JP3077865B2 - Iron-based alloy powder for sintering and wear-resistant iron-based sintered alloy - Google Patents
Iron-based alloy powder for sintering and wear-resistant iron-based sintered alloyInfo
- Publication number
- JP3077865B2 JP3077865B2 JP05238454A JP23845493A JP3077865B2 JP 3077865 B2 JP3077865 B2 JP 3077865B2 JP 05238454 A JP05238454 A JP 05238454A JP 23845493 A JP23845493 A JP 23845493A JP 3077865 B2 JP3077865 B2 JP 3077865B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- iron
- powder
- sintering
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Powder Metallurgy (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、内燃機関に使用される
バルブシート、ピストンリング或いは排気系のカラー等
の焼結部品に有用な圧縮性および耐腐食性に優れた焼結
用鉄基合金粉末と耐摩耗性に優れた鉄基焼結合金に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintering iron-based alloy having excellent compressibility and corrosion resistance useful for sintered parts such as valve seats, piston rings or exhaust system collars used in internal combustion engines. The present invention relates to a powder and an iron-based sintered alloy having excellent wear resistance.
【0002】[0002]
【従来の技術】従来のバルブシート材料としては、Fe
−C−Co−Ni基材料、Fe−C基材料に耐摩耗性の
向上を狙ってフェロモリブデン(Fe−Mo)、フェロ
クロム(Fe−Cr)等の金属間化合物またはFe−C
−Cr−Mo−V合金等を添加したものが使用されてい
る(特開昭56−154110号公報)。2. Description of the Related Art Conventional valve seat materials include Fe.
Intermetallic compounds such as ferromolybdenum (Fe-Mo) and ferrochrome (Fe-Cr) or Fe-C for the purpose of improving wear resistance of -C-Co-Ni-based material and Fe-C-based material
-Cr-Mo-V alloy or the like is used (JP-A-56-154110).
【0003】さらに、CrおよびMoを含有するFe−
C基地組織中に、Cr、Mo、V等からなる鉄系硬質粒
子を分散させ耐摩耗性と相手攻撃性を改善した焼結合金
(特開昭60−224762号公報)、またFe−C−
Co−Ni系基地組織中にFeMoおよびFeWからな
る硬質粒子を分散させさらにPb合金等を含浸させて耐
摩耗性を改善した焼結合金(特開昭62−202058
号公報)が開示されている。Further, Fe— containing Cr and Mo
A sintered alloy in which iron-based hard particles composed of Cr, Mo, V, etc. are dispersed in a C base structure to improve abrasion resistance and aggressiveness to a partner (Japanese Patent Laid-Open No. 60-224762), and Fe-C-
A sintered alloy in which hard particles made of FeMo and FeW are dispersed in a Co-Ni base matrix and impregnated with a Pb alloy or the like to improve wear resistance (Japanese Patent Laid-Open No. 62-202058)
Gazette).
【0004】バルブシート材に要求される特性として
は、耐摩耗性の他に耐腐食性および耐熱性が挙げられ、
耐摩耗性は主として硬質粒子が受持ち、耐腐食性および
耐熱性は主として基地組織が受持ち、両者が相まって耐
久性を確保している。[0004] The characteristics required for the valve seat material include corrosion resistance and heat resistance in addition to wear resistance.
Hard particles are mainly responsible for wear resistance, and corrosion resistance and heat resistance are mainly responsible for base structures, and the two are combined to ensure durability.
【0005】[0005]
【発明が解決しようとする課題】最近、自動車エンジン
において、長寿命化、高出力、高回転化、排出ガス浄化
対策、あるいは燃費向上対策に対する改善要求が一段と
高まっている。このため、自動車エンジンにおけるエン
ジンバルブ、バルブシートに対しては、従来にも増して
厳しい使用環境に耐えることが不可避となってきてお
り、耐熱性、耐摩耗性をより一層向上させると共に、高
温での耐腐食性を向上させる必要が生じてきた。In recent years, there has been a growing demand for improvement in automobile engines for longer life, higher output, higher rotation speed, measures for purifying exhaust gas, or measures for improving fuel efficiency. For this reason, it has become unavoidable for engine valves and valve seats in automobile engines to withstand more severe use environments than ever before, and heat resistance and wear resistance are further improved, and at high temperatures. It has become necessary to improve the corrosion resistance of steel.
【0006】しかるに、従来の鉄系バルブシート材料の
基地の形成は、鉄粉に対して、合金元素であるNi、C
o、Mo等のそれぞれの元素の要素粉末を混合後、この
混合粉末を原料として成形、焼結し、Ni、Co、Mo
等を鉄中に拡散させている。そのため、これら合金元素
を鉄中に完全に拡散させることが難しく、添加量に見合
った特性の向上が得られにくい。[0006] However, the formation of the base of the conventional iron-based valve seat material is based on the alloying elements Ni, C
After mixing elemental powders of the respective elements such as o, Mo, etc., the mixed powder is molded and sintered as a raw material to obtain Ni, Co, Mo.
Etc. are diffused in iron. For this reason, it is difficult to completely diffuse these alloy elements into iron, and it is difficult to improve properties corresponding to the added amount.
【0007】そこで、合金元素添加の効果を効率良く引
き出すために、合金元素を予め鉄と合金化することが考
えられるが、これら合金元素を鉄と予め合金化すると、
固溶硬化により合金鉄粉の圧縮性が低下するため、圧粉
体の高密度化が難しくなり、耐久性向上に対し不利に作
用する。Therefore, in order to efficiently bring out the effect of alloying element addition, it is conceivable to alloy the alloying element with iron in advance.
The solid solution hardening reduces the compressibility of the alloyed iron powder, making it difficult to increase the density of the green compact, which is disadvantageous for improving the durability.
【0008】本発明は従来の鉄系バルブシート材料およ
び鉄系バルブシート材料に用いられる鉄基合金粉末の前
記のごとき問題点を解決すべくなされたものであって、
近年のバルブシート材料の厳しい使用環境に対応し、耐
熱性、耐摩耗性をより一層向上させた鉄系焼結合金およ
び圧縮性と耐腐食性を向上させた焼結用鉄基合金粉末を
提供することを目的とする。The present invention has been made to solve the above-mentioned problems of the conventional iron-based valve seat material and the iron-based alloy powder used for the iron-based valve seat material.
Offers iron-based sintered alloys with improved heat and wear resistance and iron-based alloy powders for sintering with improved compressibility and corrosion resistance in response to the severe usage environment of recent valve seat materials. The purpose is to do.
【0009】[0009]
【課題を解決するための手段】発明者等は、鉄粉に添加
元素を合金化すると合金粉末が固溶硬化して圧縮性が低
下することに鑑み、合金化しても固溶硬化しない添加元
素の組成範囲について研究を進めた。その結果、添加元
素の特定組成範囲において、合金粉末の圧縮性が確保で
きることを見出した。また、前記特定組成範囲の合金粉
末を用いた場合、焼結体の耐腐食性および耐摩耗性の向
上についても研究を重ね、特定の添加元素の組合せによ
り、焼結体の耐腐食性および耐摩耗性が著しく向上する
ことを見出して、本発明を完成した。In view of the fact that when alloying an additive element with iron powder, the alloy powder is solid-solution hardened and the compressibility is reduced, the present inventors have proposed an additive element which does not form a solid solution hardening even when alloyed. Research on the composition range of As a result, it has been found that the compressibility of the alloy powder can be ensured in the specific composition range of the additive element. In addition, when the alloy powder having the specific composition range is used, the corrosion resistance and the abrasion resistance of the sintered body are improved and the corrosion resistance and the abrasion resistance of the sintered body are improved by a combination of specific additive elements. The inventors have found that the abrasion property is remarkably improved, and completed the present invention.
【0010】さらに、発明者は耐摩耗性、耐焼付性等の
特性を向上するために、バルブシート用鉄系焼結合金の
マトリックスの化学成分と合金化形態、およびマトリッ
クスの組織と耐摩耗性の関係および溶浸材料、溶浸率と
耐摩耗性、耐焼付性等との関係などについて鋭意研究を
重ねた。その結果、優れた耐摩耗性を発揮するマトリッ
クスの特定組織範囲および合金化形態ならびに溶浸合金
を見出して本発明を完成した。[0010] Furthermore, the present inventor has proposed to improve the chemical composition and alloying form of the matrix of the iron-based sintered alloy for valve seats, and the structure and wear resistance of the matrix in order to improve the properties such as wear resistance and seizure resistance. , And the infiltration material, the relationship between the infiltration rate and the abrasion resistance, seizure resistance, etc. were intensively studied. As a result, the present inventors have found the specific structure range and alloying morphology of the matrix exhibiting excellent wear resistance, and have found an infiltrated alloy.
【0011】本発明の請求項1または請求項2の圧縮性
および耐腐食性に優れた焼結用鉄基合金粉末は、合金元
素として、重量比でCo;2〜15%、Mo;2〜10
%、好ましくは3%を越えて〜10%を含有し、残部が
不可避不純物とFeからなることを要旨とする。[0011] The iron-based alloy powder for sintering having excellent compressibility and corrosion resistance according to claim 1 or 2 of the present invention contains, as alloying elements, Co: 2 to 15% by weight, Mo; 10
%, Preferably more than 3% to 10%, with the balance being unavoidable impurities and Fe.
【0012】また、本発明の請求項3または請求項4の
耐摩耗性に優れた鉄基焼結合金は、重量比で、Co;2
〜15%、Mo;2〜10%、好ましくは3%を越えて
〜10%をを含有し、残部が不可避不純物とFeからな
る鉄基合金粉末に対し、黒鉛粉末0.2〜2.1%と成
形用潤滑剤を混合し、成形、焼結して得られることを要
旨とする。Further, the iron-based sintered alloy having excellent wear resistance according to claim 3 or 4 of the present invention has a weight ratio of Co: 2.
To 15%, Mo; 2 to 10%, preferably more than 3% to 10%, with the balance being graphite powder 0.2 to 2.1 with respect to iron-based alloy powder consisting of unavoidable impurities and Fe. % And a molding lubricant are mixed, molded, and sintered.
【0013】さらに、本発明の請求項5または請求項6
の耐焼付性、耐摩耗性に優れた鉄基焼結合金は、請求項
3または請求項4で得られた耐摩耗性に優れた鉄基焼結
合金に、Pb、Cu、Pb−Cu合金およびこれらを主
成分とする合金の何れかからなる溶浸合金を3〜25%
を溶浸処理し、前記焼結合金の気孔部および気孔部周辺
に溶浸・拡散させて得られることを要旨とする。[0013] Further, claim 5 or claim 6 of the present invention.
The iron-based sintered alloy having excellent seizure resistance and wear resistance is obtained by adding Pb, Cu, Pb-Cu alloy to the iron-based sintered alloy having excellent wear resistance obtained in claim 3 or 4. And 3 to 25% of an infiltration alloy made of any of alloys containing these as main components.
Is infiltrated and infiltrated and diffused into the pores and around the pores of the sintered alloy.
【0014】[0014]
【作用】本発明の焼結用鉄基合金粉末は、合金元素とし
て、重量比でCo;2〜15%、Mo;2〜10%を含
有した合金粉末であるので、合金元素の素地への固溶均
質度が高く、要素粉末を混合する従来法に比べて、少な
い合金量で優れた耐腐食性、耐酸化性および耐摩耗性を
得ることができる。The iron-based alloy powder for sintering of the present invention is an alloy powder containing Co: 2 to 15% and Mo: 2 to 10% by weight as alloying elements. The solid solution homogeneity is high, and excellent corrosion resistance, oxidation resistance and abrasion resistance can be obtained with a small amount of alloy as compared with the conventional method of mixing element powders.
【0015】また、合金元素の組成範囲を前記組成範囲
に規制したので、圧縮性の低下割合が少なく、要素粉末
を混合する従来法に比べて、圧縮性が若干低下するもの
のほぼ同等であり、密度と関連性の強い耐酸化性、耐食
性に対して影響を及ぼすおそれはない。Further, since the composition range of the alloying element is restricted to the above-mentioned composition range, the compressibility is less reduced, and the compressibility is slightly reduced as compared with the conventional method of mixing the element powders, but is almost the same. There is no risk of affecting oxidation resistance and corrosion resistance which are strongly related to density.
【0016】本発明の鉄基焼結合金は、従来の要素粉を
混合した焼結合金がMo、Co濃度にバラツキがあり、
オーステナイト生成元素のCo濃度の高いところでオー
ステナイトとなり、フェライト生成元素のMoの多いと
ころはパーライトとなり、混合組織となるので耐摩耗性
に劣るのに対して、CoおよびMoがFe基地に均一に
固溶するので、基地がベイナイトとなり、耐摩耗性に優
れる。In the iron-based sintered alloy of the present invention, the sintered alloy obtained by mixing the conventional element powders has variations in Mo and Co concentrations,
Where austenite forming element has high Co concentration, it becomes austenite, and where ferrite forming element Mo is high, it becomes pearlite and has a mixed structure, which is inferior in wear resistance. However, Co and Mo are uniformly dissolved in Fe base. Therefore, the base becomes bainite and has excellent wear resistance.
【0017】本発明で得られた焼結合金へのPb、C
u、Pb−Cu合金およびこれらを主成分とする合金の
溶浸は、より厳しい条件下で使用されるバルブシートに
行われ、溶浸された溶浸合金はバルブとバルブシートと
の接触部に介在して潤滑剤として作用して、さらに焼結
合金の熱伝導性を向上させることにより、バルブシート
当り面の温度を効率的に低下させる作用により、耐摩耗
性を向上させる。Pb, C on the sintered alloy obtained in the present invention
The infiltration of u, Pb-Cu alloys and alloys containing these as main components is performed on valve seats used under severer conditions, and the infiltrated infiltrated alloy is formed on the contact portion between the valve and the valve seat. By acting as a lubricant intervening and further improving the thermal conductivity of the sintered alloy, the effect of efficiently lowering the temperature of the surface in contact with the valve seat improves the wear resistance.
【0018】Pb、Cu、Pb−Cu合金およびこれら
を主成分とする合金の溶浸量が、3%未満では、溶浸の
効果が発揮できず、25%を越えて溶浸するとスケルト
ンの脆化、弱化などにより逆効果を来すおそれがあるこ
とから、3〜25%を溶浸範囲とした。溶浸金属として
は、鉛、鉛−銅および銅ないしこれらを主成分とする金
属系が適している。If the infiltration amount of Pb, Cu, Pb-Cu alloy and alloys containing these as main components is less than 3%, the effect of infiltration cannot be exhibited, and if infiltration exceeds 25%, the skeleton becomes brittle. The infiltration range is set to 3 to 25% because there is a possibility that an adverse effect may be caused due to weakening or weakening. Suitable infiltration metals are lead, lead-copper and copper, or metal systems containing these as main components.
【0019】次に、本発明において、合金元素等の組成
範囲を限定した理由について説明する。 Co;2〜15% Coは素地に固溶してこれを強化するとともに、耐熱性
および耐腐食性を向上させる効果があるが、含有量が2
%未満ではその効果が不足し、一方15%を越えて含有
させると、効果のさらなる向上は見られるものの経済性
に欠けるため、この点を考慮してその含有量を2〜15
%と定めた。Next, the reason why the composition range of alloying elements and the like in the present invention is limited will be described. Co: 2 to 15% Co is dissolved in the base material to strengthen it and has an effect of improving heat resistance and corrosion resistance, but the content is 2%.
When the content is less than 15%, the effect is insufficient, and when the content exceeds 15%, the effect is further improved but the economy is lacking.
%.
【0020】Mo;2〜10% Moは、素地に固溶してこれを強化するとともに、高温
域における強度の改善に効果を示し、炭素を含む焼結体
においては一部が炭化物を生成し耐摩耗性の改善に効果
を示す。これらの効果は、含有量が2%未満では不十分
であり、10%を越えても効果の向上は認められるもの
の、粉末の圧縮性低下を招くため、その含有量を2〜1
0%に限定した。Mo: 2 to 10% Mo forms a solid solution in the base material and strengthens it, and also has an effect of improving the strength in a high-temperature region. In a sintered body containing carbon, a part of carbides forms carbide. Effective for improving wear resistance. These effects are insufficient if the content is less than 2%, and if the content exceeds 10%, the effect is improved, but the compressibility of the powder is reduced.
Limited to 0%.
【0021】なお、合金粉末に含有される酸素および炭
素は、粉末の圧縮性を低下させる作用があるため、酸素
は0.3%以下に、炭素は0.2%以下に抑えることが
望ましい。Since oxygen and carbon contained in the alloy powder have an effect of reducing the compressibility of the powder, it is desirable that oxygen and carbon be suppressed to 0.3% or less and carbon to 0.2% or less.
【0022】黒鉛粉末;0.2〜2.1% 黒鉛は炭素分としてマトリックスに固溶しマトリックス
を強化するとともに、一部はマトリックス中のFeまた
はMoと炭化物を形成し、耐摩耗性の向上に効果を示
す。添加量が0.2%未満では前記効果が期待できず、
また2.1%を越えて添加すると焼結合金を脆化させる
ので、その添加量を0.2〜2.1%に限定した。Graphite powder: 0.2 to 2.1% Graphite is dissolved in the matrix as a carbon component to strengthen the matrix, and partly forms carbide with Fe or Mo in the matrix to improve wear resistance. The effect is shown. If the addition amount is less than 0.2%, the above effect cannot be expected,
Further, if added in excess of 2.1%, the sintered alloy will be embrittled, so the added amount is limited to 0.2 to 2.1%.
【0023】本発明の焼結合金の焼結温度は1323〜
1573Kとすることが好ましい。焼結温度が1323
K未満では、焼結進行が不十分であり耐摩耗性が不足す
るからであり、焼結温度が1573Kを越えると結晶粒
の粗大化のため好ましくないからである。The sintering temperature of the sintered alloy of the present invention is 1323 to
It is preferably 1573K. Sintering temperature is 1323
If the temperature is less than K, the sintering proceeds insufficiently and the wear resistance is insufficient. If the sintering temperature exceeds 1573K, the crystal grains become coarse, which is not preferable.
【0024】[0024]
【実施例】本発明の好適な実施例を比較例と対比して説
明し、本発明の特徴を明らかにする。 (実施例1)表1のNo.1〜5およびNo.7〜11
に示す組成の合金を溶製し、噴霧法により合金粉末とし
た後、還元処理を施し、粉砕、篩別を行って、粒径15
0μm以下の粉末とした。なお、No.1〜5はCoお
よびMoを本発明の組成範囲で含有する本発明の実施例
であり、No.7〜11は比較例であって、No.7は
Co含有量が少ない比較例、No.8はMo含有量が少
ない比較例、No.9はMo含有量が多い比較例、N
o.10は炭素含有量が多い比較例、No.11は酸素
含有量が多い比較例である。DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in comparison with comparative examples to clarify the features of the present invention. (Example 1) Nos. 1 to 5 and Nos. 7-11
An alloy having the composition shown in Table 1 was melted and made into an alloy powder by a spraying method.
It was a powder of 0 μm or less. In addition, No. Nos. 1 to 5 are examples of the present invention containing Co and Mo in the composition range of the present invention. Nos. 7 to 11 are comparative examples. 7 is a comparative example having a low Co content, and No. 7 is a comparative example. No. 8 is a comparative example having a low Mo content, 9 is a comparative example having a high Mo content, N
o. No. 10 is a comparative example having a large carbon content. 11 is a comparative example having a large oxygen content.
【0025】また、表1のNo.6は本発明の実施例で
あるが、Fe−9%Mo噴霧合金を用意し、この噴霧合
金粉にCoを拡散処理し表1に示すCo含有量とした部
分合金粉で、粒径は150μm以下のものである。Further, in Table 1, No. Reference numeral 6 denotes an example of the present invention, which is a partial alloy powder having a Co-9 content shown in Table 1 prepared by preparing an Fe-9% Mo spray alloy and diffusing Co into the spray alloy powder, and having a particle size of 150 μm. These are:
【0026】さらに、No.12〜13は要素粉末を混
合した比較例であって、市販の純鉄粉、コバルト粉、モ
リブデン粉(粒径はいずれも45μm以下)を準備し、
これら粉末を表1に示す配合組成になるように秤量後、
V型混粉機により混合を行った。In addition, No. 12 to 13 are comparative examples in which element powders were mixed, and commercially available pure iron powder, cobalt powder, and molybdenum powder (all having a particle size of 45 μm or less) were prepared.
After weighing these powders so as to have the composition shown in Table 1,
Mixing was performed using a V-type powder mixer.
【0027】[0027]
【表1】 [Table 1]
【0028】得られた焼結用粉末について、粉末の圧縮
性と焼結体の耐腐食性を調査した。粉末の圧縮性は直径
11.3mmの金型を用い、潤滑剤を金型に塗布後、成
形圧力588MPaにて圧粉体を製作し、これの密度を
測定したものである。With respect to the obtained sintering powder, the compressibility of the powder and the corrosion resistance of the sintered body were examined. The compressibility of the powder was obtained by applying a lubricant to a mold using a mold having a diameter of 11.3 mm, producing a compact at a molding pressure of 588 MPa, and measuring the density of the compact.
【0029】焼結体の耐腐食性は、密度6.9g/cm
3の圧粉体を成形後、窒素雰囲気中にて1400Kの温
度に1800秒保持後、20〜30℃/minにて冷却
した焼結体を試験片として製作した。この試験片を酸化
鉛と硫酸鉛の混合試薬に埋没した状態で加熱(1108
K×3.6Ks)処理を行い、試験後の重量変化を求め
た。なお、No.10〜11についての耐腐食性試験は
行わなかった。得られた結果は、表1にまとめて示し
た。The corrosion resistance of the sintered body was determined to be 6.9 g / cm in density.
After the green compact of No. 3 was molded, it was kept at a temperature of 1400 K for 1800 seconds in a nitrogen atmosphere, and then cooled at 20 to 30 ° C./min to produce a sintered body as a test piece. The test piece was heated while being immersed in a mixed reagent of lead oxide and lead sulfate (1108).
K × 3.6 Ks), and the weight change after the test was determined. In addition, No. No corrosion resistance tests were performed on 10-11. The results obtained are summarized in Table 1.
【0030】表1に示したように、比較例であるNo.
7はCo含有量が1.2%と少ないため、圧縮性は良い
ものの耐腐食性が実施例に比較して劣っており、比較例
であるNo.8はMo含有量が1.3%と少ないため、
圧縮性に優れるが耐腐食性が実施例に比較して劣ってお
り、また比較例であるNo.9はMo含有量が12.0
%と多かったため、腐食減量は少ないが圧縮性が実施例
に比較して劣っている。比較例のNo.10〜11は酸
素または炭素の含有量が高かったため、実施例と比較し
て圧縮性が劣っている。As shown in Table 1, the comparative example No.
No. 7 has a low Co content of 1.2% and therefore has good compressibility, but is inferior in corrosion resistance as compared with the examples. 8 has a low Mo content of 1.3%,
Although excellent in compressibility, the corrosion resistance was inferior to that of the examples. 9 has a Mo content of 12.0
%, The loss of corrosion is small, but the compressibility is inferior to the examples. No. of the comparative example. Samples 10 to 11 were inferior in compressibility as compared with the examples because the content of oxygen or carbon was high.
【0031】また、要素粉末を用いた比較例であるN
o.12〜13は、合金元素の素地への拡散が焼結時に
おこなわれるが、完全に拡散することが難しく、合金元
素を多量に添加しても、固溶度の低い部位が生じ、この
部位から選択的に腐食酸化が生じ、耐腐食性において実
施例と比較して著しく劣った。例えば、比較例No.1
2は実施例No.3とは同一組成であるにもかかわら
ず、No.3の腐食減量が0.727g/cm3である
のに対して、No.12の腐食減量は1.047g/c
m3と著しく多い。In addition, N which is a comparative example using element powders
o. In Nos. 12 to 13, the diffusion of the alloy element into the base material is performed at the time of sintering, but it is difficult to completely diffuse the alloy element, and even if a large amount of the alloy element is added, a portion having a low solid solubility is generated. Corrosion oxidation occurred selectively, and the corrosion resistance was remarkably inferior to the examples. For example, in Comparative Example No. 1
2 is Example No. 2. No. 3 despite having the same composition as No. 3. While the corrosion weight loss of No. 3 was 0.727 g / cm 3 , 12 has a weight loss of 1.047 g / c.
m 3 and significantly more.
【0032】これに対して本発明の実施例であるNo.
1〜6は、合金元素を予め合金化したため、固溶均質化
に優れ、合金元素の添加の効果が最大限発揮され、腐食
減量は0.645〜0.832g/cm3であって、少
ない合金量で優れた耐腐食性および耐酸化性が得られる
ことが確認された。On the other hand, in the embodiment of the present invention, No.
In Nos. 1 to 6, alloying elements were pre-alloyed, so that solid solution homogenization was excellent, the effect of adding the alloying elements was maximized, and the corrosion weight loss was 0.645 to 0.832 g / cm 3, which was small. It was confirmed that excellent corrosion resistance and oxidation resistance were obtained with the amount of alloy.
【0033】また、粉末の圧縮性については、合金量を
所定範囲に規制したので、圧縮性の低下割合が低く、従
来の要素粉末を用いた比較例であるNo.12〜13が
6.85〜6.92g/cm3であるのに対して、本発
明の実施例は6.80〜7.02g/cm3であって、
ほぼ同等の圧縮性が確保できることが判明した。As for the compressibility of the powder, since the amount of the alloy was regulated within a predetermined range, the rate of decrease in the compressibility was low. 12 to 13 is 6.85 to 6.92 g / cm 3 , whereas the embodiment of the present invention is 6.80 to 7.02 g / cm 3 ,
It turned out that almost the same compressibility can be secured.
【0034】(実施例2)表2のNo.14〜21およ
びNo.24〜26に示す組成のCoおよびMoを含有
し、不可避不純物を含む残部Feからなる噴霧合金粉末
(粒径177μm以下)を予め製作し、この噴霧合金粉
に表2に示す組成の黒鉛(Gr;天然黒鉛、粒径40μ
m以下)と潤滑剤ステアリン酸亜鉛1.0%とを秤量
後、V型混合機により混粉を行った。(Example 2) 14 to 21 and No. 14; Spray alloy powder (particle size: 177 μm or less) containing Co and Mo having the composition shown in FIGS. 24 to 26 and the balance Fe containing unavoidable impurities was prepared in advance, and graphite (Gr) having the composition shown in Table 2 was added to the spray alloy powder. ; Natural graphite, particle size 40μ
m or less) and 1.0% of zinc stearate as a lubricant were mixed with a V-type mixer.
【0035】次に、圧粉体密度が7.0g/cm3にな
るよう成形圧力を調整し、試験片を製作した。続いて窒
素雰囲気中にて、表2に示す焼結温度(K)にて焼結を
行った。なお、No.14〜21はCo、Moおよび黒
鉛を本発明の組成範囲で含有する本発明の実施例、N
o.24〜26は比較例であって、No.24はCo含
有量が少ない比較例、No.25はMo含有量が少ない
比較例、No.26はMo含有量が多い比較例である。Next, the molding pressure was adjusted so that the green compact density became 7.0 g / cm 3 , and a test piece was manufactured. Subsequently, sintering was performed at a sintering temperature (K) shown in Table 2 in a nitrogen atmosphere. In addition, No. 14-21 are examples of the present invention containing Co, Mo and graphite in the composition range of the present invention,
o. Nos. 24 to 26 are comparative examples. No. 24 is a comparative example having a low Co content; No. 25 is a comparative example having a low Mo content, 26 is a comparative example having a large Mo content.
【0036】[0036]
【表2】 [Table 2]
【0037】なお、表2のNo.22〜23は要素粉末
を用いた比較例であって、噴霧鉄粉、Co粉、Mo粉、
FeMo粉および黒鉛粉を準備し、表2の示す配合組成
になるように秤量後、前記と同様に混粉し、成形して圧
粉体を得、窒素雰囲気中にて、表2に示す焼結温度
(K)にて焼結を行った。In Table 2, No. 22 to 23 are comparative examples using element powders, and include spray iron powder, Co powder, Mo powder,
FeMo powder and graphite powder were prepared, weighed so as to have the composition shown in Table 2, mixed and molded in the same manner as above to obtain a green compact, and fired in a nitrogen atmosphere. Sintering was performed at a sintering temperature (K).
【0038】なお、圧粉体を得るに当たって、比較例で
あるNo.26を除き、実施例および比較例共に、成形
圧力は5〜7Ton/cm3であったが、No.26は
10Ton/cm3以上の圧力が必要であり、金型寿命
を考慮すると実用性に問題があることがわかった。In obtaining a green compact, No. 3 was used as a comparative example. Except for Example 26, the molding pressure was 5 to 7 Ton / cm 3 in both Examples and Comparative Examples. No. 26 required a pressure of 10 Ton / cm 3 or more, and it was found that there was a problem in practicality in consideration of the mold life.
【0039】また、Fe−Co−Mo合金粉を使用した
ものは、例えば実施例No.14では、Fe−3.1%
Co−6.5%Mo粉を99.1%とGr粉を0.9%
で計100%、さらにステアリン酸亜鉛1%を加えて混
合している。要素粉を配合したものは、例えば比較例N
o.22では、Co粉8%、Mo粉6%、Gr粉0.9
%、Fe粉85.1%で計100%、さらにステアリン
酸1%を加えて混合している。In the case of using the Fe—Co—Mo alloy powder, for example, In No. 14, Fe-3.1%
99.1% of Co-6.5% Mo powder and 0.9% of Gr powder
And a total of 100%, and further 1% of zinc stearate are added and mixed. For example, Comparative Example N
o. 22, Co powder 8%, Mo powder 6%, Gr powder 0.9
%, 85.1% of Fe powder, 100% in total, and 1% of stearic acid are added and mixed.
【0040】表2で得られた実施例および比較例の焼結
体について、摩耗試験を行い、各材料の耐摩耗性を評価
した。摩耗試験は、各実施例および各比較例の焼結体を
バルブシートリングに加工し、実機に模したバルブ、バ
ルブシート試験機を用いて行った。この試験装置は、プ
ロバンガスの燃焼によってバルブとバルブシートを加熱
し、カムの駆動によってバルブを開閉する機構により、
バルブとバルブシートの叩き摩耗状態を再現するもので
ある。With respect to the sintered bodies of Examples and Comparative Examples obtained in Table 2, a wear test was performed to evaluate the wear resistance of each material. The abrasion test was performed by processing the sintered bodies of the respective examples and comparative examples into valve seat rings, and using a valve and a valve seat tester simulating actual machines. This test device heats the valve and valve seat by combustion of propane gas, and the mechanism that opens and closes the valve by driving the cam,
This is to reproduce the tapping wear state of the valve and the valve seat.
【0041】試験は、バルブ材質をJIS SUH3と
し、バルブ温度を1023K、バルブシートの温度を6
73Kに保つよう制御し、カム回転数を2000rpm
にし、運転時間28.8Ksの条件で行い、バルブシー
トの摩耗量を測定した。得られた結果は図1に示した。In the test, the valve material was JIS SUH3, the valve temperature was 1023K, and the valve seat temperature was 6
Control to keep at 73K, cam rotation speed 2000rpm
The operation time was 28.8 Ks, and the wear amount of the valve seat was measured. The results obtained are shown in FIG.
【0042】図1に示したように、要素粉を配合した比
較例No.22は摩耗量が最も多く89μmであった。
比較例No.22の組成は、実施例No.15とほぼ同
一であるが、摩耗量は実施例No.15の約3倍と大き
くなっている。これは組織の違いによる硬さの高低が、
耐摩耗性の違いとなって表れたものと考えられる。即
ち、本発明による実施例No.15の基地組織は、ベイ
ナイトであるのに対して、比較例No.22の基地組織
は、パーライトを主体としているため、見掛け硬さを比
較すると、比較例No.22は実施例No.15のおよ
そ1/2となっている。As shown in FIG. 1, Comparative Example No. Sample No. 22 had the largest abrasion amount of 89 μm.
Comparative Example No. The composition of Example No. 22 15 is almost the same as that of Example No. It is about three times as large as 15. This is because of the difference in hardness due to the difference in tissue,
This is considered to be due to the difference in wear resistance. That is, Example No. 1 according to the present invention. The base tissue of Comparative Example No. 15 was bainite. Since the base organization of No. 22 was mainly composed of pearlite, the apparent hardness was compared. No. 22 is Example No. 22. It is about 1/2 of 15.
【0043】また、同様に要素粉末を混合した比較例N
o.23は、比較例No.22に硬質粒子としてFeM
o金属間化合物を添加した材料であるが、摩耗量は50
μmであり、比較例No.22より耐摩耗性は向上した
ものの、本発明の実施例に比べると耐摩耗性は劣ってい
ることが判る。Comparative Example N in which element powders were similarly mixed
o. 23 is Comparative Example No. 23. 22 FeM as hard particles
o A material to which an intermetallic compound is added, but the wear amount is 50
μm, and Comparative Example No. 22 shows that although the abrasion resistance was improved, the abrasion resistance was inferior to the examples of the present invention.
【0044】比較例であるNo.24はCo含有量が
1.2%と少ないため、また比較例であるNo.25は
Mo含有量が1.3%と少ないため、摩耗量が45〜5
2μmであって、耐摩耗性に劣る。また比較例であるN
o.9はMo含有量が12.2%と多かったため、摩耗
量は30μmであって、耐摩耗性にすぐれるが、前記の
ごとく圧縮性が良くないので、密度向上が不十分であ
る。The comparative example No. No. 24 has a low Co content of 1.2%, and is a comparative example No. 24. In the case of No. 25, since the Mo content is as small as 1.3%, the wear amount is 45 to 5
2 μm, inferior in wear resistance. Also, the comparative example N
o. In No. 9, the Mo content was as large as 12.2%, and the abrasion amount was 30 μm, which was excellent in abrasion resistance. However, since the compressibility was not good as described above, the density improvement was insufficient.
【0045】これに対して本発明の実施例であるNo.
14〜21は、合金元素が基地組織に固溶均質化したた
め、基地組織がベイナイト組織となり、摩耗量は25〜
35μmであって、耐摩耗性が著しく向上していること
が判明した。On the other hand, in the embodiment of the present invention, No.
In Nos. 14 to 21, the alloy elements were solid-solution homogenized in the base structure, so that the base structure became a bainite structure, and the wear amount was 25 to
It was 35 μm, and it was found that the abrasion resistance was significantly improved.
【0046】(実施例3)表3に示すCoおよびMoを
含有し、不可避不純物を含む残部Feの噴霧合金粉末
(粒径177μm以下)および溶浸合金粉末A〜C(溶
浸材A;Pb、溶浸材B;Cu−30Pb、溶浸材C;
Cu)を予め製作し、この噴霧合金粉に表3に示す黒鉛
(Gr:天然黒鉛粉、粒径40μm以下)と潤滑剤ステ
アリン酸亜鉛1.0%を秤量後、V型混粉機により混粉
を行った。次に圧粉体密度が7.0g/cm3になるよ
う成形圧力を調整し、試験片を製作した。続いて、窒素
雰囲気中にて、1403Kに保持し、焼結を実施した。
次いで、溶浸処理を焼結と同一雰囲気、同一温度条件に
て行った。Example 3 A spray alloy powder (particle size: 177 μm or less) of Fe, containing Co and Mo and containing unavoidable impurities shown in Table 3, and infiltration alloy powders A to C (infiltration material A; Pb , Infiltrant B; Cu-30Pb, infiltrant C;
Cu) is prepared in advance, and graphite (Gr: natural graphite powder, particle size of 40 μm or less) shown in Table 3 and a lubricant zinc stearate (1.0%) are weighed into the sprayed alloy powder, and then mixed by a V-type mixer. Powdered. Next, the molding pressure was adjusted so that the green compact density became 7.0 g / cm 3 , to produce a test piece. Subsequently, sintering was performed at 1403K in a nitrogen atmosphere.
Next, the infiltration treatment was performed under the same atmosphere and the same temperature conditions as the sintering.
【0047】[0047]
【表3】 [Table 3]
【0048】なお、表3において、No.27〜37は
本発明の実施例である。No.38〜40は比較材であ
って、No.38は溶浸材を全く溶浸しなかった比較材
であり、No.39はCo含有量が少なかった比較材で
あり、No.40は溶浸材の溶浸量が本発明の組成範囲
より少なかった比較材である。In Table 3, No. 27 to 37 are examples of the present invention. No. Nos. 38 to 40 are comparative materials. No. 38 is a comparative material which did not infiltrate the infiltration material at all. No. 39 is a comparative material having a low Co content. Reference numeral 40 is a comparative material in which the infiltration amount of the infiltration material was smaller than the composition range of the present invention.
【0049】次に、得られた実施例および比較材につい
て、摩耗試験を行い、各材料の耐摩耗性を調査し、バル
ブシートとしての適合性を調査した。摩耗試験は、得ら
れた実施例および比較材をブロック材とし、相手材(ロ
ータ)をJIS SUH11として、大越式摩耗試験機
を用いて、下記の試験条件で耐摩耗性を評価した。耐摩
耗性はブロック摩耗痕幅として評価し、表3に併せて示
した。Next, abrasion tests were performed on the obtained examples and comparative materials, the abrasion resistance of each material was investigated, and the suitability as a valve seat was investigated. In the abrasion test, the obtained examples and comparative materials were used as block materials, and the mating material (rotor) was used as JIS SUH11, and the abrasion resistance was evaluated using an Ogoshi type abrasion tester under the following test conditions. The wear resistance was evaluated as a block wear mark width, and is shown in Table 3.
【0050】 (大越摩耗試験条件) 相手材(ロータ) JIS SUH11 ブロック材 試料No.24〜41 すべり速度 0.51m/s 摩擦距離 100m 最終荷重 31.5N 温度 常温 測定項目 ブロック摩耗痕幅(Ogoshi Wear Test Conditions) Counterpart Material (Rotor) JIS SUH11 Block Material Sample No. 24-41 Sliding speed 0.51m / s Friction distance 100m Final load 31.5N Temperature Room temperature Measurement item Block wear mark width
【0051】表3に示したように、溶浸材の溶浸量が0
であった比較材No.38および溶浸材の溶浸量が2%
と少なかった比較材No.40は、ブロック摩耗痕幅が
2.2〜2.3mmと大きく、またCo含有量の少なか
った比較材No.39もブロック摩耗痕幅が2.1mm
と大きく、いずれも耐摩耗性に劣った。As shown in Table 3, the infiltration amount of the infiltration material was 0
Comparative material No. 38 and the infiltration amount of the infiltration material is 2%
And comparative material No. Comparative material No. 40 has a block wear scar width as large as 2.2 to 2.3 mm and a small Co content. 39 also has 2.1 mm block wear mark width
All were inferior in wear resistance.
【0052】これに対して本発明の実施例であるNo.
27〜37は、溶浸材を本発明の組成範囲である14%
を溶浸したので、溶浸材が接触部に介在して潤滑剤とし
て作用し、ブロック摩耗痕幅は、1.4〜1.9mmで
あって、耐摩耗性および耐焼付性の向上していることが
確認された。On the other hand, in the embodiment of the present invention, No.
Nos. 27 to 37 indicate that the infiltration material is 14% in the composition range of the present invention.
Is infiltrated, so that the infiltration material acts as a lubricant by interposing the contact portion, and the block wear mark width is 1.4 to 1.9 mm, and the wear resistance and seizure resistance are improved. It was confirmed that.
【0053】(実施例4)合金元素が、Mo;3.3
%、Co;6.1%、O;0.04%、C;0.03
%、残部が不可避不純物とFeからなる鉄基合金粉末
(粒径177μm以下)を、噴霧法により製造した。得
られた焼結用粉末について、粉末の圧縮性と焼結体の耐
腐食性を評価した。(Example 4) The alloy element is Mo; 3.3
%, Co; 6.1%, O: 0.04%, C: 0.03%
%, The balance being an iron-based alloy powder (particle size: 177 μm or less) composed of Fe and inevitable impurities was produced by a spraying method. With respect to the obtained powder for sintering, the compressibility of the powder and the corrosion resistance of the sintered body were evaluated.
【0054】粉末の圧縮性は実施例1と同じ方法であっ
て、直径11.3mmの金型を用い、潤滑剤を金型に塗
布後、成形圧力588MPaにて圧粉体を製作し、これ
の密度を測定したものである。また、焼結体の耐腐食性
は実施例1で行ったと同じであって、密度6.9g/c
m3の圧粉体を成形後、窒素雰囲気中にて1400Kの
温度に1800秒保持後、20〜30℃/minにて冷
却した焼結体を試験片として製作し、この試験片を酸化
鉛と硫酸鉛の混合試薬に埋没した状態で加熱(1108
K×3.6Ks)処理を行い、試験後の重量変化を求め
た。The compressibility of the powder was the same as that in Example 1. A lubricant having a diameter of 11.3 mm was applied to the mold, and a compact was produced at a molding pressure of 588 MPa. Was measured. Further, the corrosion resistance of the sintered body was the same as that performed in Example 1, and the density was 6.9 g / c.
After molding a green compact of m 3 , a sintered body cooled at 20 to 30 ° C./min was manufactured as a test piece after holding at a temperature of 1400 K for 1800 seconds in a nitrogen atmosphere, and this test piece was made of lead oxide. Heating in a state of being immersed in a mixed reagent of
K × 3.6 Ks), and the weight change after the test was determined.
【0055】その結果、粉体の圧縮性は、6.98g/
cm3であって、実施例1の表1の結果と比較して、何
ら遜色のない圧縮性を示した。また、焼結体の耐腐食性
重量変化も−0.790g/cm3であって,同様に実
施例1の表1と対比しても、同等の値が得られた。As a result, the compressibility of the powder was 6.98 g /
cm 3 , and showed compressibility comparable to the results in Table 1 of Example 1. In addition, the change in corrosion resistance weight of the sintered body was -0.790 g / cm 3 , and the same value was obtained by comparison with Table 1 of Example 1.
【0056】(実施例5)合金元素が、Mo;3.2
%、Co;8.1%、残部が不可避不純物とFeからな
る鉄基合金粉末(粒径177μm以下)を、噴霧法によ
り製造した。この噴霧合金粉に、市販の黒鉛0.9%と
潤滑剤1.0%とを秤量後、V型混合機により混粉をお
こなった。次に圧粉体密度が7.0g/cm3になるよ
う形成圧力を調整し、試験片を製作した。続いて窒素雰
囲気中にて、1403Kの焼結温度にて焼結を行って焼
結体を得た。(Example 5) The alloy element is Mo; 3.2
%, Co; 8.1%, the balance being an iron-based alloy powder (particle size of 177 μm or less) composed of Fe and inevitable impurities was produced by a spraying method. 0.9% of commercially available graphite and 1.0% of a lubricant were weighed into the sprayed alloy powder, and then mixed with a V-type mixer. Next, the forming pressure was adjusted so that the green compact density became 7.0 g / cm 3 , and a test piece was manufactured. Subsequently, sintering was performed at a sintering temperature of 1403K in a nitrogen atmosphere to obtain a sintered body.
【0057】得られた焼結体について、耐摩耗性を評価
したが、評価方法は実施例2で行ったと同じ方法であっ
て、焼結体をバルブシートリングに加工し、実機に模し
たバルブ、バルブシート試験機を用いて行った。この試
験装置は、プロバンガスの燃焼によってバルブとバルブ
シートを加熱し、カムの駆動によってバルブを開閉する
機構により、バルブとバルブシートの叩き摩耗状態を再
現するものである。The abrasion resistance of the obtained sintered body was evaluated. The evaluation method was the same as that performed in Example 2. The sintered body was processed into a valve seat ring, and a valve simulated on an actual machine was manufactured. , Using a valve seat tester. This test device reproduces the beating wear state of the valve and the valve seat by a mechanism that heats the valve and the valve seat by burning propane gas and opens and closes the valve by driving a cam.
【0058】試験は、バルブ材質をJIS SUH3と
し、バルブ温度を1023K、バルブシートの温度を6
73Kに保つよう制御し、カム回転数を2000rpm
にし、運転時間28.8Ksの条件で行い、バルブシー
トの摩耗量を測定した。本実施例の摩耗量は29μmで
あって、実施例2で得られた図1の摩耗量を示す図と比
較してほぼ同等の結果が得られた。In the test, the valve material was set to JIS SUH3, the valve temperature was set to 1023K, and the valve seat temperature was set to 6
Control to keep at 73K, cam rotation speed 2000rpm
The operation time was 28.8 Ks, and the wear amount of the valve seat was measured. The amount of wear in this example was 29 μm, and almost the same results were obtained as compared with the figure showing the amount of wear in FIG. 1 obtained in Example 2.
【0059】[0059]
【発明の効果】本発明の焼結用鉄基合金粉末は合金元素
として、重量比でCo;2〜15%、Mo;2〜10%
を含有し、残部が不可避不純物とFeからなり、鉄基焼
結合金はこの鉄基合金粉末に対し、黒鉛粉末0.2〜
2.1%と成形用潤滑剤を混合し、成形、焼結して得ら
れることを特徴とするものであって、合金元素の素地へ
の固溶均質度が高く、要素粉末を混合する従来法に比べ
て、少ない合金量で優れた耐腐食性、耐酸化性および耐
摩耗性を得ることができる。合金元素の組成範囲を前記
組成範囲に規制したので、圧縮性の低下割合が少なく、
要素粉末を混合する従来法に比べて、圧縮性が若干低下
するもののほぼ同等であり、密度と関連性の強い耐酸化
性、耐食性に対して影響を及ぼすおそれはない。また、
CoおよびMoがFe基地に均一に固溶するので、基地
がベイナイトとなり、耐摩耗性に優れる。本発明で得ら
れた焼結合金へのPb、Cu、Pb−Cu合金およびこ
れらを主成分とする合金の溶浸は、バルブとバルブシー
トとの接触部に介在して潤滑剤として作用して、さらに
焼結合金の熱伝導性を向上させることにより、バルブシ
ート当り面の温度を効率的に低下させる作用により、耐
摩耗性を向上させる。The iron-based alloy powder for sintering of the present invention has a weight ratio of Co: 2 to 15% and Mo: 2 to 10% as alloying elements.
, And the balance consists of unavoidable impurities and Fe. The iron-based sintered alloy has a graphite powder of 0.2 to
2. It is characterized by being obtained by mixing 2.1% with a molding lubricant, molding and sintering, and has a high degree of solid solution uniformity of the alloying element in the base material, and the conventional mixing element powder. Excellent corrosion resistance, oxidation resistance and abrasion resistance can be obtained with a small amount of alloy as compared with the method. Since the composition range of the alloying element is regulated to the above composition range, the compressibility is less reduced,
Compared with the conventional method of mixing the element powders, the compressibility is slightly reduced, but the compressibility is almost the same, and there is no possibility of affecting the oxidation resistance and the corrosion resistance which are strongly related to the density. Also,
Since Co and Mo are uniformly dissolved in the Fe matrix, the matrix becomes bainite and has excellent wear resistance. The infiltration of the sintered alloy obtained in the present invention with Pb, Cu, a Pb-Cu alloy and an alloy containing these as main components acts as a lubricant through a contact portion between the valve and the valve seat. Further, by improving the thermal conductivity of the sintered alloy, the effect of efficiently lowering the temperature of the surface in contact with the valve seat is improved, thereby improving the wear resistance.
【図1】摩耗試験における本発明の実施例と比較例の摩
耗量を示す図である。FIG. 1 is a diagram showing the wear amount of an example of the present invention and a comparative example in a wear test.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡島 博司 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 昭48−102707(JP,A) 特開 昭56−41353(JP,A) 特開 昭62−202046(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 1/04 - 1/05 C22C 33/02 C22C 38/00 - 38/60 B22F 1/00 - 9/08 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hiroshi Okajima 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (56) References JP-A-48-102707 (JP, A) JP-A-56-41353 (JP, A) JP-A-62-202046 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 1/04-1/05 C22C 33/02 C22C 38/00-38 / 60 B22F 1/00-9/08
Claims (6)
5%、Mo;2〜10%を含有し、残部が不可避不純物
とFeからなることを特徴とする圧縮性および耐腐食性
に優れた焼結用鉄基合金粉末。1. An alloying element containing Co in a weight ratio of 2-1.
An iron-based alloy powder for sintering having excellent compressibility and corrosion resistance, containing 5%, Mo; 2 to 10%, and the balance being unavoidable impurities and Fe.
徴とする請求項1に記載の焼結用鉄基合金粉末。2. The iron-based alloy powder for sintering according to claim 1, wherein Mo is over 3% to 10%.
〜10%を含有し、残部が不可避不純物とFeからなる
鉄基合金粉末に対し、黒鉛粉末0.2〜2.1%と成形
用潤滑剤を混合し、成形、焼結して得られることを特徴
とする耐摩耗性に優れた鉄基焼結合金。3. Co: 2 to 15% by weight, Mo: 2 by weight ratio.
To be obtained by mixing, molding and sintering a graphite powder in a proportion of 0.2 to 2.1% and a molding lubricant with respect to an iron-based alloy powder containing 10 to 10%, with the balance being unavoidable impurities and Fe. An iron-based sintered alloy with excellent wear resistance.
徴とする請求項3に記載の耐摩耗性に優れた鉄基焼結合
金。4. The iron-based sintered alloy having excellent wear resistance according to claim 3, wherein Mo is more than 3% to 10%.
10%を含有し、残部が不可避不純物とFeからなる鉄
基合金粉末に対し、黒鉛粉末0.2〜2.1%と成形用
潤滑剤を混合し、成形、焼結し、続いてPb、Cu、P
b−Cu合金およびこれらを主成分とする合金の何れか
からなる溶浸合金を3〜25%を、前記焼結合金に溶浸
処理し、前記焼結合金の気孔部および気孔部周辺に溶浸
・拡散させて得られることを特徴とする耐摩耗性、耐焼
付性に優れた鉄基焼結合金。5. A weight ratio of Co: 2 to 15%, Mo: 2 to 5%.
The iron-based alloy powder containing 10%, the balance being unavoidable impurities and Fe, is mixed with 0.2 to 2.1% of graphite powder and a molding lubricant, molded and sintered, and then Pb, Cu, P
The sintered alloy is infiltrated with 3 to 25% of an infiltrated alloy made of any of a b-Cu alloy and an alloy containing these as a main component, and melted around the pores and around the pores of the sintered alloy. An iron-based sintered alloy with excellent wear and seizure resistance characterized by being immersed and diffused.
徴とする請求項5に記載の耐摩耗性、耐焼付性に優れた
鉄基焼結合金。6. The iron-based sintered alloy according to claim 5, wherein Mo is over 3% to 10%.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05238454A JP3077865B2 (en) | 1992-11-27 | 1993-09-24 | Iron-based alloy powder for sintering and wear-resistant iron-based sintered alloy |
DE69313253T DE69313253T3 (en) | 1992-11-27 | 1993-11-29 | Iron alloy powder for sintering, sintered iron alloy with abrasion resistance and process for producing the same |
US08/158,313 US5512080A (en) | 1992-11-27 | 1993-11-29 | Fe-based alloy powder adapted for sintering, Fe-based sintered alloy having wear resistance, and process for producing the same |
EP93119229A EP0604773B2 (en) | 1992-11-27 | 1993-11-29 | Fe-based alloy powder adapted for sintering, Fe-based sintered alloy having wear resistance, and process for producing the same |
US08/429,846 US5489324A (en) | 1992-11-27 | 1995-04-27 | Fe-based sintered alloy having wear resistance |
US08/429,827 US5503654A (en) | 1992-11-27 | 1995-04-27 | Fe-based alloy powder and adapted for sintering, Fe-based sintered alloy having wear resistance, and process for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31842892 | 1992-11-27 | ||
JP4-318428 | 1992-11-27 | ||
JP05238454A JP3077865B2 (en) | 1992-11-27 | 1993-09-24 | Iron-based alloy powder for sintering and wear-resistant iron-based sintered alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06212367A JPH06212367A (en) | 1994-08-02 |
JP3077865B2 true JP3077865B2 (en) | 2000-08-21 |
Family
ID=26533697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05238454A Expired - Fee Related JP3077865B2 (en) | 1992-11-27 | 1993-09-24 | Iron-based alloy powder for sintering and wear-resistant iron-based sintered alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3077865B2 (en) |
-
1993
- 1993-09-24 JP JP05238454A patent/JP3077865B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06212367A (en) | 1994-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4970049A (en) | Sintered materials | |
JP4368245B2 (en) | Hard particle dispersion type iron-based sintered alloy | |
US20020084004A1 (en) | Iron-based sintered alloy material for valve seat and valve seat made of iron-based sintered alloy | |
JP4127021B2 (en) | Hard particles, wear-resistant iron-based sintered alloy, method for producing wear-resistant iron-based sintered alloy, and valve seat | |
JP3596751B2 (en) | Hard particle for blending sintered alloy, wear-resistant iron-based sintered alloy, method for producing wear-resistant iron-based sintered alloy, and valve seat | |
JP4299042B2 (en) | Iron-based sintered alloy, valve seat ring, raw material powder for producing iron-based sintered alloy, and method for producing iron-based sintered alloy | |
JPH1171651A (en) | Ferrous sintered alloy for valve seat | |
JP3763782B2 (en) | Method for producing wear-resistant iron-based sintered alloy material for valve seat | |
JP3225649B2 (en) | Wear resistant iron-based sintered alloy | |
JP3077865B2 (en) | Iron-based alloy powder for sintering and wear-resistant iron-based sintered alloy | |
JPH09256120A (en) | Powder metallurgy material excellent in wear resistance | |
JP2716575B2 (en) | Manufacturing method of wear resistant iron-based sintered alloy | |
JPS60258449A (en) | Sintered iron alloy for valve seat | |
JP3862196B2 (en) | Iron-based sintered valve seat | |
JP3264092B2 (en) | Wear-resistant iron-based sintered alloy and method for producing the same | |
JP3068127B2 (en) | Wear-resistant iron-based sintered alloy and method for producing the same | |
JPH0313546A (en) | Ferrous sintered alloy for valve seat | |
JPH0633184A (en) | Production of sintered alloy for valve seat excellent in wear resistance | |
JPS62207847A (en) | Ferrous sintered alloy for valve seat | |
JPS61117254A (en) | Ferrous sintered alloy for valve seat | |
JP3346292B2 (en) | High strength Fe-based sintered valve seat | |
JP3331963B2 (en) | Sintered valve seat and method for manufacturing the same | |
JP3068128B2 (en) | Wear-resistant iron-based sintered alloy and method for producing the same | |
JPS62164858A (en) | Ferrous sintered alloy for valve seat | |
JP2677813B2 (en) | High temperature wear resistant iron-based sintered alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080616 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090616 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |