accident state, and a dynamic training environment similar to a real system can be provided to a trainee. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかるシステムの構成図である。FIG. 1 is a configuration diagram of a system according to the present invention.

【図2】従来のシステムの構成図である。FIG. 2 is a configuration diagram of a conventional system.

【図3】従来の系統模擬計算の処理フロー例の説明図で
ある。
FIG. 3 is an explanatory diagram of an example of a processing flow of a conventional system simulation calculation.

【図4】本発明の系統模擬計算の処理フロー例の説明図
である。
FIG. 4 is an explanatory diagram of an example of a processing flow of a system simulation calculation according to the present invention.

【図5】系統安定化模擬装置の動作模擬の説明図であ
る。
FIG. 5 is an explanatory diagram of operation simulation of the system stabilization simulation device.

【図6】事故検出模擬の説明図である。FIG. 6 is an explanatory diagram of an accident detection simulation.

【図7】周波数予測方法の説明図である。FIG. 7 is an explanatory diagram of a frequency prediction method.

【図8】周波数予測計算で予測される周波数を示すグラ
フである。
FIG. 8 is a graph showing frequencies predicted by frequency prediction calculation.

【符号の説明】[Explanation of symbols]

1…計算機、2…系統盤、3…被訓練者用卓、4…訓練
教官用卓、5…系統模擬用計算機
DESCRIPTION OF SYMBOLS 1 ... Computer, 2 ... System board, 3 ... Trainee's desk, 4 ... Training instructor's desk, 5 ... System simulation computer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 対馬 幸悦 茨城県日立市大みか町五丁目2番1号 株式会社日立情報制御システム内 (56)参考文献 特開 平3−270646(JP,A) 特開 昭63−171123(JP,A) 特開 昭63−113487(JP,A) 特開 昭61−295831(JP,A) 特開 平3−256526(JP,A) 特開 昭62−126830(JP,A) 特開 平6−19386(JP,A) 特開 昭61−270780(JP,A) 特開 平4−369681(JP,A) 特開 昭63−64076(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02J 3/00 G G09B 9/00 B G06F 15/20 D ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Koetsu Tsushima 5-2-1 Omika-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Information & Control Systems Co., Ltd. (56) References JP-A-3-270646 (JP, A) JP-A-63-171123 (JP, A) JP-A-63-113487 (JP, A) JP-A-61-295831 (JP, A) JP-A-3-256526 (JP, A) JP-A-62-126830 (JP, A) JP, A) JP-A-6-19386 (JP, A) JP-A-61-270780 (JP, A) JP-A-4-369681 (JP, A) JP-A-63-64076 (JP, A) (58) ) Field surveyed (Int. Cl. 7 , DB name) H02J 3/00 G G09B 9/00 B G06F 15/20 D

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電力系統の周波数をシミュレーションする
方法であって、事故、周波数リレーの動作、および時間
経過を含む事象を発生させ、電力の需要供給のアンバラ
ンスが生じた場合に、 発電機の慣性定数をM、内部相差角をδ、制動係数を
D、定格角速度をωn、発電機の電気的出力をP、発電
機の機械的入力をPM、発電機の機械的入力の変化量を
ΔPM、調速機時定数をTG、電源の周波数特性定数をK
G、周波数変化量をΔfとして、 発電機の運動方程式を、 (M/ωn)・(d2δ/dt2)+(D/ωn)・(dδ/dt)+P=PM とし、発電機に備えられる調速機の過渡特性を、TG・
(dΔPM/dt)+ΔPM+KG・Δf=0 として、前記2式から、所定の時間間隔で、 電力の需要供給のアンバランスによる周波数変動を計算
すると同時に、 周波数リレーの動作により遮断される負荷量を算出し
て、負荷遮断による周波数変動を計算し、 計算した電力の需要供給のアンバランスによる周波数変
動と負荷遮断による周波数変動とを順次合成していくこ
とにより、 所定時間先までの周波数変動 を計算する、電力系統の周
波数シミュレーション方法。
1. A method for simulating the frequency of a power system, comprising the steps of: generating an event including an accident, an operation of a frequency relay, and a lapse of time; The inertia constant is M, the internal phase difference angle is δ, the damping coefficient is D, the rated angular velocity is ωn, the electrical output of the generator is P, the mechanical input of the generator is PM, and the variation of the mechanical input of the generator is ΔPM. , Governor time constant TG, power supply frequency characteristic constant K
G, the amount of frequency change is Δf, and the equation of motion of the generator is (M / ωn) · (d 2 δ / dt 2 ) + (D / ωn) · (dδ / dt) + P = PM. The transient characteristics of the governor provided are
Assuming that (dΔPM / dt) + ΔPM + KG · Δf = 0, frequency fluctuation due to imbalance of power supply and demand is calculated at predetermined time intervals from the above equation (2).
At the same time, calculate the amount of load interrupted by the operation of the frequency relay.
To calculate the frequency fluctuation due to load shedding, and calculate the frequency fluctuation due to the imbalance in the demand and supply of power.
And frequency fluctuations due to load shedding.
A frequency simulation method for a power system, which calculates a frequency variation up to a predetermined time ahead .
【請求項2】待機系を有する電力系統の周波数をシミュ
レーションする方法であって、事故、周波数リレーの動
作、および時間経過を含む事象を発生させ、電力の需要
供給のアンバランスが生じた場合に、 発電機の慣性定数をM、内部相差角をδ、制動係数を
D、定格角速度をωn、発電機の電気的出力をP、発電
機の機械的入力をPM、発電機の機械的入力の変化量を
ΔPM、調速機時定数をTG、電源の周波数特性定数をK
G、周波数変化量をΔfとして、 発電機の運動方程式を、 (M/ωn)・(d2δ/dt2)+(D/ωn)・(dδ/dt)+P=PM とし、発電機に備えられる調速機の過渡特性を、 TG・(dΔPM/dt)+ΔPM+KG・Δf=0 として、前記2式から、所定の時間間隔で、 電力の需要供給のアンバランスによる周波数変動を計算
すると同時に、 周波数リレーの動作により遮断される負荷量を算出し
て、負荷遮断による周波数変動を計算し、 計算した電力の需要供給のアンバランスによる周波数変
動と負荷遮断による周波数変動とを順次合成していくこ
とにより、 所定時間先までの周波数変動を、 待機系の計算手段を使
用して計算する、電力系統の周波数シミュレーション方
法。
2. A method for simulating the frequency of a power system having a standby system, wherein an event including an accident, an operation of a frequency relay, and an elapse of time occurs, and an imbalance occurs in power supply and demand. , The inertia constant of the generator is M, the internal phase difference angle is δ, the damping coefficient is D, the rated angular velocity is ωn, the electrical output of the generator is P, the mechanical input of the generator is PM, and the mechanical input of the generator is Change amount ΔPM, governor time constant TG, power supply frequency characteristic constant K
G, the amount of frequency change is Δf, and the equation of motion of the generator is (M / ωn) · (d 2 δ / dt 2 ) + (D / ωn) · (dδ / dt) + P = PM. Assuming that the transient characteristics of the governor provided are TG · (dΔPM / dt) + ΔPM + KG · Δf = 0, frequency fluctuation due to imbalance of power supply and demand at predetermined time intervals is calculated from the above equation (2).
At the same time, calculate the amount of load interrupted by the operation of the frequency relay.
To calculate the frequency fluctuation due to load shedding, and calculate the frequency fluctuation due to the imbalance in the demand and supply of power.
And frequency fluctuations due to load shedding.
A frequency simulation method for a power system in which frequency fluctuations up to a predetermined time ahead are calculated by using a calculation means of a standby system.
【請求項3】請求項1または2記載において、周波数の
計算結果を表示手段に表示することを特徴とする電力系
統の周波数シミュレーション方法。
3. A frequency simulation method for an electric power system according to claim 1, wherein a calculation result of the frequency is displayed on a display means.
【請求項4】計算機と被訓練者用卓と訓練教官用卓を有
して構成され、待機系を備える電力系統訓練用シミュレ
ータにおいて、 待機系の計算機が、発電機の慣性定数をM、内部相差角
をδ、制動係数をD、定格角速度をωn、発電機の電気
的出力をP、発電機の機械的入力をPM、発電機の機械
的入力の変化量をΔPM、調速機時定数をTG、電源の周
波数特性定数をKG、周波数変化量をΔfとした場合、 発電機の運動方程式を、 (M/ωn)・(d2δ/dt2)+(D/ωn)・(dδ/dt)+P=PM とし、発電機に備えられる調速機の過渡特性を、 TG・(dΔPM/dt)+ΔPM+KG・Δf=0 として、前記2式から、所定の時間間隔で、 電力の需要供給のアンバランスによる周波数変動を計算
すると同時に、 周波数リレーの動作により遮断される負荷量を算出し
て、負荷遮断による周波 数変動を計算し、 計算した電力の需要供給のアンバランスによる周波数変
動と負荷遮断による周波数変動とを順次合成していくこ
とにより、 所定時間先までの周波数変動を 計算する機能を有し、 さらに、前記被訓練者用卓および前記訓練教官用卓のう
ち少なくとも一つは、前記周波数の算出結果を表示する
機能を有することを特徴とする電力系統訓練用シミュレ
ータ。
4. A power system training simulator comprising a computer, a trainee's desk, and a training instructor's desk and having a standby system, wherein the standby computer has an inertia constant M of the generator, The phase difference angle is δ, the braking coefficient is D, the rated angular velocity is ωn, the electrical output of the generator is P, the mechanical input of the generator is PM, the variation of the mechanical input of the generator is ΔPM, and the governor time constant Is TG, the frequency characteristic constant of the power supply is KG, and the amount of frequency change is Δf, the equation of motion of the generator is expressed as (M / ωn) · (d 2 δ / dt 2 ) + (D / ωn) · (dδ / dt) + P = the PM, the transient characteristics of the generator provided is governor, as TG · (dΔPM / dt) + ΔPM + KG · Δf = 0, the two equations, at predetermined time intervals, the power supply and demand Frequency fluctuation due to unbalance
At the same time, calculate the amount of load interrupted by the operation of the frequency relay.
Te, the frequency variation due to load rejection calculated, varying the frequency by imbalance of supply and demand of the calculated power
And frequency fluctuations due to load shedding.
With this, it has a function of calculating the frequency fluctuation up to a predetermined time ahead , and further, at least one of the trainee's desk and the training instructor's desk has a function of displaying the calculation result of the frequency A simulator for power system training, characterized in that:
JP04300128A 1992-11-10 1992-11-10 Power system frequency simulation method and power system training simulator Expired - Fee Related JP3080795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04300128A JP3080795B2 (en) 1992-11-10 1992-11-10 Power system frequency simulation method and power system training simulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04300128A JP3080795B2 (en) 1992-11-10 1992-11-10 Power system frequency simulation method and power system training simulator

Publications (2)

Publication Number Publication Date
JPH06153396A JPH06153396A (en) 1994-05-31
JP3080795B2 true JP3080795B2 (en) 2000-08-28

Family

ID=17881072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04300128A Expired - Fee Related JP3080795B2 (en) 1992-11-10 1992-11-10 Power system frequency simulation method and power system training simulator

Country Status (1)

Country Link
JP (1) JP3080795B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7747702B2 (en) 1998-09-22 2010-06-29 Avocent Huntsville Corporation System and method for accessing and operating personal computers remotely
US7818367B2 (en) 1995-08-25 2010-10-19 Avocent Redmond Corp. Computer interconnection system
USRE44814E1 (en) 1992-10-23 2014-03-18 Avocent Huntsville Corporation System and method for remote monitoring and operation of personal computers

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5351653B2 (en) * 2009-08-18 2013-11-27 株式会社日立製作所 Power system monitoring and control system training device
JP5428982B2 (en) * 2010-03-19 2014-02-26 東京電力株式会社 Power system training simulator
CN104299474B (en) * 2012-10-25 2016-08-24 长春理工大学 High voltage transmission line line walking analog
CN109166362A (en) * 2018-11-07 2019-01-08 株洲壹星科技股份有限公司 EMU circuit loop simulation training method and simulation training system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE44814E1 (en) 1992-10-23 2014-03-18 Avocent Huntsville Corporation System and method for remote monitoring and operation of personal computers
US7818367B2 (en) 1995-08-25 2010-10-19 Avocent Redmond Corp. Computer interconnection system
US7747702B2 (en) 1998-09-22 2010-06-29 Avocent Huntsville Corporation System and method for accessing and operating personal computers remotely

Also Published As

Publication number Publication date
JPH06153396A (en) 1994-05-31

Similar Documents

Publication Publication Date Title
JP5428982B2 (en) Power system training simulator
JP3080795B2 (en) Power system frequency simulation method and power system training simulator
US20200273120A1 (en) Power grid decision-making support device and method, and system applying same
JP2001112172A (en) Education/training simulator for power transmission system
JP2007212811A (en) System operation training device
JP4040847B2 (en) Training simulator and power system simulation method
JP3121647B2 (en) Power system operation training simulator
AU2007264973B2 (en) Systems and methods for providing real-time predictions of arc flash incident energy, arc flash protection boundary, and required personal protective equipment ( PPE ) levels to comply with workplace safety standards
Shinohara et al. Knowledge-based behavior interface: its application to power network restoration support system
JP2019017194A (en) System operation support device and method in electric power system, and wide area monitoring protection control system
JPH0715861A (en) Training simulator for operating electric power system
JPH05146071A (en) Simulator for training operation of power system
JP2736133B2 (en) Power system training simulator
JP2680166B2 (en) Power system simulation method
JPH0974675A (en) Power system monitoring device
Shiota et al. Development of training simulator for power system operators
JPH053630A (en) Power system operation training simulator
JPH0721696B2 (en) Simulator for power system training
EP2195666A1 (en) A method for predicting arc flash energy and ppe category within a real-time monitoring system
Demjén et al. An integrated dispatcher training simulator for use in a regional electricity distribution centre
JP2645200B2 (en) Power system operation training simulator
Kyuwa et al. Operator Training Simulator with real-time transient stability analysis
JPH0619386A (en) Training simulator for electric power system operation
JPH0347054B2 (en)
JPH05165396A (en) Power system training simulator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees