Nothing Special   »   [go: up one dir, main page]

JP2911101B2 - Underground excavator position detection method - Google Patents

Underground excavator position detection method

Info

Publication number
JP2911101B2
JP2911101B2 JP28949094A JP28949094A JP2911101B2 JP 2911101 B2 JP2911101 B2 JP 2911101B2 JP 28949094 A JP28949094 A JP 28949094A JP 28949094 A JP28949094 A JP 28949094A JP 2911101 B2 JP2911101 B2 JP 2911101B2
Authority
JP
Japan
Prior art keywords
excavator
detecting
weight
approach
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28949094A
Other languages
Japanese (ja)
Other versions
JPH08145671A (en
Inventor
哲樹 菊地
峯 石坂
信行 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP28949094A priority Critical patent/JP2911101B2/en
Publication of JPH08145671A publication Critical patent/JPH08145671A/en
Application granted granted Critical
Publication of JP2911101B2 publication Critical patent/JP2911101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Earth Drilling (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、地下掘削機(以下、掘
削機という場合がある。)の位置検出方法及び装置に関
し、とくに地表から吊下げられ鉛直に掘削する地下掘削
機の位置検出方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for detecting the position of an underground excavator (hereinafter sometimes referred to as an excavator), and more particularly to a method of detecting the position of an underground excavator suspended from the ground surface and excavating vertically. And an apparatus.

【0002】[0002]

【従来の技術】図7に従来の下げ振り式地下掘削機の位
置検出方法の一例を示す。地下掘削機1は、その頂面2
に接続した吊りワイヤ5により地表3から重力方向に吊
下げられ鉛直に竪孔8を掘削する。実際には、地層の硬
軟によって先端が水平方向にずれ掘削機1の姿勢が鉛直
から離れ、竪孔8の鉛直性が損われることがある。鉛直
性確保のため、掘削機1上の二点の位置を検出してそれ
らの位置から掘削機姿勢を算出し、掘削機1に対し所要
の姿勢又は位置の修正を加えることが行われている。図
7は、かかる二点のうち一方の点の位置測定方法を示
し、他方の点についても同様な測定が可能である。テン
プレートTにより地表3の基準点7から重錘9を計測用
ワイヤ6によって吊下げる。図中R1、R2は吊りワイヤ
5及び計測用ワイヤ6に対するワイヤリールである。図
7(A)及び図7(B)を参照するに、吊下げられた重錘9
を囲むべき掘削機1の頂面2上の位置にセンサー筒40を
固定し、掘削機1上の座標軸X−X及びY−Y方向にお
ける重錘9の位置検出のため、2組の渦電流センサー41
a、41b及び41c、41dをセンサー筒40の側壁上に設ける。
地表3における二つの基準点7に対する掘削機1上の二
つの対応するセンサー筒40の位置を測定すれば、掘削機
1の姿勢は計算可能であり、例えば計算機Cによりその
計算を行いその計算結果をディスプレイDに表示するこ
とができる。
2. Description of the Related Art FIG. 7 shows an example of a conventional method of detecting the position of a down swing type underground excavator. Underground excavator 1 has its top surface 2
Is suspended in the direction of gravity from the ground surface 3 by the suspending wire 5 connected to the ground, and the pit 8 is excavated vertically. In practice, the tip of the excavator 1 may be displaced from the vertical direction due to the hardness of the stratum, and the verticality of the pit 8 may be impaired. In order to ensure the verticality, the position of two points on the excavator 1 is detected, the excavator posture is calculated from those positions, and the required posture or position of the excavator 1 is corrected. . FIG. 7 shows a method for measuring the position of one of the two points, and the same measurement can be performed for the other point. The weight 9 is hung from the reference point 7 on the ground surface 3 by the measurement wire 6 using the template T. In the drawing, R 1 and R 2 are wire reels for the suspension wire 5 and the measurement wire 6. Referring to FIGS. 7A and 7B, the suspended weight 9
The sensor tube 40 is fixed at a position on the top surface 2 of the excavator 1 to surround the excavator 1, and two sets of eddy currents for detecting the position of the weight 9 in the coordinate axes XX and YY directions on the excavator 1 Sensor 41
a, 41b and 41c, 41d are provided on the side wall of the sensor tube 40.
If the positions of the two corresponding sensor tubes 40 on the excavator 1 with respect to the two reference points 7 on the ground surface 3 are measured, the attitude of the excavator 1 can be calculated. For example, the calculation is performed by the computer C and the calculation result is obtained. Can be displayed on the display D.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の地
下掘削機の位置検出方法には次の欠点がある。 (1)掘削中にセンサー筒40又は渦電流センサー41が竪孔
8の側壁又は排出土に当り破損することがある。 (2)破損防止のためセンサー筒40を掘削機1中の枠体の
内部に取付けることも考えられるが、これでは渦電流セ
ンサー41の磁界が周辺の金属の影響を受けて測定誤差の
原因となる。 (3)渦電流センサー41によっては正確な測定が困難であ
る。例えば重錘9の位置を10cmのオーダーで正確に測定
しようとすると、そのセンサーのコイルが大きくなりセ
ンサー筒40も大型化し、また重錘9も重さ100kg、高さ
1m程度となり、コスト高となるだけでなく、取扱も不
便になる。
However, the conventional method for detecting the position of an underground excavator has the following disadvantages. (1) During excavation, the sensor cylinder 40 or the eddy current sensor 41 may hit the side wall of the vertical hole 8 or the discharged soil and be damaged. (2) It is conceivable to mount the sensor tube 40 inside the frame of the excavator 1 in order to prevent damage. However, in this case, the magnetic field of the eddy current sensor 41 is affected by the surrounding metal and causes a measurement error. Become. (3) Depending on the eddy current sensor 41, accurate measurement is difficult. For example, to accurately measure the position of the weight 9 on the order of 10 cm, the coil of the sensor becomes large, the sensor cylinder 40 also becomes large, and the weight 9 also weighs 100 kg and the height is about 1 m. In addition, it becomes inconvenient to handle.

【0004】従って本発明の目的は、小形で正確な地下
掘削機の位置検出方法及び装置の提供にある。
Accordingly, it is an object of the present invention to provide a small and accurate underground excavator position detecting method and apparatus.

【0005】[0005]

【課題を解決するための手段】図1の実施例を参照する
に、本発明の地下掘削機の位置検出方法によれば、地表
3より吊下げられて鉛直に掘削する地下掘削機1の位置
を検出する方法において、掘削機上座標が既知である掘
削機1上の複数部位に重錘9の接近に応じた大きさの感
応出力を発生する複数の接近感知素子11を行列状に位置
決めして予め固定し、地表3の基準点7から地下掘削機
1の直上まで接近感知素子11の間隔に比し小径である重
錘9を吊下げ、重錘9に対する一つ以上の接近感知素子
11からの感応出力を検出し、検出された感応出力及び当
該感応出力を発生した接近感知素子11の掘削機上座標と
から地表基準点7に対する掘削機1の位置を検出する。
With reference to the embodiment of FIG. 1, according to the method of detecting the position of an underground excavator of the present invention, the position of the underground excavator 1 suspended from the ground surface 3 and excavated vertically. In the method of detecting the weight , the sense of the size according to the approach of the weight 9 to a plurality of portions on the excavator 1 whose coordinates on the excavator are known .
Multiple proximity sensing elements 11 that generate response outputs are arranged in a matrix.
Decided and fixed in advance, underground excavator from reference point 7 on surface 3
The weight that is smaller in diameter than the distance between the proximity sensing elements 11 up to just above
The weight 9 is suspended, and one or more proximity sensing elements with respect to the weight 9
The sensing output from the excavator 11 is detected, and the position of the excavator 1 with respect to the ground reference point 7 is detected from the detected sensing output and the coordinates on the excavator of the proximity sensing element 11 that generated the sensing output.

【0006】好ましくは、重錘9を磁石とし、接近検出
素子11をホール素子又は磁気抵抗素子とする。
Preferably, the weight 9 is a magnet, and the approach detection element 11 is a Hall element or a magnetoresistive element.

【0007】[0007]

【作用】本発明の作用を、図1に示す実施例により説明
する。この例では、接近感知素子11をホール素子とし、
複数の接近検知素子11を位置検出ユニット20上に格子状
配列で取付けた上で掘削機1に固定し、それぞれ磁石10
を有する二つの重錘9を二つの基準位置7A、7Bが設けら
れた吊下げユニット4から吊下げているが、本発明はこ
の例に限定されない。
The operation of the present invention will be described with reference to the embodiment shown in FIG. In this example, the approach sensing element 11 is a Hall element,
A plurality of approach detection elements 11 are mounted on the position detection unit 20 in a grid-like arrangement, and are fixed to the excavator 1.
Are suspended from the suspension unit 4 provided with the two reference positions 7A and 7B, but the present invention is not limited to this example.

【0008】地表3の基準点7から地下掘削機1の直上
まで吊下げた重錘9は基準点7の鉛直下方にあるから、
基準点7の地表における平面座標はこの重錘9の地表に
平行な平面座標においても維持される。例えば複数の接
近感知素子11が掘削機1上に図2のように5行5列の格
子状配列で固定され、C行第3列の接近感知素子11とC
行第4列の接近感知素子11とが等しい出力を発生し且つ
周辺の他の接近感知素子11の出力がC行に関して対称で
あったとすると、重錘9はC行上の第3列と第4列との
中央にあることを検知できる。ところで、各接近感知素
子11の地下掘削機1に対する座標は既知であるから、C
行上の第3列と第4列との中央の点が基準点7の地表に
おける平面座標にあることに基づき、基準点7に対する
掘削機1の座標及び掘削機1の地表における平面座標を
正確に検出することができる。
Since the weight 9 suspended from the reference point 7 on the ground surface 3 to just above the underground excavator 1 is vertically below the reference point 7,
The plane coordinates of the reference point 7 on the ground surface are also maintained on the plane coordinates of the weight 9 parallel to the ground surface. For example, a plurality of approach sensing elements 11 are fixed on the excavator 1 in a grid-like arrangement of 5 rows and 5 columns as shown in FIG.
Assuming that the proximity sensing element 11 in the row and the fourth column generates the same output and the outputs of the other proximity sensing elements 11 in the vicinity are symmetric with respect to the row C, the weight 9 is in the same position as the third column on the row C and the third column. It can be detected that it is at the center between the four rows. By the way, since the coordinates of each approach sensing element 11 with respect to the underground excavator 1 are known, C
Based on the fact that the center point between the third and fourth columns on the row is at the plane coordinates of the reference point 7 on the ground, the coordinates of the excavator 1 relative to the reference point 7 and the plane coordinates of the excavator 1 on the ground are accurate. Can be detected.

【0009】複数の接近感知素子11が格子状に配列され
ない場合であっても、各接近感知素子11の掘削機上座標
と各接近感知素子11の出力とが知られれば、補間法によ
り重錘9の掘削機座標上位置を検出することができるの
で、基準点7に対する掘削機1の位置を検出できる。し
かも本発明は例えば低コストで製作される磁石やホール
素子で形成することが可能であり、しかも渦電流センサ
ーにおけるような大型コイルを使わない。
Even when a plurality of proximity sensing elements 11 are not arranged in a grid, if the coordinates of each proximity sensing element 11 on the excavator and the output of each proximity sensing element 11 are known, the weight is calculated by interpolation. Since the position on the excavator coordinates of the excavator 9 can be detected, the position of the excavator 1 with respect to the reference point 7 can be detected. In addition, the present invention can be formed by, for example, a magnet or a Hall element manufactured at low cost, and does not use a large coil as in an eddy current sensor.

【0010】こうして、本発明の目的である「小形で正
確な地下掘削機の位置検出方法及び装置の提供」が達成
される。
In this manner, the object of the present invention is to provide "a method and apparatus for detecting the position of a small and accurate underground excavator".

【0011】[0011]

【実施例】図1の実施例では、地下掘削機1の頂面2上
に一定間隔を隔てた二つの参照点17を設け、各参照点17
及びその近傍で掘削機上座標が既知である地下掘削機1
上の複数部位にホール素子からなる接近感知素子11を格
子状に固定する。各接近検知素子11の出力の検知の便宜
上、全ての接近検知素子11を以下に説明する図6の位置
検出ユニット20に組込んだ後掘削機1に取付けてもよ
い。接近感知素子11としては、ホール素子に替えて磁気
抵抗素子又は他の重錘近接に感応する素子を使うことが
できる。地表3に前記一定間隔を隔てた二つの基準点7
A、7Bを設け、それらの基準点7A、7Bから重錘9をそれ
ぞれ吊下げる。図示例では、計測用ワイヤ6貫通のため
に穿った穴を有する吊下げユニット4を用い、その穴の
位置によって基準点7A、7Bを定める。計測ワイヤ貫通穴
に深度センサー15を設け、計測用ワイヤ6の繰出し長さ
の測定値から重錘9の深度を検出する。ただし重錘9の
深度検出方法は、計測用ワイヤ6の繰出し長さ利用のも
のに限定されない。各重錘9に対し一以上の接近感知素
子11からの感応出力を検出し、検出された接近感知素子
11の掘削機上座標から基準点7A、7Bに対する各参照点17
の三次元位置を検出することにより前記掘削機の位置及
び姿勢を計測する。
In the embodiment shown in FIG. 1, two reference points 17 are provided on the top surface 2 of the underground excavator 1 at regular intervals.
Underground excavator 1 whose coordinates on the excavator are known in the vicinity of the excavator
An approach sensing element 11 composed of a Hall element is fixed in a lattice shape to a plurality of upper portions. For convenience of detecting the output of each approach detection element 11, all the approach detection elements 11 may be incorporated into the position detection unit 20 of FIG. As the approach sensing element 11, a magnetoresistive element or another element sensitive to the proximity of the weight can be used instead of the Hall element. The two reference points 7 separated by a fixed distance on the ground surface 7
A and 7B are provided, and the weight 9 is suspended from the reference points 7A and 7B. In the illustrated example, the suspension unit 4 having a hole drilled for penetrating the measurement wire 6 is used, and the reference points 7A and 7B are determined according to the position of the hole. A depth sensor 15 is provided in the measurement wire through hole, and the depth of the weight 9 is detected from the measured value of the extension length of the measurement wire 6. However, the method of detecting the depth of the weight 9 is not limited to the method using the extension length of the measurement wire 6. Sensitive output from one or more proximity sensing elements 11 is detected for each weight 9, and the detected proximity sensing elements are detected.
Each reference point 17 for reference points 7A and 7B from 11 excavator coordinates
The position and orientation of the excavator are measured by detecting the three-dimensional position of the excavator.

【0012】図2は、格子状に配列した複数の接近感知
素子11の出力の分布から重錘9の位置を検出する方式の
実施例を示す。
FIG. 2 shows an embodiment of a system for detecting the position of the weight 9 from the output distribution of the plurality of proximity sensing elements 11 arranged in a lattice.

【0013】次に9個のホール素子からなる接近感知素
子11を例えば10cmの素子間間隔で図3のC行と第3列に
十文字状に配列した位置検出ユニット20の実施例を示
す。重錘9の磁石10が図3(B)の第2列でB行とC行と
の間にある場合を検討する。ホール素子の出力は磁界に
比例するので、磁石10とホール素子との間の距離の減少
に応じて増大し、磁石に最も近いホール素子の出力が最
も大きくなる。図4(A)は図3(B)の行と列の座標系に
おける磁石付き重錘9の位置を示し、図4(B)は第3列
の直線上の接近検知素子11の出力をプロットした分布を
示し、図4(C)はC行の直線上の接近検知素子11の出力
をプロットした分布を示す。
Next, an embodiment of the position detecting unit 20 in which the approach sensing elements 11 composed of nine Hall elements are arranged in a cross shape in the C row and the third column of FIG. Consider the case where the magnet 10 of the weight 9 is located between the B and C rows in the second column of FIG. 3B. Since the output of the Hall element is proportional to the magnetic field, it increases as the distance between the magnet 10 and the Hall element decreases, and the output of the Hall element closest to the magnet becomes the largest. 4 (A) shows the position of the weight 9 with magnet in the coordinate system of the rows and columns of FIG. 3 (B), and FIG. 4 (B) plots the output of the approach detection element 11 on the straight line of the third column. FIG. 4C shows a distribution obtained by plotting the output of the approach detection element 11 on a straight line in the C-th row.

【0014】図5は、図4(B)の接近検知素子出力値を
補間法により結んでカーブとし、同様に図4(C)の接近
検知素子出力値を補間法により結んでカーブとし、両カ
ーブのピーク値を通り且つ行及び列に平行な直線の交点
として重錘9の掘削機座標を測定する原理を示す。重錘
9の掘削機座標を測定すれば、既に説明したように地表
3の基準点7に対する掘削機1の位置を検出できる。
FIG. 5 shows a curve obtained by connecting the output values of the approach detection elements shown in FIG. 4B by an interpolation method. Similarly, a curve obtained by connecting the output values of the approach detection elements shown in FIG. 4C by an interpolation method. The principle of measuring the excavator coordinates of the weight 9 as the intersection of straight lines passing through the peak value of the curve and parallel to the rows and columns is shown. By measuring the excavator coordinates of the weight 9, the position of the excavator 1 with respect to the reference point 7 on the ground surface 3 can be detected as described above.

【0015】図6の位置検出ユニット20のマルチプレク
サ22は、制御電流発生部30からの電流Iを順次各ホール
素子即ち接近感知素子11に加えると共に当該接近感知素
子11の出力電圧Ehをレベル検知部26に与える。図示例
では、増幅器25による増幅後の電圧をレベル検知部26に
加える。マルチプレクサ制御部32は、マルチプレクサ22
の切替えにより、制御電流I及び出力電圧Ehの接続を
各接近感知素子11に順次切り替えるものである。
The multiplexer 22 of the position detecting unit 20 shown in FIG. 6 sequentially applies the current I from the control current generating unit 30 to each of the hall elements, that is, the approach sensing element 11, and outputs the output voltage Eh of the approach sensing element 11 to the level sensing unit. Give to 26. In the illustrated example, the voltage amplified by the amplifier 25 is applied to the level detector 26. The multiplexer control unit 32 controls the multiplexer 22
, The connection between the control current I and the output voltage Eh is sequentially switched to each proximity sensing element 11.

【0016】判別部28は、レベル検知部26からの電圧情
報及び位置メモリ29からの当該電圧を発生した接近感知
素子11の位置情報に基づいて、複数の接近感知素子11に
対向する磁石10の位置を決定する。図5から理解される
ように、磁石10の位置従って重錘9の位置をレベル検知
部26からの電圧に基づく比例配分によって求めることが
できる。
The discriminating unit 28 determines the position of the magnet 10 facing the plurality of proximity sensing elements 11 based on the voltage information from the level detection unit 26 and the position information of the proximity sensing element 11 that generated the voltage from the position memory 29. Determine the position. As can be understood from FIG. 5, the position of the magnet 10 and thus the position of the weight 9 can be obtained by proportional distribution based on the voltage from the level detecting section 26.

【0017】計算機34は、地表3の基準点7の既知座標
情報、掘削機1上の複数の接近感知素子11の掘削機座標
情報、及び位置検出ユニット20からの接近感知素子11に
対する磁石10の位置情報に基づいて、掘削機1の地表座
標を算定する。算定結果は表示部36における表示又は記
録部38による記録に供される。
The computer 34 calculates the known coordinate information of the reference point 7 on the ground surface 3, the excavator coordinate information of the plurality of approach sensing elements 11 on the excavator 1, and the position of the magnet 10 with respect to the approach sensing element 11 from the position detecting unit 20. The ground coordinates of the excavator 1 are calculated based on the position information. The calculation result is provided for display on the display unit 36 or recording by the recording unit 38.

【0018】本発明者は、1個が数百円程度の低価格ホ
ール素子を用い、磁石10の位置を±1mm程度の精度で正
確に測定できることを実験により確認した。
The present inventor has confirmed through experiments that the position of the magnet 10 can be accurately measured with an accuracy of about ± 1 mm using a low-cost Hall element of about several hundred yen.

【0019】[0019]

【発明の効果】以上説明したように本発明による地下掘
削機の位置検出方法は、地下掘削機に行列状に位置決め
して取付けた複数の接近感知素子と地表基準点から吊
下げられ且つ接近感知素子の間隔に比し小径である重錘
との組合せを用いるので、次の顕著な効果を奏する。
As described above, the method for detecting the position of an underground excavator according to the present invention is capable of positioning the underground excavator in a matrix.
Since a combination of a plurality of approach sensing elements mounted as described above and a weight suspended from the ground reference point and having a diameter smaller than the distance between the approach sensing elements is used, the following remarkable effects are achieved.

【0020】(イ) 地下掘削機にセンサー筒を設ける必
要がなくなり、掘削時における位置測定機部品の破損の
虞をなくすことができる。 (ロ) 大きなコイル付きの渦電流センサーを使わないの
で小形化が可能である。 (ハ) 低コストで地下掘削機の位置検出装置を製作する
ことができる。 (ニ) 地下掘削機の位置を±1mm程度の精度で正確に低
コストで測定できる。 (ホ) 地下掘削機の姿勢を正確にしかも低コストで測定
できる。
(A) It is not necessary to provide a sensor tube in the underground excavator, and it is possible to eliminate the possibility of damage to the position measuring machine parts during excavation. (B) Since an eddy current sensor with a large coil is not used, miniaturization is possible. (C) An underground excavator position detecting device can be manufactured at low cost. (D) The position of an underground excavator can be measured accurately and at low cost with an accuracy of about ± 1 mm. (E) The attitude of the underground excavator can be measured accurately and at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は本発明の一実施例の説明図である。FIG. 1 is an explanatory diagram of one embodiment of the present invention.

【図2】は接近検知素子の格子状配列の説明図である。FIG. 2 is an explanatory diagram of a lattice arrangement of approach detection elements.

【図3】は接近検知素子の十文字状配列の説明図であ
る。
FIG. 3 is an explanatory diagram of a cross-shaped arrangement of approach detection elements.

【図4】は十文字配列の接近感知素子の出力の説明図で
ある。
FIG. 4 is an explanatory diagram of an output of a proximity sensor having a cross-shaped arrangement.

【図5】は接近感知素子出力の補間法による重錘位置検
出の説明図である。
FIG. 5 is an explanatory diagram of weight position detection by an interpolation method of an approach sensing element output.

【図6】は位置検知ユニットのブロック図である。FIG. 6 is a block diagram of a position detection unit.

【図7】は従来技術の一例の説明図である。FIG. 7 is an explanatory diagram of an example of a conventional technique.

【符号の説明】[Explanation of symbols]

1 地下掘削機 2 頂面 3 地表 4 吊下げユニット 5 吊下げワイヤ 6 計測用ワイヤ 7 基準点 8 竪孔 9 重錘 10 磁石 11 接近感知素子 15 深度センサー 20 位置検出ユニット 22 マルチプレクサ 24 コントローラ 25 増幅器 26 レベル検知部 28 判別部 29 位置メモリ 30 制御電流発生部 32 マルチプレクサ制御部 34 計算機 36 表示部 38 記録部 40 センサー筒 41 渦電流センサー。 DESCRIPTION OF SYMBOLS 1 Underground excavator 2 Top surface 3 Ground surface 4 Hanging unit 5 Hanging wire 6 Measurement wire 7 Reference point 8 Vertical hole 9 Weight 10 Magnet 11 Approach sensing element 15 Depth sensor 20 Position detecting unit 22 Multiplexer 24 Controller 25 Amplifier 26 Level detection unit 28 Discrimination unit 29 Position memory 30 Control current generation unit 32 Multiplexer control unit 34 Computer 36 Display unit 38 Recording unit 40 Sensor tube 41 Eddy current sensor.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−94463(JP,A) 特開 平6−258006(JP,A) 特開 平6−307888(JP,A) 特開 平3−72291(JP,A) 実開 昭55−157715(JP,U) (58)調査した分野(Int.Cl.6,DB名) G01C 15/00 - 15/14 E21B 4/00 G01B 7/00 G01D 5/12 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-94463 (JP, A) JP-A-6-258006 (JP, A) JP-A-6-307888 (JP, A) 72291 (JP, A) Fully open 1979-157715 (JP, U) (58) Fields studied (Int. Cl. 6 , DB name) G01C 15/00-15/14 E21B 4/00 G01B 7/00 G01D 5/12

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】地表より吊下げられて鉛直に掘削する地下
掘削機の位置を検出する方法において、掘削機上座標が
既知である掘削機上の複数部位に重錘の接近に応じた大
きさの感応出力を発生する複数の接近感知素子を行列状
に位置決めして予め固定し、地表の基準点から地下掘削
機の直上まで前記接近感知素子の間隔に比し小径である
重錘を吊下げ、前記重錘に対する一つ以上の前記接近感
知素子からの感応出力を検出し、検出された感応出力と
当該感応出力を発生した接近感知素子の掘削機上座標と
から前記地表基準点に対する前記掘削機の位置を検出し
てなる地下掘削機の位置検出方法。
1. A method for detecting the position of the underground excavator to excavate vertically and hung from the surface, a large excavation machine coordinates corresponding to the approach of the weight at multiple sites on a known excavator
Multiple proximity sensing elements that generate sensitivity-sensitive output in a matrix
Pre-positioning and fixing, the underground excavation from the surface of the reference point
The diameter is smaller than the distance between the proximity sensing elements up to just above the machine
Suspending a weight, detecting a sensitive output from the one or more proximity sensing elements with respect to the weight, and detecting the detected output and the coordinates of the proximity sensing element that generated the sensitive output on an excavator to determine the ground surface. A method for detecting the position of an underground excavator, comprising detecting a position of the excavator with respect to a reference point.
【請求項2】 請求項1の位置検出方法において、前記
地表の基準点に前記重錘の深さを検出する深度センサー
を設け、前記地表基準点に対する前記掘削機の三次元位
置を検出してなる地下掘削機の位置検出方法。
2. The position detecting method according to claim 1, further comprising: a depth sensor for detecting a depth of the weight at a reference point on the ground, and detecting a three-dimensional position of the excavator with respect to the ground reference point. Underground excavator position detection method.
【請求項3】 請求項2の位置検出方法において、前記
掘削機上に一定間隔を隔てた二つの参照点を設け、各参
照点の近傍で掘削機上座標が既知である掘削機上の複数
部位に前記接近感知素子を行列状に位置決めして固定
し、地表で前記一定間隔を隔てた二つに基準位置から前
記重錘をそれぞれ吊下げ、前記各重錘に対する一以上の
前記接近感知素子からの感応出力を検出し、検出された
感応出力と当該感応出力を発生した接近感知素子の掘削
機上座標とから前記各地表基準点に対する前記各参照点
の三次元位置を検出することにより前記掘削機の位置及
び姿勢を検出してなる地下掘削機の位置検出方法。
3. The position detecting method according to claim 2, wherein two reference points are provided on the excavator at a predetermined interval, and a plurality of reference points on the excavator whose coordinates on the excavator are known near each reference point. The approach sensing elements are positioned and fixed in a matrix at a site, and the weights are respectively suspended from reference positions at two spaced apart from each other on the surface of the ground, and one or more approach sensors for each of the weights are suspended. By detecting the three-dimensional position of each of the reference points with respect to the reference point in each place from the detected output and the coordinates on the excavator of the proximity sensing element that generated the output. An underground excavator position detection method comprising detecting the position and orientation of an excavator.
【請求項4】 請求項1の位置検出方法において、前記
接近感知素子をホール素子とし、前記重錘を磁石として
なる地下掘削機の位置検出方法。
4. The position detecting method according to claim 1, wherein said approach sensing element is a hall element and said weight is a magnet.
【請求項5】 請求項1の位置検出方法において、前記
接近感知素子を磁気抵抗素子とし、前記重錘を磁石とし
てなる地下掘削機の位置検出方法。
5. The method according to claim 1, wherein the proximity sensing element is a magnetoresistive element, and the weight is a magnet.
【請求項6】 地表基準点に対する地下掘削機の位置を
検出する装置において、地下掘削機上の所定部位に行列
状に位置決めして固定され且つ重錘の接近に応じた大き
さの感応出力を発生する複数の接近感知素子、地表の所
定位置から前記接近感知素子の間隔に比し小径である
錘を前記地下掘削機の直上まで吊下げる吊下げユニッ
ト、及び前記重錘の接近に応答する前記接近感知素子の
出力と当該応答する接近感知素子の位置とから地下掘削
機に対する前記重錘の位置を検出する位置検出ユニット
を備えてなる地下掘削機の位置検出装置。
6. An apparatus for detecting a position of an underground excavator with respect to a ground reference point, wherein a matrix is provided at a predetermined position on the underground excavator.
Is fixed in the shape of a circle and has a size corresponding to the approach of the weight
A plurality of approach sensing elements that generate a responsive output of the sensor, a suspending unit that suspends a weight having a small diameter from a predetermined position on the ground surface as compared to the distance between the approach sensing elements, to just above the underground excavator, and the weight A position detecting device for an underground excavator, comprising: a position detecting unit that detects a position of the weight with respect to the underground excavator from an output of the approach sensing element responding to the approach of the vehicle and a position of the approach sensing element responding to the approach.
JP28949094A 1994-11-24 1994-11-24 Underground excavator position detection method Expired - Fee Related JP2911101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28949094A JP2911101B2 (en) 1994-11-24 1994-11-24 Underground excavator position detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28949094A JP2911101B2 (en) 1994-11-24 1994-11-24 Underground excavator position detection method

Publications (2)

Publication Number Publication Date
JPH08145671A JPH08145671A (en) 1996-06-07
JP2911101B2 true JP2911101B2 (en) 1999-06-23

Family

ID=17743956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28949094A Expired - Fee Related JP2911101B2 (en) 1994-11-24 1994-11-24 Underground excavator position detection method

Country Status (1)

Country Link
JP (1) JP2911101B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130218485A1 (en) * 2012-02-16 2013-08-22 Electro Scan, Inc. System and method for collection, analysis and archiving of pipe defect data
JP5575214B2 (en) * 2012-12-07 2014-08-20 防衛省技術研究本部長 Magnetic measurement system

Also Published As

Publication number Publication date
JPH08145671A (en) 1996-06-07

Similar Documents

Publication Publication Date Title
CN106545329B (en) Drilled pile hole quality detection device and method
JPH02176089A (en) Mooring equipment
WO2013007044A1 (en) Method, device, and system for detecting vibration of arm rest of engineering machinery and engineering machinery
KR20140037636A (en) Real-time monitoring system for driving pile
JP2911101B2 (en) Underground excavator position detection method
JPH10185633A (en) Underground displacement measuring device
JP2022061704A (en) Inclination measuring device and displacement measuring method for steel material, and displacement measuring method for mountain retention wall
CN106638535A (en) Foundation pit construction field monitoring device and method
KR19990075023A (en) Device and method for detecting rebar in concrete foundation piles by measuring 3-axis magnetic field in borehole
JP2993634B2 (en) Precise detection method of underground excavator position
JPH0989563A (en) Underground excavator position detecting method and device
JPH0426397B2 (en)
JPH0521483B2 (en)
JPH1123265A (en) Insertion type inclinometer
JP3354259B2 (en) Bending moment measuring device for structures
WO1999035462A1 (en) Monitoring arrangement for a multi-element boom
JPS62169012A (en) Horizontal displacement measuring apparatus for underground excavator
JPH05264741A (en) Nondestructive method and apparatus for measuring underground structure
JPH0843092A (en) Hole-drilling displacement measurement system
JPH05264740A (en) Nondestructive method and apparatus for measuring underground structure position
JPS594030B2 (en) Measuring device for position and attitude of underground drilling machine
JPH0684624B2 (en) Underground excavator position detection method
JP3711878B2 (en) Propulsion head position direction measuring method and propulsion head position direction measuring apparatus
JP4343643B2 (en) A method for measuring the installation depth of an observation device in a borehole.
JPH0942959A (en) Clinometer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees