Nothing Special   »   [go: up one dir, main page]

JP2914825B2 - Gasoline engine combustion control device - Google Patents

Gasoline engine combustion control device

Info

Publication number
JP2914825B2
JP2914825B2 JP4174398A JP17439892A JP2914825B2 JP 2914825 B2 JP2914825 B2 JP 2914825B2 JP 4174398 A JP4174398 A JP 4174398A JP 17439892 A JP17439892 A JP 17439892A JP 2914825 B2 JP2914825 B2 JP 2914825B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
fuel
cylinder
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4174398A
Other languages
Japanese (ja)
Other versions
JPH05312081A (en
Inventor
繁 宮田
秀治 吉田
佳弘 松原
康生 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Original Assignee
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tokushu Togyo KK filed Critical Nippon Tokushu Togyo KK
Priority to EP19920311273 priority Critical patent/EP0546827B1/en
Priority to US07/988,842 priority patent/US5253627A/en
Priority to DE69218900T priority patent/DE69218900T2/en
Publication of JPH05312081A publication Critical patent/JPH05312081A/en
Application granted granted Critical
Publication of JP2914825B2 publication Critical patent/JP2914825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/125Measuring ionisation of combustion gas, e.g. by using ignition circuits

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、ガソリン機関を安定
して運転できる、空燃比のリーン限界または理論空燃比
に制御するための燃焼制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control apparatus for stably operating a gasoline engine for controlling the air-fuel ratio to a lean limit or a stoichiometric air-fuel ratio.

【0002】[0002]

【従来の技術】自動車エンジンでは、排気ガスの浄化及
び燃費向上の要求が高まっており、このためには、機関
の各気筒毎に着火燃焼状態を検出し、機関を空燃比のリ
ーン限界に近い運転条件で運転させることが望ましい。
このため、ポンプ素子と酸素センサとを組み合わせ、排
気中の残存酸素量及び可燃性分量から空燃比の全領域に
おいて吸入混合気の空燃比を検出する全領域空燃比セン
サが使用され、機関を希薄燃焼させる燃焼制御がなされ
ている。また、機関が安定燃焼の希薄燃焼限界に近づく
と、クランク角速度(機関の回転速度と同義)および燃
焼圧力のピーク値の変動(ばらつき)が増大し、このば
らつきが一定値を越えると機関の円滑な運転が困難にな
ることが知られている。
2. Description of the Related Art In an automobile engine, there is an increasing demand for purifying exhaust gas and improving fuel efficiency. For this purpose, an ignition combustion state is detected for each cylinder of the engine, and the engine is near an air-fuel ratio lean limit. It is desirable to operate under operating conditions.
For this reason, a full-range air-fuel ratio sensor that combines the pump element and the oxygen sensor to detect the air-fuel ratio of the intake air-fuel mixture in the entire air-fuel ratio region based on the remaining oxygen amount and the flammable amount in the exhaust gas is used. Combustion control for burning is performed. Further, when the engine approaches the lean burn limit of stable combustion, fluctuations (variations) in the crank angular velocity (synonymous with the engine speed) and the peak value of the combustion pressure increase, and when the fluctuations exceed a certain value, the engine becomes smooth. It is known that difficult driving becomes difficult.

【0003】[0003]

【発明が解決しようとする課題】しかるに、全領域空燃
比センサを用いた燃焼制御においては、各気筒間の空燃
比のばらつきを考慮して、最も希薄となる気筒において
も正常に着火ができるよう、空燃比を制御せざるを得な
いため、排気ガスの浄化及び燃費向上が充分にできない
欠点があった。この発明の目的は、ガソリン機関におい
て、排気中の成分検出による全領域空燃比センサを用い
た空燃比のフィードバック制御に加えて、スパークプラ
グに流れるイオン電流の電流密度が、希薄空燃比の限界
運転状態に近づくほど大きくばらつくという知見に基づ
き、イオン電流密度を検出して各気筒ごとに安定運転の
限界に近い状態でガソリン機関を運転する燃焼制御装置
を提供することにある。
However, in the combustion control using the full-range air-fuel ratio sensor, the ignition can be normally performed even in the leanest cylinder in consideration of the variation in the air-fuel ratio between the cylinders. In addition, since the air-fuel ratio must be controlled, there is a disadvantage that exhaust gas purification and fuel efficiency cannot be sufficiently improved. SUMMARY OF THE INVENTION It is an object of the present invention to provide a gasoline engine in which, in addition to air-fuel ratio feedback control using a full-range air-fuel ratio sensor based on detection of components in exhaust gas, the current density of ionic current flowing through a spark plug is limited to a lean air-fuel ratio limit operation. It is an object of the present invention to provide a combustion control device that detects an ion current density and operates a gasoline engine in a state close to the limit of stable operation for each cylinder based on the finding that the state varies greatly as the state approaches.

【0004】[0004]

【課題を解決するための手段】請求項1記載の、この発
明のガソリン機関の燃焼制御装置は、機関の排気路に装
着され、排気中の残存酸素量及び可燃性分量から空燃比
の全領域において吸入混合気の空燃比を検出する全領域
空燃比センサと、点火回路の二次回路の点火コイルとス
パークプラグとの間に設けた逆流防止手段、スパークプ
ラグでの火花放電後の所定時期に所定時間、点火コイル
の一次回路に通電し、二次回路に起電力を発生させてス
パークプラグの浮遊静電容量に充電するイオン電流検出
電圧発生手段、スパークプラグの電極間の二次電圧を分
圧する分圧器、該分圧器に接続された二次電圧の減衰特
性検出回路、及び設定期間に検出した二次電圧の減衰特
性の変動の度合いを判別する判別回路からなる燃焼状態
検出装置と、各気筒ごとに設けた燃料噴射装置と、運転
条件に応じて予め設定した暫定希薄空燃比となるよう、
前記全領域空燃比センサによりフィードバック制御しな
がら、前記全ての燃料噴射装置からの燃料噴射量を制御
すると共に、各気筒ごとの安定運転限界を前記燃焼状態
検出装置で検出し、各燃料噴射装置からの燃料噴射量を
安定運転限界に近い限界希薄空燃比まで希薄に調整し
て、前記暫定希薄空燃比を各気筒の限界希薄空燃比によ
り決定される目標希薄空燃比に書き換えて制御する制御
回路とからなる。
According to a first aspect of the present invention, there is provided a combustion control apparatus for a gasoline engine according to the present invention, which is mounted on an exhaust passage of the engine and has a full range of an air-fuel ratio based on a residual oxygen amount and a flammable amount in the exhaust gas. A full-range air-fuel ratio sensor that detects the air-fuel ratio of the intake air-fuel mixture, backflow prevention means provided between the ignition coil of the secondary circuit of the ignition circuit and the spark plug, at a predetermined time after spark discharge at the spark plug. For a predetermined period of time, the primary circuit of the ignition coil is energized to generate an electromotive force in the secondary circuit to charge the floating capacitance of the spark plug to the ion current detection voltage generating means, and the secondary voltage between the electrodes of the spark plug is divided. A combustion state detection device comprising a voltage divider for compressing, a secondary voltage attenuation characteristic detection circuit connected to the voltage divider, and a determination circuit for determining the degree of change in the secondary voltage attenuation characteristic detected during the set period; Mind A fuel injection device provided in each, so that the provisional lean air-fuel ratio set in advance depending on the operating conditions,
While controlling the fuel injection amount from all the fuel injection devices while performing feedback control by the all-region air-fuel ratio sensor, the stable operation limit for each cylinder is detected by the combustion state detection device, and from each fuel injection device. A control circuit for adjusting the fuel injection amount to a lean air-fuel ratio that is close to the stable operation limit, and rewriting and controlling the provisional lean air-fuel ratio to a target lean air-fuel ratio determined by the limit lean air-fuel ratio of each cylinder. Consists of

【0005】請求項2に記載のガソリン機関の燃焼制御
装置は、制御回路が、運転条件に応じて予め設定した目
標希薄空燃比となるよう、前記全領域空燃比センサによ
りフィードバック制御しながら、前記全ての燃料噴射装
置からの燃料噴射総量を制御すると共に、各気筒ごとの
運転状態を燃焼状態検出装置で検出し、各燃料噴射装置
からの燃料噴射量を各気筒の運転状態が同程度となるよ
う制御する。
According to a second aspect of the invention, there is provided a combustion control apparatus for a gasoline engine, wherein a control circuit performs feedback control by the full-range air-fuel ratio sensor so as to attain a target lean air-fuel ratio set in advance according to operating conditions. The total amount of fuel injection from all the fuel injection devices is controlled, and the operation state of each cylinder is detected by the combustion state detection device, and the amount of fuel injection from each fuel injection device is approximately equal to the operation state of each cylinder. Control.

【0006】請求項3に記載のガソリン機関の燃焼制御
装置は、空燃比センサが、排気中の残存酸素量及び可燃
性分量から、空燃比の全領域において吸入混合気の空燃
比を検出する全領域空燃比センサであるか又は理論空燃
比以上であるか否かを検出する酸素センサであり、制御
回路は、吸入混合気が理論空燃比となるよう、前記空燃
比センサによりフィードバック制御しながら、前記全て
の燃料噴射装置からの燃料噴射総量を制御すると共に、
各気筒ごとの運転状態を燃焼状態検出装置で検出し、各
燃料噴射装置からの燃料噴射量を各気筒の運転状態が同
程度となるよう制御する。
According to a third aspect of the present invention, there is provided a combustion control apparatus for a gasoline engine, wherein the air-fuel ratio sensor detects the air-fuel ratio of the intake air-fuel mixture in the entire range of the air-fuel ratio from the residual oxygen amount and the flammable amount in the exhaust gas. An oxygen sensor that detects whether the area air-fuel ratio sensor is greater than or equal to the stoichiometric air-fuel ratio, and the control circuit performs feedback control by the air-fuel ratio sensor so that the intake air-fuel mixture becomes the stoichiometric air-fuel ratio. Controlling the total amount of fuel injection from all the fuel injection devices,
The operating state of each cylinder is detected by the combustion state detecting device, and the amount of fuel injected from each fuel injection device is controlled so that the operating state of each cylinder is substantially the same.

【0007】請求項4においては、全領域空燃比センサ
に代えて機関のクランク角速度の変化(機関の回転速度
と同義)を検出するクランク角速度センサを備え、制御
回路は、前記クランク角速度センサにより検出したクラ
ンク角速度のばらつきの範囲が一定値以下となるよう、
吸入混合気の空燃比を運転条件に応じて予め設定した暫
定希薄空燃比にフィードバック制御しながら、前記全て
の燃料噴射装置からの燃料噴射量を制御すると共に、各
気筒ごとの安定運転限界を燃焼状態検出装置で検出し、
各燃料噴射装置からの燃料噴射量を安定運転限界に近い
限界希薄空燃比まで希薄に調整して、前記暫定希薄空燃
比を各気筒の限界希薄空燃比により決定される目標希薄
空燃比に書き換えて制御する。
According to a fourth aspect of the present invention, a crank angular velocity sensor for detecting a change in the crank angular velocity of the engine (synonymous with the rotational speed of the engine) is provided in place of the full area air-fuel ratio sensor, and the control circuit detects the change in the crank angular velocity sensor. So that the range of the variation of the crank angular velocity becomes equal to or less than a certain value.
While performing feedback control of the air-fuel ratio of the intake air-fuel mixture to a provisional lean air-fuel ratio set in advance according to the operating conditions, the amount of fuel injection from all the fuel injection devices is controlled, and the stable operation limit for each cylinder is burned. Detected by the state detection device,
The fuel injection amount from each fuel injector is adjusted lean to the limit lean air-fuel ratio close to the stable operation limit, and the provisional lean air-fuel ratio is rewritten to the target lean air-fuel ratio determined by the limit lean air-fuel ratio of each cylinder. Control.

【0008】請求項5においては、全領域空燃比センサ
に代えて機関の気筒内の燃焼圧力センサを備え、制御回
路は、前記燃焼圧力センサにより検出した燃焼圧力のば
らつきの範囲が一定値以下となるよう、吸入混合気の空
燃比を運転条件に応じて予め設定した暫定希薄空燃比に
フィードバック制御しながら、前記全ての燃料噴射装置
からの燃料噴射量を制御すると共に、各気筒ごとの安定
運転限界を燃焼状態検出装置で検出し、各燃料噴射装置
からの燃料噴射量を安定運転限界に近い限界希薄空燃比
まで希薄に調整して、前記暫定希薄空燃比を各気筒の限
界希薄空燃比により決定される目標希薄空燃比に書き換
えて制御する。
According to a fifth aspect of the present invention, a combustion pressure sensor in the cylinder of the engine is provided in place of the full range air-fuel ratio sensor, and the control circuit determines that the range of the variation in the combustion pressure detected by the combustion pressure sensor is equal to or less than a predetermined value. In such a manner, while controlling the air-fuel ratio of the intake air-fuel mixture to a provisional lean air-fuel ratio set in advance according to operating conditions, the amount of fuel injection from all the fuel injection devices is controlled, and stable operation of each cylinder is performed. The limit is detected by the combustion state detection device, the fuel injection amount from each fuel injection device is adjusted to be lean to the limit lean air-fuel ratio close to the stable operation limit, and the provisional lean air-fuel ratio is determined by the limit lean air-fuel ratio of each cylinder. The target lean air-fuel ratio is rewritten and controlled.

【0009】[0009]

【発明の作用及び効果】請求項1に記載の発明では、ガ
ソリン機関を、全領域空燃比センサを用いて、運転条件
に応じ、余裕を持ってリーン側に設定した暫定希薄空燃
比にフィードバック制御すると共に、各気筒の空燃比の
ばらつきを、燃焼状態検出装置で検出し、各気筒ごとに
正常着火の限界まで希薄燃焼となるよう制御する。請求
項2に記載の発明では、ガソリン機関を、全領域空燃比
センサを用いて、運転条件に応じて設定した目標希薄空
燃比にフィードバック制御すると共に、各気筒の運転状
態のばらつきを、燃焼状態検出装置で検出し、各気筒間
のばらつきのみを調整する。請求項3に記載の発明で
は、ガソリン機関を、全領域空燃比センサまたは空燃比
λが1以上か否かを検出する酸素センサを用いて、理論
空燃比にフィードバック制御すると共に、各気筒の運転
状態のばらつきを、燃焼状態検出装置で検出し、各気筒
間のばらつきのみを調整する。
According to the first aspect of the present invention, the gasoline engine is feedback-controlled to the provisional lean air-fuel ratio which is set to the lean side with a margin according to the operating conditions by using the full-range air-fuel ratio sensor. At the same time, a variation in the air-fuel ratio of each cylinder is detected by a combustion state detection device, and control is performed so that lean combustion is performed for each cylinder to the limit of normal ignition. According to the second aspect of the present invention, the gasoline engine is feedback-controlled to the target lean air-fuel ratio set in accordance with the operating conditions using the full-range air-fuel ratio sensor, and the variation in the operating state of each cylinder is reduced by the combustion state. The detection is performed by the detection device, and only the variation between the cylinders is adjusted. According to the third aspect of the present invention, the gasoline engine is feedback-controlled to the stoichiometric air-fuel ratio by using the full-range air-fuel ratio sensor or the oxygen sensor that detects whether the air-fuel ratio λ is 1 or more, and operates each cylinder. The variation in the state is detected by the combustion state detecting device, and only the variation between the cylinders is adjusted.

【0010】請求項4に記載の発明では、ガソリン機関
を、希薄燃焼になるほどクランク角速度のばらつきが増
大するという事実を利用して、運転条件に応じて余裕を
もってリーン側に設定した暫定希薄空燃比にフィードバ
ック制御すると共に、各気筒の空燃比のばらつきを、燃
焼状態検出装置で検出し、各気筒ごとに正常着火の限界
まで希薄燃焼となるよう制御する。請求項5に記載の発
明では、ガソリン機関を、希薄燃焼になるほど気筒の燃
焼圧のばらつきが増大するという事実を利用して、運転
条件に応じて余裕をもってリーン側に設定した暫定希薄
空燃比にフィードバック制御すると共に、各気筒の空燃
比のばらつきを、燃焼状態検出装置で検出し、各気筒ご
とに正常着火の限界まで希薄燃焼となるよう制御する。
これにより、定常運転及び暖機運転において、排気浄
化、燃費向上が同時に達成できる。
[0010] In the invention according to claim 4, the provisional lean air-fuel ratio of the gasoline engine is set to a lean side with a margin according to the operating conditions by taking advantage of the fact that the variation in the crank angular speed increases as the lean burn occurs. In addition to the feedback control, the variation in the air-fuel ratio of each cylinder is detected by a combustion state detection device, and control is performed so that lean combustion is performed for each cylinder to the limit of normal ignition. According to the fifth aspect of the invention, the gasoline engine is provided with a provisional lean air-fuel ratio set on the lean side with a margin according to the operating conditions by utilizing the fact that the variation in the combustion pressure of the cylinders increases as the leaner the combustion. Along with the feedback control, a variation in the air-fuel ratio of each cylinder is detected by a combustion state detection device, and control is performed so that lean combustion is performed for each cylinder to the limit of normal ignition.
Thereby, in the steady operation and the warm-up operation, the exhaust gas purification and the improvement of the fuel efficiency can be achieved at the same time.

【0011】[0011]

【実施例】図1は、ガソリン機関100の概略構成図を
示し、排気路200には全領域空燃比センサ201が装
着され、吸気路300には各気筒ごとに燃料噴射装置3
01が取り付けられている。400は点火装置を示し、
点火コイル1、配電器(デストリビュータ)2、スパー
クプラグ3を備え、燃焼状態検出装置500が設けられ
ている。全領域空燃比センサ201は、公知の構成を有
し、ポンプ素子と酸素センサとを組み合わせ、排気中の
残存酸素量及び可燃性分量から空燃比の全領域において
吸入混合気の空燃比を検出する。点火コイル1の一次回
路11は、車載電源Vと、一次電流断続手段4とに接続
され、二次回路12は、前記配電器2を介してスパーク
プラグ3に接続されている。点火コイル1の二次コイル
Lと配電器2のローターギャップ21との間には、逆流
防止ダイオード22が挿入されている。
FIG. 1 is a schematic diagram showing the configuration of a gasoline engine 100. An exhaust gas passage 200 is provided with an air-fuel ratio sensor 201 for all regions, and an intake passage 300 is provided with a fuel injection device 3 for each cylinder.
01 is attached. 400 indicates an ignition device,
The apparatus includes an ignition coil 1, a distributor (distributor) 2, and a spark plug 3, and a combustion state detection device 500 is provided. The whole-range air-fuel ratio sensor 201 has a known configuration, and combines a pump element and an oxygen sensor to detect the air-fuel ratio of the intake air-fuel mixture in the whole range of the air-fuel ratio from the remaining oxygen amount and combustible amount in the exhaust gas. . The primary circuit 11 of the ignition coil 1 is connected to the vehicle power supply V and the primary current interrupting means 4, and the secondary circuit 12 is connected to the spark plug 3 via the power distributor 2. A backflow prevention diode 22 is inserted between the secondary coil L of the ignition coil 1 and the rotor gap 21 of the power distributor 2.

【0012】燃焼状態検出装置500は、点火回路の二
次回路12の点火コイル1とローターギャップ21との
間に設けた逆流防止ダイオード22と、後記するイオン
電流検出電圧発生手段と、ローターギャップ21とスパ
ークプラグ3の火花放電間隙との間の二次回路12に設
けられ、スパークプラグ3の電極間の二次電圧を分圧す
る分圧器5とを有する。この実施例では、一次電流断続
手段4がイオン電流検出電圧の発生手段を兼ねており、
スパークプラグ3での火花放電後の所定時期に所定時
間、点火コイル1の一次回路11に通電し、二次回路1
2に起電力を発生させてスパークプラグ3の浮遊静電容
量に充電する。さらに、分圧器5には二次電圧の減衰特
性検出回路6が接続され、該減衰特性検出回路6には、
設定期間に検出した二次電圧の減衰特性の変動(ばらつ
き)の度合いを判別する判別手段を含むマイクロコンピ
ュータなどの制御回路7が接続されている。
The combustion state detecting device 500 includes a backflow prevention diode 22 provided between the ignition coil 1 of the secondary circuit 12 of the ignition circuit and the rotor gap 21, an ion current detection voltage generating means described later, and a rotor gap 21. A voltage divider 5 is provided in the secondary circuit 12 between the spark plug 3 and the spark discharge gap of the spark plug 3 and divides a secondary voltage between the electrodes of the spark plug 3. In this embodiment, the primary current interrupting means 4 also serves as an ion current detection voltage generating means,
At a predetermined time after the spark discharge from the spark plug 3, the primary circuit 11 of the ignition coil 1 is energized for a predetermined time and the secondary circuit 1
2 generates an electromotive force to charge the floating capacitance of the spark plug 3. Further, a secondary voltage attenuation characteristic detection circuit 6 is connected to the voltage divider 5, and the attenuation characteristic detection circuit 6
A control circuit 7 such as a microcomputer including a determination unit for determining the degree of variation (variation) of the attenuation characteristic of the secondary voltage detected during the set period is connected.

【0013】一次電流断続手段(イオン電流検出電圧発
生手段)4は、スイッチ素子41及びシグナルジェネレ
ータ42からなり、エンジンのクランク角及びスロット
ル開度を検出し、火花放電時期がエンジンの負荷及び回
転速度に適応した点火進角となるよう一次電流を断続す
る。分圧器5は、点火コイル1の二次回路12に近接し
て配された高インピーダンス素子51と、該高インピー
ダンス素子51とアースとの間に接続した低インピーダ
ンス素子52とを有する。
The primary current interrupting means (ion current detection voltage generating means) 4 comprises a switch element 41 and a signal generator 42, detects the crank angle and the throttle opening of the engine, and determines the spark discharge timing based on the load and rotation speed of the engine. The primary current is interrupted so that the ignition advance angle is adapted to The voltage divider 5 has a high impedance element 51 arranged close to the secondary circuit 12 of the ignition coil 1 and a low impedance element 52 connected between the high impedance element 51 and the ground.

【0014】この実施例では、分圧器5は、高インピー
ダンス素子51として二次回路12の高電圧リードとの
間に1pF(ピコファラッド)程度の静電容量を生じる
よう配設された導電体からなるセンサが使用され、低イ
ンピーダンス素子52として3000pFの静電容量の
コンデンサを用い、二次回路12に生じた二次電圧を1
/3000程度に分圧する。この場合、コンデンサ(5
2)に放電回路を形成する2メガオームの抵抗(図示せ
ず)を並列接続すると、分圧器5の時定数が6ms(ミ
リ秒)となり、後記する3msという比較的長い減衰時
間の判別が確実にできる。これにより最高3万ボルト前
後の高電圧波形が10ボルトのレベルに下げられ、二次
電圧の減衰特性検出回路6に入力する。
In this embodiment, the voltage divider 5 is composed of a conductor provided as the high impedance element 51 so as to generate a capacitance of about 1 pF (picofarad) between the high voltage lead of the secondary circuit 12 and the high voltage lead. Is used, a capacitor having a capacitance of 3000 pF is used as the low impedance element 52, and the secondary voltage generated in the secondary circuit 12 is set to 1
/ Partial pressure to about 3000. In this case, the capacitor (5
When a 2 Mohm resistor (not shown) forming a discharge circuit is connected in parallel to 2), the time constant of the voltage divider 5 becomes 6 ms (millisecond), and a relatively long decay time of 3 ms described later can be reliably determined. it can. As a result, a high voltage waveform of up to about 30,000 volts is reduced to a level of 10 volts, and is input to the secondary voltage attenuation characteristic detecting circuit 6.

【0015】二次電圧の減衰特性検出回路6は、前記分
圧器5の分圧を入力とするピークホールド回路61、ピ
ークホールド回路61の出力の分圧回路62、及び分圧
回路62の分圧(基準電圧)と前記分圧器5の出力とを
比較し、パルス出力を発するコンパレータ63からな
り、分圧された二次電圧波形のうち一定レベル以上の電
圧の持続時間を検出する。
The secondary voltage attenuation characteristic detecting circuit 6 includes a peak hold circuit 61 to which the voltage divided by the voltage divider 5 is input, a voltage divider circuit 62 of the output of the peak hold circuit 61, and a voltage divider of the voltage divider circuit 62. The comparator 63 compares the (reference voltage) with the output of the voltage divider 5 and generates a pulse output. The comparator 63 detects the duration of a voltage of a certain level or more in the divided secondary voltage waveform.

【0016】制御回路7は、運転条件に応じて予め計算
又は測定により求めた記憶装置に格納したデータに基づ
き、機関100に供給される空気と燃料の混合比(空燃
比)が設定した暫定希薄空燃比となるよう、前記全領域
空燃比センサ201によりフィードバック制御しなが
ら、全ての燃料噴射装置301からの燃料噴射量を制御
すると共に、各気筒ごとの安定運転限界を前記燃焼状態
検出装置500で検出し、おのおのの各燃料噴射装置3
01からの燃料噴射量を、その気筒の安定運転限界に近
い限界希薄空燃比まで希薄となるように調整して、暫定
希薄空燃比を各気筒の限界希薄空燃比により決定される
目標希薄空燃比に書き換えて制御する。
The control circuit 7 provides a provisional lean mixture in which the mixture ratio (air-fuel ratio) of air and fuel supplied to the engine 100 is set based on data stored in a storage device previously calculated or measured according to operating conditions. The fuel injection amount from all the fuel injection devices 301 is controlled while performing feedback control by the full-range air-fuel ratio sensor 201 so that the air-fuel ratio is obtained, and the stable operation limit for each cylinder is determined by the combustion state detection device 500. Detected and each fuel injection device 3
The fuel injection amount from 01 is adjusted so as to be lean to the limit lean air-fuel ratio close to the stable operation limit of the cylinder, and the provisional lean air-fuel ratio is set to the target lean air-fuel ratio determined by the limit lean air-fuel ratio of each cylinder. Rewrite to control.

【0017】作用を図2と共に説明する。制御回路7
は、気筒間の空燃比のばらつきを考慮して安全側(リッ
チ側)に設定した理論空燃比よりリーンな暫定空燃比、
たとえば20:1の空燃比となるよう燃料噴射装置30
1からの燃料供給量を調整し、機関100を燃焼制御す
る。この空燃比は全領域空燃比センサ201で検出され
目標値と差が生じないようにフィードバック制御され
る。
The operation will be described with reference to FIG. Control circuit 7
Is a provisional air-fuel ratio leaner than the stoichiometric air-fuel ratio set on the safe side (rich side) in consideration of the air-fuel ratio variation between cylinders,
For example, the fuel injection device 30 is set to have an air-fuel ratio of 20: 1.
The fuel supply amount from the engine 1 is adjusted, and the combustion of the engine 100 is controlled. This air-fuel ratio is detected by the full-range air-fuel ratio sensor 201 and is subjected to feedback control so that there is no difference from the target value.

【0018】燃焼状態検出装置500による各気筒ごと
の空燃比を、各気筒ごとに正常着火、燃焼が可能な限界
に近い限界希薄空燃比に調整する作用は、つぎのように
なされる。シグナルジェネレータ42でに示す一次電
流断続のためのパルス信号を出力し、のごとき一次電
流を一次回路11に生じさせる。巾hの大きいパルス波
aは、スパークプラグ3で火花放電を発生させるための
点火用パルスであり、パルス波aの終了後、0.5〜
1.5ms程度の遅延時間iだけ遅延した巾の小さいパ
ルス波bは、スパークプラグ3の浮遊静電容量を充電し
イオン電流検出電源とするための検出用パルスである。
The operation of the combustion state detecting device 500 for adjusting the air-fuel ratio of each cylinder to the limit lean air-fuel ratio close to the limit at which normal ignition and combustion are possible for each cylinder is performed as follows. A pulse signal for interrupting the primary current shown by the signal generator 42 is output, and a primary current such as shown in FIG. The pulse wave a having a large width h is an ignition pulse for generating a spark discharge in the spark plug 3, and 0.5 to
The small pulse wave b delayed by the delay time i of about 1.5 ms is a detection pulse for charging the floating capacitance of the spark plug 3 and using it as an ion current detection power supply.

【0019】上記一次電流の断続により、二次回路12
の点火コイル1にはに示す二次電圧が生じる。前記パ
ルス波aの終了時点で発生した高電圧pにより、火花放
電が開始し、これにつづき誘導放電によるなだらかな電
圧波形qが生じる。つぎに、前記パルス波bに対応し、
二次回路12には逆起電力波形rと、これに続く波形s
が現れる。この二次電圧の再昇圧レベルは、前記遅延時
間iとパルス波bの巾により所望のレベルに設定するこ
とができる。この発明での波形sのレベルは、ローター
ギャップ21の絶縁破壊が可能であり、スパークプラグ
3の火花放電間隙では放電が不可能となるよう、4〜6
キロボルトに設定される。
The interruption of the primary current causes the secondary circuit 12
A secondary voltage shown in FIG. The spark discharge starts due to the high voltage p generated at the end of the pulse wave a, followed by a gentle voltage waveform q due to the induction discharge. Next, corresponding to the pulse wave b,
The secondary circuit 12 has a back electromotive force waveform r followed by a waveform s
Appears. The re-boost level of the secondary voltage can be set to a desired level by the delay time i and the width of the pulse wave b. In the present invention, the level of the waveform s is set to 4 to 6 so that the dielectric breakdown of the rotor gap 21 is possible and the discharge is impossible in the spark discharge gap of the spark plug 3.
Set to kilovolts.

【0020】逆流防止ダイオード22は、上記スパーク
プラグ3の静電容量に蓄えられた3〜5キロボルトの電
荷が、ローターギャップ21を飛び越えて点火コイル1
側に逆流し、2〜3キロボルトに降圧することを防止し
ている。これにより、配電器2のローターギャップ21
とスパークプラグ3の火花放電間隙との間の、主にスパ
ークプラグ3の静電容量(通常10〜20pF)に、3
〜5キロボルトの電荷が充電される。
The backflow prevention diode 22 is configured so that the charge of 3 to 5 kV stored in the capacitance of the spark plug 3 jumps over the rotor gap 21 and ignites the ignition coil 1.
Back to the side to prevent it from dropping to 2-3 kilovolts. Thereby, the rotor gap 21 of the distributor 2
Between the spark plug 3 and the spark discharge gap of the spark plug 3, mainly the capacitance (typically 10 to 20 pF) of the spark plug 3
A charge of ~ 5 kV is charged.

【0021】この充電電圧は、イオン電流となって放電
され減衰するが、図2のに示すごとく、空燃比が理論
空燃比である約15:1に近いときは、波形s2 のごと
く放電電流波形の巾のばらつきが小さい。これに対し、
空燃比が着火限界である23:1になると波形s1 のご
とく、放電電流波形の巾のばらつきは、極めて大きくな
る。このばらつきの度合いは、減衰特性検出回路6によ
りつぎのように検出する。分圧器5の出力波形から上記
充電電圧のピーク値をピークホールド回路61でホール
ドし、分圧回路62で例えばその1/3のレベルに分圧
し、該分圧を基準電圧vとして前記分圧器5の出力波形
と、コンパレータ63において比較する。
This charge voltage is discharged as an ionic current and attenuated. As shown in FIG. 2, when the air-fuel ratio is close to the stoichiometric air-fuel ratio of about 15: 1, the discharge current is represented by a waveform s 2. Small variation in waveform width. In contrast,
Air-fuel ratio is the ignition limit 23: as waveforms s 1 As the 1, variations in the width of the discharge current waveform becomes very large. The degree of this variation is detected by the attenuation characteristic detection circuit 6 as follows. From the output waveform of the voltage divider 5, the peak value of the charging voltage is held by a peak hold circuit 61 and divided by a voltage dividing circuit 62 to, for example, 1/3 of the level. And the comparator 63 compares the output waveform.

【0022】このコンパレータ63の出力パルスは、図
2のに示すごとく、基準電圧v以上の二次電圧の時間
を検出し、パルス波t1 〜t4 を制御回路7に出力す
る。パルス波t2 、t4 が上記充電電荷の減衰時間のば
らつきを示す。すなわち、安定運転の限界に近いパルス
波t2 のばらつきは大きい。制御回路7は、たとえば各
気筒ごとにパルス波t2 の連続した10個のパルス波t
2 の基準値からのばらつき量を積算し、積算量が一定値
以上のときは安定運転の限界が近いと判別する。この判
別情報に基づき燃料噴射装置301による燃料供給料を
調整し、気筒ごとに空燃比のリーン限界近くでの安定運
転を実行する。制御回路7は、暫定希薄空燃比20:1
を、各気筒の限界希薄空燃比の総和により決定される目
標希薄空燃比(たとえば22:1)に書き換えて、燃料
噴射装置301からの燃料噴射総量を制御する。
As shown in FIG. 2, the output pulse of the comparator 63 detects the time of the secondary voltage equal to or higher than the reference voltage v and outputs pulse waves t 1 to t 4 to the control circuit 7. The pulse waves t 2 and t 4 indicate variations in the decay time of the charge. That is, the variation of the pulse wave t 2 near the limit of the stable operation is large. The control circuit 7 controls, for example, ten consecutive pulse waves t 2 of the pulse wave t 2 for each cylinder.
The variation amount from the reference value of 2 is integrated, and when the integrated amount is equal to or more than a certain value, it is determined that the limit of stable operation is near. The fuel supply by the fuel injection device 301 is adjusted based on this discrimination information, and the stable operation near the lean limit of the air-fuel ratio is executed for each cylinder. The control circuit 7 has a provisional lean air-fuel ratio of 20: 1.
Is rewritten to a target lean air-fuel ratio (for example, 22: 1) determined by the sum of the limit lean air-fuel ratios of the cylinders, and the total fuel injection amount from the fuel injection device 301 is controlled.

【0023】請求項2に記載の燃焼制御はつぎのように
なされる。制御回路7は、運転条件に応じて予め計算又
は測定により求めた記憶装置に格納したデータに基づ
き、機関100に供給される空気と燃料の混合比(空燃
比)が設定した目標希薄空燃比となるよう、全領域空燃
比センサ201によりフィードバック制御しながら、全
ての燃料噴射装置301からの燃料噴射総量を制御す
る。
The combustion control according to the second aspect is performed as follows. The control circuit 7 sets the target lean air-fuel ratio to the set mixture ratio (air-fuel ratio) of air and fuel to be supplied to the engine 100 based on data stored in a storage device previously calculated or measured according to the operating conditions. In such a manner, the total amount of fuel injection from all the fuel injection devices 301 is controlled while performing feedback control by the full area air-fuel ratio sensor 201.

【0024】これと共に、各気筒ごとの空燃比のばらつ
きを前記燃焼状態検出装置500で検出し、各気筒ごと
のパルス波t2 の基準値からのばらつき量を積算し、各
気筒間のばらつきが少なくなるよう各燃料噴射装置30
1からの燃料噴射量を制御する。これにより、各気筒は
空燃比のばらつきが低減し、ほぼ同一条件で運転でき
る。
[0024] Along with this, detects a variation in air-fuel ratio for each cylinder in the combustion state detecting device 500, it integrates the variation amount from the reference value of the pulse wave t 2 of each cylinder, variations among the cylinders Each fuel injection device 30
The fuel injection amount from 1 is controlled. Thereby, the variation in the air-fuel ratio of each cylinder is reduced, and the cylinders can be operated under substantially the same conditions.

【0025】すなわち、制御回路7は、気筒間の空燃比
のばらつきを考慮して予め設定した理論空燃比よりリー
ンな目標希薄空燃比、たとえば22:1の空燃比となる
よう全ての燃料噴射装置301からの燃料供給総量を調
整し、機関100を燃焼制御する。この目標空燃比は全
領域空燃比センサ201で検出され目標値と差が生じな
いようにフィードバック制御される。これと共に、燃焼
状態検出装置500は、燃料供給総量はそのままで、気
筒間のばらつきのみを検出して調整する。
That is, the control circuit 7 controls all the fuel injection devices so that the target lean air-fuel ratio becomes leaner than the stoichiometric air-fuel ratio preset in consideration of the air-fuel ratio variation among the cylinders, for example, the air-fuel ratio of 22: 1. The combustion control of the engine 100 is performed by adjusting the total amount of fuel supply from the engine 301. This target air-fuel ratio is detected by the full-range air-fuel ratio sensor 201 and is subjected to feedback control so as not to cause a difference from the target value. At the same time, the combustion state detection device 500 detects and adjusts only the variation between cylinders without changing the total fuel supply amount.

【0026】上記実施例においては、空燃比が希薄の限
界でガソリン機関を運転する場合について述べたが、上
記と同様に冷間始動時における暖機運転中の空燃比制御
においても、安定運転の限界に近づけて空燃比制御する
ことが可能である。この場合には、暖機燃焼制御である
ため、みかけの空燃比はたとえば13:1などリッチ側
に制御される。この暖機空燃比制御においての、排気浄
化及び燃費の向上が達成できる。
In the above embodiment, the case where the gasoline engine is operated at the limit of the lean air-fuel ratio has been described. However, the air-fuel ratio control during the warm-up operation at the time of the cold start is the same as the above. It is possible to control the air-fuel ratio close to the limit. In this case, since the warm-up combustion control is performed, the apparent air-fuel ratio is controlled to a rich side such as 13: 1. In this warm-up air-fuel ratio control, purification of exhaust gas and improvement of fuel efficiency can be achieved.

【0027】請求項3に記載の理論燃焼制御を図3を用
いて説明する。この発明の制御回路7は、前記全領域空
燃比センサ201や理論空燃比より希薄側では排出ガス
中の酸素濃度が増加し、センサ出力電圧が急減すること
を利用した酸素センサを用い、検出された空気と燃料の
混合比(空燃比)が理論空燃比となるよう、全ての燃料
噴射装置301からの燃料噴射総量を制御することによ
りフィードバック制御する。このため、各気筒ごとの減
衰特性のばらつきは小さく、例えば図3のごとく空燃比
15:1や空燃比14.7:1などの気筒がある。請求
項2の燃焼制御と比べてばらつき量は著しく少ないた
め、各気筒ごとの減衰特性のばらつきは検出精度を充分
に上げることが必要となる。
The theoretical combustion control according to the third aspect will be described with reference to FIG. The control circuit 7 of the present invention uses the full-range air-fuel ratio sensor 201 or an oxygen sensor that utilizes the fact that the oxygen concentration in the exhaust gas increases on the leaner side than the stoichiometric air-fuel ratio and the sensor output voltage sharply decreases. Feedback control is performed by controlling the total amount of fuel injection from all the fuel injection devices 301 so that the mixture ratio of air and fuel (air-fuel ratio) becomes the stoichiometric air-fuel ratio. For this reason, the variation in the damping characteristics of each cylinder is small. For example, as shown in FIG. Since the variation amount is significantly smaller than that of the combustion control of the second aspect, it is necessary to sufficiently increase the detection accuracy for the variation in the damping characteristics of each cylinder.

【0028】フィールドバック制御と同時に、各気筒ご
との空燃比のばらつきを前記燃焼状態検出装置500で
検出する。このとき、パルス波t5 からのばらつき量や
パルス波t6 からばらつき量を積算し、これら各気筒間
のばらつきが少なくなるよう各燃料噴射装置301から
の燃料噴射量を制御する。これにより、各気筒は理論空
燃比により近い同一条件で、各気筒ごとの条件を細部ま
で近づけることができる。燃焼状態検出装置500は、
燃料供給総量はそのままで、気筒間のばらつきのみを、
各気筒のスパークプラグの浮遊静電容量に充電した電荷
の減衰特性のばらつき度合い(パルス波t5 、t6 )を
検出して調整する。
At the same time as the feedback control, the variation in the air-fuel ratio of each cylinder is detected by the combustion state detecting device 500. In this case, by integrating the variation amount from the amount of variation and the pulse wave t 6 from the pulse wave t 5, to control the fuel injection amount from the fuel injector 301 such that the variation between these cylinders is reduced. Thereby, the conditions for each cylinder can be brought close to the details under the same condition closer to the stoichiometric air-fuel ratio. The combustion state detection device 500 includes:
With the total fuel supply unchanged, only the variation between cylinders
The degree of variation (pulse waves t 5 , t 6 ) of the decay characteristic of the electric charge charged to the floating capacitance of the spark plug of each cylinder is detected and adjusted.

【0029】この燃焼制御は、排気の一部を再び吸気系
に戻して混合気に加える方法である排気再循環(EG
R)でも有効に利用できる。EGR率が気筒毎にばらつ
いているとエンジン運転の安定性を確保するためEGR
率を限界まで増すことはできなかった。EGR率より限
界近くまで増すために、各気筒ごとのばらつきを検出し
て各気筒へのEGR量を制御し、これによって、有効な
EGRを実施することができる。
This combustion control is a method of returning a part of the exhaust gas to the intake system again and adding it to the air-fuel mixture.
R) can also be used effectively. If the EGR rate varies from cylinder to cylinder, EGR is performed to ensure engine operation stability.
The rate could not be increased to the limit. In order to increase the EGR rate to near the limit, the variation of each cylinder is detected, and the EGR amount for each cylinder is controlled, whereby effective EGR can be performed.

【0030】また始動暖気運転では、低温時でのガソリ
ンの気化率の低下などのために供給燃料を増やして気化
率の不足分を量で補わなくてはならない。すなわち、低
温であればあるほど始動時には、みかけの空燃比を濃く
して実際の混合気が可燃範囲になるようにする必要があ
る。またエンジンが始動しても暖気状態に併せた空燃比
の減少が必要となる。このため、この発明の燃焼制御装
置によれば、各気筒ごとにばらついている空燃比を気温
やエンジンの暖気状態に併せた最適空燃比に調整するこ
とができる。
In the start-up warm-up operation, the supplied fuel must be increased to compensate for the shortage of the vaporization rate by increasing the amount of fuel supplied in order to lower the vaporization rate of gasoline at low temperatures. That is, it is necessary to increase the apparent air-fuel ratio at the time of starting as the temperature becomes lower, so that the actual air-fuel mixture becomes in the flammable range. Further, even when the engine is started, it is necessary to reduce the air-fuel ratio in accordance with the warm-up state. For this reason, according to the combustion control device of the present invention, the air-fuel ratio that varies for each cylinder can be adjusted to the optimum air-fuel ratio in accordance with the temperature and the warm state of the engine.

【0031】この発明において、一次回路11に電流を
所定のタイミングで流し、イオン電流検出電圧発生手段
は、上記一次電流断続手段4とは別に設けてもよく、二
次電圧の逆流防止手段は、デストリビュータ・レス・イ
グナイタ(DLI)では、点火タイミング以外に火花放
電が生じることを防止するため通常装着されている逆流
防止用ダイオードが、その機能を果たす。
In the present invention, a current is caused to flow through the primary circuit 11 at a predetermined timing, and the ion current detection voltage generating means may be provided separately from the primary current interrupting means 4. In the distributor-less igniter (DLI), a backflow prevention diode normally mounted to prevent the occurrence of spark discharge other than the ignition timing performs its function.

【0032】点火コイル1の極性は、プラス、マイナス
いずれでも使用でき、図2の、に示す二次電圧の極
性は、マイナスでも良いがプラスの方が測定時の検出精
度が向上できる。また、検出用パルスの発生時期は、エ
ンジンでのクランク角を基準にして、たとえば、ATD
C10°に設定すると、エンジンの回転速度など運転条
件の変化に対する精度が向上できる。
The polarity of the ignition coil 1 can be either positive or negative, and the polarity of the secondary voltage shown in FIG. 2 can be negative, but positive can improve the detection accuracy at the time of measurement. Further, the generation timing of the detection pulse is based on the crank angle of the engine, for example, ATD.
When the angle is set to C10 °, the accuracy with respect to changes in operating conditions such as the rotation speed of the engine can be improved.

【0033】請求項4に記載の燃焼状態検出装置500
を、図4および図5とともに説明する。この発明では、
図1における全領域空燃比センサ201に代えて、図4
に示す如く機関のクランク角速度を検出するクランク角
速度センサ8を備える。機関のクランク角速度は、図5
に示す如く、吸入混合気の空燃比が希薄になるほどばら
つきが大きく、空燃比A/Fが22を越えると機関の安
定運転ができなくなる。制御回路7は、クランク角速度
センサ8によりクランク角速度の変動が一定範囲内とな
り機関の安定運転が可能である希薄空燃比(たとえばA
/F=20)を、気筒間の空燃比のばらつきを考慮し、
余裕を持って暫定希薄空燃比として設定する。つぎに、
各気筒ごとの安定運転限界を燃焼状態検出装置500で
検出し、各燃料噴射装置301からの燃料噴射量を安定
運転限界に近い限界希薄空燃比まで希薄に調整して、前
記暫定希薄空燃比を各気筒の限界希薄空燃比により決定
される目標希薄空燃比に書き換えて制御することは、上
記実施例と同一である。
The combustion state detecting device 500 according to claim 4
Will be described with reference to FIG. 4 and FIG. In the present invention,
1. Instead of the full-range air-fuel ratio sensor 201 in FIG.
And a crank angular speed sensor 8 for detecting the crank angular speed of the engine as shown in FIG. The crank angular speed of the engine is shown in FIG.
As shown in the figure, the smaller the air-fuel ratio of the intake air-fuel mixture becomes, the larger the variation becomes. If the air-fuel ratio A / F exceeds 22, the engine cannot be operated stably. The control circuit 7 controls the lean air-fuel ratio (for example, A) to allow the crank angular speed sensor 8 to change the crank angular speed within a certain range and perform stable operation of the engine.
/ F = 20), taking into account the variation in air-fuel ratio between cylinders,
Set as the provisional lean air-fuel ratio with a margin. Next,
The stable operation limit of each cylinder is detected by the combustion state detection device 500, and the fuel injection amount from each fuel injection device 301 is adjusted to be lean to the limit lean air-fuel ratio close to the stable operation limit. Rewriting and controlling the target lean air-fuel ratio determined by the limit lean air-fuel ratio of each cylinder is the same as in the above embodiment.

【0034】請求項5に記載の燃焼状態検出装置500
を、図6および図7とともに説明する。この発明では、
上記クランク角速度センサ8に代えて、図6に示す如く
気筒内の燃焼圧力を検出する燃焼圧力センサ9を備え
る。気筒内の燃焼圧力は、図7に示す如く、吸入混合気
の空燃比が希薄になるほどばらつきが大きく、空燃比A
/Fが22を越えると機関の安定運転ができなくなる。
制御回路7は、燃焼圧力センサ9によりクランク角速度
の変動が一定範囲内となり機関の安定運転が可能である
希薄空燃比(たとえばA/F=20)を、気筒間の空燃
比のばらつきを考慮し、余裕を持って暫定希薄空燃比と
して設定する。つぎに、各気筒ごとの安定運転限界を燃
焼状態検出装置500で検出し、各燃料噴射装置301
からの燃料噴射量を安定運転限界に近い限界希薄空燃比
まで希薄に調整して、前記暫定希薄空燃比を各気筒の限
界希薄空燃比により決定される目標希薄空燃比に書き換
えて制御することは、上記実施例と同一である。なお燃
焼圧力センサ9は、スパークプラグに組み込まれるか、
スパークプラグと独立した圧力センサプラグ型式の公知
のセンサが利用できる。
A combustion state detecting device 500 according to claim 5.
Will be described with reference to FIGS. 6 and 7. FIG. In the present invention,
Instead of the crank angular velocity sensor 8, a combustion pressure sensor 9 for detecting the combustion pressure in the cylinder is provided as shown in FIG. As shown in FIG. 7, the combustion pressure in the cylinder varies greatly as the air-fuel ratio of the intake air-fuel mixture becomes leaner.
When / F exceeds 22, stable operation of the engine cannot be achieved.
The control circuit 7 determines a lean air-fuel ratio (for example, A / F = 20) at which the fluctuation of the crank angular velocity is within a certain range by the combustion pressure sensor 9 and the engine can be operated stably, in consideration of the variation of the air-fuel ratio between cylinders. , With a margin, set as the provisional lean air-fuel ratio. Next, the stable operation limit of each cylinder is detected by the combustion state detection device 500, and the fuel injection device 301
It is necessary to adjust the fuel injection amount from the target lean air-fuel ratio to a limit lean air-fuel ratio close to the stable operation limit, and rewrite and control the provisional lean air-fuel ratio to a target lean air-fuel ratio determined by the limit lean air-fuel ratio of each cylinder. , Are the same as in the above embodiment. The combustion pressure sensor 9 is incorporated in a spark plug,
A known sensor of the pressure sensor plug type independent of the spark plug can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の燃焼状態検出装置を装着したガソリ
ン機関の点火回路図である。
FIG. 1 is an ignition circuit diagram of a gasoline engine equipped with a combustion state detecting device of the present invention.

【図2】燃焼状態検出装置の作動説明のための波形図で
ある。
FIG. 2 is a waveform diagram for explaining the operation of the combustion state detecting device.

【図3】燃焼状態検出装置の作動説明のための波形図で
ある。
FIG. 3 is a waveform diagram for explaining the operation of the combustion state detecting device.

【図4】請求項4に記載の燃焼状態検出装置を示す点火
回路図である。
FIG. 4 is an ignition circuit diagram showing a combustion state detection device according to a fourth embodiment.

【図5】クランク角変動を示す波形図である。FIG. 5 is a waveform chart showing crank angle fluctuation.

【図6】請求項5に記載の燃焼状態検出装置を示す点火
回路図である。
FIG. 6 is an ignition circuit diagram showing a combustion state detecting device according to claim 5;

【図7】燃焼圧力の変動を示す波形図である。FIG. 7 is a waveform diagram showing a change in combustion pressure.

【符号の説明】[Explanation of symbols]

1 点火コイル 2 配電器 3 スパークプラグ 4 一次電流断続手段(イオン電流検出電圧発生手段) 5 分圧器 6 減衰特性検出回路 7 制御回路 8 クランク角度センサ 9 燃焼圧力センサ 12 二次回路 22 逆流防止用ダイオード(逆流防止手段) 100 ガソリン機関 200 排気路 300 吸気路 400 点火装置 500 燃焼状態検出装置 201 全領域空燃比センサ 301 燃料噴射装置 DESCRIPTION OF SYMBOLS 1 Ignition coil 2 Distributor 3 Spark plug 4 Primary current intermittent means (ion current detection voltage generating means) 5 Voltage divider 6 Damping characteristic detection circuit 7 Control circuit 8 Crank angle sensor 9 Combustion pressure sensor 12 Secondary circuit 22 Backflow prevention diode (Backflow prevention means) 100 Gasoline engine 200 Exhaust path 300 Intake path 400 Ignition device 500 Combustion state detection device 201 Full-range air-fuel ratio sensor 301 Fuel injection device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 康生 名古屋市瑞穂区高辻町14番18号 日本特 殊陶業株式会社内 (56)参考文献 特開 昭60−187724(JP,A) 特開 昭59−46352(JP,A) 特公 昭60−50973(JP,B2) (58)調査した分野(Int.Cl.6,DB名) F02D 41/00 - 41/40 F02D 45/00 362 F02P 17/00 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yasuo Ito 14-18, Takatsuji-cho, Mizuho-ku, Nagoya Japan Special Ceramics Co., Ltd. (56) References JP-A-60-187724 (JP, A) JP-A Sho 59-46352 (JP, A) JP-B-60-50973 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) F02D 41/00-41/40 F02D 45/00 362 F02P 17 / 00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 機関の排気路に装着され、排気中の残存
酸素量及び可燃性分量から空燃比の全領域において吸入
混合気の空燃比を検出する全領域空燃比センサと、 点火回路の二次回路の点火コイルとスパークプラグとの
間に設けた逆流防止手段、 スパークプラグでの火花放電後の所定時期に所定時間、
点火コイルの一次回路に通電し、二次回路に起電力を発
生させてスパークプラグの浮遊静電容量に充電するイオ
ン電流検出電圧発生手段、 スパークプラグの電極間の二次電圧を分圧する分圧器、 該分圧器に接続された二次電圧の減衰特性検出回路、 及び設定期間に検出した二次電圧の減衰特性の変動の度
合いを判別する判別回路からなる燃焼状態検出装置と、 各気筒ごとに設けた燃料噴射装置と、 運転条件に応じて予め設定した暫定希薄空燃比となるよ
う、前記全領域空燃比センサによりフィードバック制御
しながら、前記全ての燃料噴射装置からの燃料噴射量を
制御すると共に、各気筒ごとの安定運転限界を前記燃焼
状態検出装置で検出し、各燃料噴射装置からの燃料噴射
量を安定運転限界に近い限界希薄空燃比まで希薄に調整
して、前記暫定希薄空燃比を各気筒の限界希薄空燃比に
より決定される目標希薄空燃比に書き換えて制御する制
御回路とからなるガソリン機関の燃焼制御装置。
An ignition circuit for detecting an air-fuel ratio of an intake air-fuel mixture in an entire air-fuel ratio region based on a residual oxygen amount and a flammable amount in exhaust gas; Backflow prevention means provided between the ignition coil of the next circuit and the spark plug, for a predetermined time at a predetermined time after spark discharge in the spark plug,
Ion current detection voltage generating means for energizing the primary circuit of the ignition coil and generating an electromotive force in the secondary circuit to charge the floating capacitance of the spark plug, a voltage divider for dividing the secondary voltage between the electrodes of the spark plug A combustion state detection device comprising: a secondary voltage attenuation characteristic detection circuit connected to the voltage divider; and a determination circuit for determining the degree of variation of the secondary voltage attenuation characteristic detected during the set period. The fuel injection device provided, while controlling the fuel injection amount from all the fuel injection devices while performing feedback control by the full-range air-fuel ratio sensor so that the provisional lean air-fuel ratio is set in advance according to the operating conditions. The stable operation limit of each cylinder is detected by the combustion state detection device, and the fuel injection amount from each fuel injection device is adjusted lean to a limit lean air-fuel ratio close to the stable operation limit, Serial combustion control device for a gasoline engine comprising a provisional lean air-fuel ratio and a control circuit for controlling rewriting the target lean air-fuel ratio which is determined by limiting lean air-fuel ratio of each cylinder.
【請求項2】 請求項1において、制御回路は、運転条
件に応じて予め設定した目標希薄空燃比となるよう、前
記全領域空燃比センサによりフィードバック制御しなが
ら、前記全ての燃料噴射装置からの燃料噴射総量を制御
すると共に、各気筒ごとの運転状態を燃焼状態検出装置
で検出し、各燃料噴射装置からの燃料噴射量を各気筒の
運転状態が同程度となるよう制御するガソリン機関の燃
焼制御装置。
2. The control circuit according to claim 1, wherein the control circuit performs feedback control by the full-range air-fuel ratio sensor so as to attain a target lean air-fuel ratio set in advance according to an operating condition. Combustion of a gasoline engine that controls the total amount of fuel injection, detects the operating state of each cylinder with a combustion state detector, and controls the amount of fuel injected from each fuel injector so that the operating state of each cylinder is comparable Control device.
【請求項3】 請求項1において、空燃比センサは、排
気中の残存酸素量及び可燃性分量から、空燃比の全領域
において吸入混合気の空燃比を検出する全領域空燃比セ
ンサであるか又は理論空燃比以上であるか否かを検出す
る酸素センサであり、 制御回路は、吸入混合気が理論空燃比となるよう、前記
空燃比センサによりフィードバック制御しながら、前記
全ての燃料噴射装置からの燃料噴射総量を制御すると共
に、各気筒ごとの運転状態を燃焼状態検出装置で検出
し、各燃料噴射装置からの燃料噴射量を各気筒の運転状
態が同程度となるよう制御するガソリン機関の燃焼制御
装置。
3. The air-fuel ratio sensor according to claim 1, wherein the air-fuel ratio sensor detects the air-fuel ratio of the intake air-fuel mixture in the entire air-fuel ratio region from the remaining oxygen amount and the flammable amount in the exhaust gas. Or an oxygen sensor that detects whether or not the stoichiometric air-fuel ratio is greater than or equal to. In addition to controlling the total amount of fuel injection, the operating state of each cylinder is detected by a combustion state detector, and the amount of fuel injected from each fuel injector is controlled so that the operating state of each cylinder is substantially the same. Combustion control device.
【請求項4】 請求項1において、全領域空燃比センサ
に代えて機関のクランク角速度の変化を検出するクラン
ク角速度センサを備え、 制御回路は、前記クランク角速度センサにより検出した
クランク角速度のばらつきの範囲が一定値以下となるよ
う、吸入混合気の空燃比を運転条件に応じて予め設定し
た暫定希薄空燃比にフィードバック制御しながら、前記
全ての燃料噴射装置からの燃料噴射量を制御すると共
に、各気筒ごとの安定運転限界を燃焼状態検出装置で検
出し、各燃料噴射装置からの燃料噴射量を安定運転限界
に近い限界希薄空燃比まで希薄に調整して、前記暫定希
薄空燃比を各気筒の限界希薄空燃比により決定される目
標希薄空燃比に書き換えて制御するガソリン機関の燃焼
制御装置。
4. A crank angular velocity sensor according to claim 1, further comprising: a crank angular velocity sensor for detecting a change in crank angular velocity of the engine, instead of the full area air-fuel ratio sensor; While controlling the air-fuel ratio of the intake air-fuel mixture to a provisional lean air-fuel ratio set in advance according to the operating conditions while controlling the fuel injection amount from all the fuel injection devices, The stable operation limit of each cylinder is detected by the combustion state detection device, and the fuel injection amount from each fuel injection device is adjusted lean to the limit lean air-fuel ratio close to the stable operation limit, and the provisional lean air-fuel ratio of each cylinder is adjusted. A combustion control device for a gasoline engine that rewrites and controls a target lean air-fuel ratio determined by a limit lean air-fuel ratio.
【請求項5】 請求項1において、全領域空燃比センサ
に代えて機関の気筒内の燃焼圧力センサを備え、 制御回路は、前記燃焼圧力センサにより検出した燃焼圧
力のばらつきの範囲が一定値以下となるよう、吸入混合
気の空燃比を運転条件に応じて予め設定した暫定希薄空
燃比にフィードバック制御しながら、前記全ての燃料噴
射装置からの燃料噴射量を制御すると共に、各気筒ごと
の安定運転限界を燃焼状態検出装置で検出し、各燃料噴
射装置からの燃料噴射量を安定運転限界に近い限界希薄
空燃比まで希薄に調整して、前記暫定希薄空燃比を各気
筒の限界希薄空燃比により決定される目標希薄空燃比に
書き換えて制御するガソリン機関の燃焼制御装置。
5. A combustion pressure sensor according to claim 1, further comprising a combustion pressure sensor in the cylinder of the engine instead of the full range air-fuel ratio sensor, wherein the control circuit has a range of variation of the combustion pressure detected by the combustion pressure sensor which is equal to or less than a predetermined value. While controlling the air-fuel ratio of the intake air-fuel mixture to the provisional lean air-fuel ratio set in advance according to the operating conditions, the amount of fuel injection from all the fuel injection devices is controlled, and the stability of each cylinder is controlled. The operating limit is detected by the combustion state detecting device, and the fuel injection amount from each fuel injection device is adjusted to be lean to the limit lean air-fuel ratio close to the stable operating limit, and the provisional lean air-fuel ratio is set to the limit lean air-fuel ratio of each cylinder. A combustion control device for a gasoline engine that controls by rewriting to a target lean air-fuel ratio determined by the following equation.
JP4174398A 1991-07-25 1992-07-01 Gasoline engine combustion control device Expired - Fee Related JP2914825B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19920311273 EP0546827B1 (en) 1991-12-10 1992-12-10 A combustion condition detecting and control device for an internal combustion engine
US07/988,842 US5253627A (en) 1991-12-10 1992-12-10 Burning condition detecting device and burning control device in an internal combustion engine
DE69218900T DE69218900T2 (en) 1991-12-10 1992-12-10 Condition detection and control device for combustion for an internal combustion engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP18620991 1991-07-25
JP3-186209 1992-03-11
JP4-52041 1992-03-11
JP5204192 1992-03-11

Publications (2)

Publication Number Publication Date
JPH05312081A JPH05312081A (en) 1993-11-22
JP2914825B2 true JP2914825B2 (en) 1999-07-05

Family

ID=26392647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4174398A Expired - Fee Related JP2914825B2 (en) 1991-07-25 1992-07-01 Gasoline engine combustion control device

Country Status (1)

Country Link
JP (1) JP2914825B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749171B2 (en) * 2006-02-06 2011-08-17 ダイハツ工業株式会社 Air-fuel ratio determination method for internal combustion engine based on ion current
FR2915241B1 (en) 2007-04-19 2009-06-05 Renault Sas INTERNAL COMBUSTION ENGINE WITH REGULATION OF FUEL INJECTION QUANTITY AND METHOD FOR PRODUCING FUEL INJECTION SET VALUE.
JP6272003B2 (en) * 2013-12-19 2018-01-31 日立オートモティブシステムズ株式会社 Engine control device
CN111121014B (en) * 2019-12-20 2025-05-27 苏州环邦检测科技有限公司 Exhaust after-processor fatigue test combustion system with adaptive ignition position

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946352A (en) * 1982-09-10 1984-03-15 Toyota Motor Corp Method of reducing engine roughness by way of air-fuel ratio control
JPH0658970B2 (en) * 1983-08-31 1994-08-03 工業技術院長 Semiconductor device
JPS60187724A (en) * 1984-03-08 1985-09-25 Nissan Motor Co Ltd Controlling device of air-fuel ratio in internal-combustion engine

Also Published As

Publication number Publication date
JPH05312081A (en) 1993-11-22

Similar Documents

Publication Publication Date Title
US4621599A (en) Method and apparatus for operating direct injection type internal combustion engine
US6360587B1 (en) Pre-ignition detector
US5803047A (en) Method of control system for controlling combustion engines
US6032650A (en) Method for closed-loop control of injection timing in combustion engines
US4184460A (en) Electronically-controlled fuel injection system
EP0847495B1 (en) Method for ignition control in combustion engines
AU6663098A (en) Apparatus and method for controlling air/fuel ratio using ionization measurements
CN113825900B (en) Control device for internal combustion engine
US6176216B1 (en) Ignition control for fuel direct injection type engine
JP2019210827A (en) Controller for internal combustion engine
JP3338624B2 (en) Device for detecting combustion state of internal combustion engine
JP2914825B2 (en) Gasoline engine combustion control device
US5253627A (en) Burning condition detecting device and burning control device in an internal combustion engine
JP2572494B2 (en) Gasoline engine combustion state and spark miss detection device
US5048486A (en) Ignition circuit with timing control
EP0546827B1 (en) A combustion condition detecting and control device for an internal combustion engine
JP2525979B2 (en) Gasoline engine combustion condition detector
JPH0437264B2 (en)
JP4914547B2 (en) Method for operating a direct injection gasoline driven internal combustion engine
JPH05164033A (en) Misfire detection device for internal combustion engine
JP3471373B2 (en) Gasoline engine combustion control device
JP3184466B2 (en) Ignition device for internal combustion engine provided with ion current detection device
KR100300705B1 (en) How to prevent backfire of LPI engine
JP6537317B2 (en) Control device for internal combustion engine
JP2823976B2 (en) Spark plug insulation reduction and combustion state detection device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees