Nothing Special   »   [go: up one dir, main page]

JP2910022B2 - Circular light reflector - Google Patents

Circular light reflector

Info

Publication number
JP2910022B2
JP2910022B2 JP23902893A JP23902893A JP2910022B2 JP 2910022 B2 JP2910022 B2 JP 2910022B2 JP 23902893 A JP23902893 A JP 23902893A JP 23902893 A JP23902893 A JP 23902893A JP 2910022 B2 JP2910022 B2 JP 2910022B2
Authority
JP
Japan
Prior art keywords
layer
inner diameter
quartz glass
mirror
circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23902893A
Other languages
Japanese (ja)
Other versions
JPH0772314A (en
Inventor
達政 中村
義昭 岡本
国雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP23902893A priority Critical patent/JP2910022B2/en
Publication of JPH0772314A publication Critical patent/JPH0772314A/en
Application granted granted Critical
Publication of JP2910022B2 publication Critical patent/JP2910022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、中央部に円形開口(以
下内径という)を有する円輪型凹面鏡あるいは凸面鏡あ
るいは平面鏡に係わり、特に外径が300mm以上の大
型円輪型軽量反射鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ring-shaped concave mirror, a convex mirror or a plane mirror having a circular opening (hereinafter referred to as an inner diameter) at a central portion, and more particularly to a large ring-shaped lightweight reflector having an outer diameter of 300 mm or more.

【0002】[0002]

【従来の技術】従来より太陽光や天体光、レーザ光、マ
イクロ波などの電磁波や光の集束、拡散の為に反射鏡を
用いているが、この種の反射鏡は反射鏡の光軸上に入射
光源が存在させることにより、光軸に対象な精度のよい
集束拡散光が得られるので、中央に光束が通過可能な円
形の開口部を有するカセグレン構造の円輪型反射主鏡と
これと対面する副鏡からなる反射型光学系が使用される
ことが多い。そしてかかる光学系装置を、例えば天体望
遠鏡やレーザー光などの光学系装置として利用する場合
において、効率を高めるためにより多い光束の集束、拡
散が要求され、これに伴い反射鏡も大型化し、より具体
的には直径が300mm〜3000mm、更には10m
以上のものが要求されるようになってきた。また、移動
レーザー反射システムや天体光観測システム等、特にこ
の種の反射鏡の用途において大型化に伴い光学系の移動
時の重量の軽減という、相反する特性が要求されるよう
になってきた。
2. Description of the Related Art Conventionally, a reflecting mirror has been used for focusing and diffusing electromagnetic waves and light such as sunlight, astronomical light, laser light, and microwaves. This type of reflecting mirror is located on the optical axis of the reflecting mirror. The presence of an incident light source makes it possible to obtain a focused and diffused light with high precision symmetrical to the optical axis.Therefore, a Cassegrain-shaped ring-shaped reflection primary mirror having a circular opening in the center through which a light beam can pass, and In many cases, a reflection type optical system including a facing secondary mirror is used. When such an optical device is used as an optical device such as an astronomical telescope or a laser beam, more luminous flux must be focused and diffused in order to increase efficiency. Typically 300mm to 3000mm in diameter, and even 10m
The above has been required. In addition, as the size of the reflector is increased in applications such as a moving laser reflection system and an astronomical light observation system, in particular, as the size of the reflector increases, conflicting characteristics such as a reduction in the weight of the moving optical system have been required.

【0003】そしてこれらの大径の円輪型反射鏡におい
ては反射光束の輻射や環境温度の変化による微妙な反射
鏡素材の体積変化によるうねり等が発生する。又、前記
反射鏡は、光学研磨した素材表面に光学的反射層として
の金属蒸着膜を300〜1000℃のCVD法により形
成させるものであるために、熱による表面変化等が反射
鏡の性能を低下させる恐れがある。この為、従来の装置
においては熱膨張等の体積変化を伴う変化の小さい石英
ガラスや低膨張性再結晶化ガラス等を用いて前記反射鏡
を形成する場合が多いが、このような素材を用いて熱に
よる変化を抑制しても、前記反射鏡はこれを操作用の支
持台に支持させ任意の方向に自由に回転操作させるもの
であるために、反射鏡自体が大径化するにつれ、その反
射鏡自体の自重により支持角度変化等の姿勢の変化によ
り鏡面に歪が生じ、性能の低下が問題となる。
[0003] In these large-diameter circular reflectors, swelling or the like occurs due to subtle changes in the volume of the reflector material due to the radiation of reflected light beams or changes in environmental temperature. In addition, since the reflecting mirror is formed by forming a metal vapor-deposited film as an optical reflecting layer on a surface of an optically polished material by a CVD method at 300 to 1000 ° C., a surface change due to heat or the like may deteriorate the performance of the reflecting mirror. There is a risk of lowering. For this reason, in the conventional apparatus, the reflection mirror is often formed using quartz glass or a low-expansion recrystallized glass having a small change accompanying a volume change such as thermal expansion, but such a material is used. Even if the change due to heat is suppressed, the reflecting mirror is supported on an operating support and can be freely rotated in an arbitrary direction. A change in posture, such as a change in the support angle, due to the weight of the reflecting mirror itself causes distortion on the mirror surface, which causes a problem of deterioration in performance.

【0004】かかる欠点を解消するために本出願人は、
従来の穴の無い反射鏡において、反射鏡基体が、透明な
石英ガラス製鏡面形成層を表面に有する面を持ち、該層
を保持する保持層が、内部に含まれる全気孔体積の30
%以上の独立気泡を含み、0.1〜1.2g/cm
見かけ密度を有する石英ガラス多孔性発泡体層からなる
軽量化反射鏡基体を提案している。(特開平5−609
09)
In order to eliminate such disadvantages, the present applicant has
In the conventional holeless reflector, the reflector base has a surface having a transparent quartz glass mirror surface forming layer on the surface, and the holding layer holding the layer has a total pore volume of 30% of the total pore volume contained therein.
%, And has proposed a lightweight reflector base comprising a quartz glass porous foam layer having an apparent density of 0.1 to 1.2 g / cm 3 containing closed cells of 0.1% or more. (JP-A-5-609
09)

【0005】[0005]

【発明が解決しようとする課題】しかしながら前記の中
央部に円形開口を有しない反射鏡と異なり、円輪型反射
鏡、特に外径が300mm以上の円輪型反射鏡において
は、特に鏡面の姿勢を垂直に近付ければ近付けるほど、
中央部の円形開口周囲に集中荷重がかかりやすく、そし
てかかる集中荷重は例え多孔性発泡体により軽量化をは
かったとしても、外径が大径化すればするほど拡大し、
該中央部に歪や鏡面変形が生じ易い。
However, unlike the above-mentioned reflector having no circular opening in the central portion, in the case of a circular reflector, particularly a circular reflector having an outer diameter of 300 mm or more, the mirror surface is particularly oriented. The closer you get to the vertical,
Concentrated load is likely to be applied around the central circular opening, and even if the concentrated load is reduced by the porous foam, the larger the outer diameter is, the larger the expanded diameter becomes,
Distortion and mirror surface deformation are likely to occur at the center.

【0006】そこで本発明は内部に石英ガラス多孔質体
を充填し、軽量化をはかった場合においても中央部の円
形開口部周囲に生じる集中荷重を極力逃がしつつ又例え
ば集中荷重が生じてもこれを歪みや鏡面変形が生じない
程度に軽減し得る円輪型軽量反射鏡を提供することを目
的とする。
Accordingly, the present invention fills the inside with a porous silica glass body to reduce the concentrated load generated around the central circular opening as much as possible even if the weight is reduced. It is an object of the present invention to provide a ring-shaped lightweight reflecting mirror that can reduce the distortion to the extent that distortion and mirror deformation do not occur.

【0007】[0007]

【課題を解決する為の手段】本発明は、かかる技術的課
題を達成するために、請求項1記載の発明は、中央部に
円形開口(以下内径という)を有し外径が300mm以
上である円輪型反射鏡において、中央に円形の内径を有
する見かけ密度0.1〜0.5g/cm3の範囲の石英
ガラス多孔質体からなる保持体層を形成し、該保持体層
の鏡面側と内径内周側を含む全表面を所定肉厚の透明石
英ガラス層で被覆するとともに、前記保持体層を構成す
る石英ガラス多孔質体を気孔空隙体積の80%以上が連
通可能な空隙からなり、前記石英ガラス層の一部に連通
可能な空隙部にまで達する貫通手段を設けた事を特徴と
する。この場合、請求項2に記載のように、前記保持体
層の内径を外径に対して1/3以下に設定し、内径内周
面側に少なくとも前記保持体層より高密度の所定肉厚の
単数または複数の円形補強層を形成し、該円形補強層全
体の肉厚を、内径の半径の4%〜10%に設定するのが
よい。更に請求項3に記載のように、前記保持体層を構
成する石英ガラス多孔質体の空隙を含む該石英ガラス被
覆層内部全ての空隙を少なくとも1300℃以下の温度
範囲で大気圧に対して減圧下に構成するのがよい。
According to the present invention, in order to achieve the technical object, the invention according to claim 1 has a circular opening (hereinafter referred to as an inner diameter) at a central portion and an outer diameter of 300 mm or more. In a certain ring-shaped reflecting mirror, a holding layer made of a porous quartz glass body having a circular inner diameter in the center and having an apparent density of 0.1 to 0.5 g / cm 3 is formed, and a mirror surface of the holding layer is formed. The entire surface including the inner side and the inner peripheral side is covered with a transparent quartz glass layer having a predetermined thickness, and the quartz glass porous body constituting the holding body layer is separated from a pore capable of communicating with 80% or more of the pore pore volume. In this case, there is provided a penetrating means which reaches a gap portion which can communicate with a part of the quartz glass layer. In this case, as described in claim 2, the inner diameter of the holding body layer is set to 1/3 or less of the outer diameter, and a predetermined thickness at least higher than the holding body layer on the inner circumferential surface side of the inner diameter. It is preferable to form one or a plurality of circular reinforcing layers, and to set the thickness of the entire circular reinforcing layer to 4% to 10% of the radius of the inner diameter. Further, as described in claim 3, all the voids inside the quartz glass coating layer including the voids of the porous quartz glass constituting the holding layer are depressurized with respect to the atmospheric pressure in a temperature range of at least 1300 ° C or lower. It is good to configure below.

【0008】[0008]

【作用】かかる技術手段によれば、前記保持体層は、気
孔空隙をたくさん含んでいるために、軽量化が達成され
ると共に、該気孔空隙を介して表面の透明層を下部から
支持し、連結された多数の網目部材が位置することにな
るためにあらゆる方向に対し実質的に等しい三次元的抵
抗強度を有するが、更に本発明では前記保持体層の見か
け密度を0.1〜0.5g/cmの範囲に設定し、空
隙と部材間の割合を調整する事により発達した格子構造
の網目密度を高めている。但し、見かけ密度が0.1g
/cm未満では、三次元的格子構造を形成する網目部
材の壁肉厚が充分得られず、該保持層がその表面側の透
明石英ガラス層、即ち鏡面形成層を支持する強度が不足
し、鏡面の研磨圧に耐えられない。又従来の円形開口を
有さない非カセグレン構造の反射鏡については見かけ密
度1.2g/cmまで問題が生じないが、円形開口を
有するカセグレン構造の反射鏡では実験の結果、見かけ
密度が0.5g/cm以上になると、機械的な自重に
よる反射鏡外周の歪みが生じる事が実験的により確認さ
れた。
According to this technical means, the holding body layer contains a large number of pores, so that the weight can be reduced and the transparent layer on the surface is supported from below through the pores. a number of mesh member connected is that with respect to all directions in order will be located having a substantially equal three-dimensional resistance strength, further 0.1 to apparent density of the carrier layer in the present invention The mesh density of the developed lattice structure is increased by adjusting the ratio between voids and members by setting the range to 0.5 g / cm 3 . However, apparent density is 0.1g
If it is less than / cm 3 , the wall thickness of the mesh member forming the three-dimensional lattice structure cannot be sufficiently obtained, and the strength of the holding layer for supporting the transparent quartz glass layer on the surface side, that is, the mirror surface forming layer is insufficient. , Cannot withstand the polishing pressure of the mirror surface. In the case of a conventional reflector having a non-Cassegrain structure having no circular opening, no problem occurs up to an apparent density of 1.2 g / cm 3. It has been experimentally confirmed that when the weight is more than 0.5 g / cm 3, the outer periphery of the reflecting mirror is distorted due to its own mechanical weight.

【0009】しかしながら、前記の構成を取っても円形
開口部に集中荷重が発生するのは避けられない。そこで
本発明は前記円輪型反射鏡の内径を外径に比較して1/
3以下に設定し、保持体層側に力の分散をはかると共
に、円形開口、即ち保持体層の内径内周側を少なくとも
保持体層より高密度の所定肉厚の円形補強層を形成して
集中する応力の分散を図っている。また、前記内径内周
側の円形補強層全体の肉厚を、内径の半径の4%〜10
%に設定している。 これは、本発明においては、円形補
強層全体の肉厚を、内径の半径の10%より厚くする
と、反射鏡全体の軽量化の効果が低下し、自重による反
射鏡外周の歪 みが無視できないほど大きくなり、また内
径の半径の4%より小さく設定すると補強効果自体が不
足し、中央部の円形開口部周囲に歪みや鏡面変形が生じ
易くなる。
However, even if the above configuration is adopted, it is unavoidable that a concentrated load is generated in the circular opening. Therefore, the present invention provides an inner diameter of the ring-shaped reflecting mirror which is 1 /
It is set to 3 or less, and while dispersing the force on the holding body layer side, a circular opening, that is, a circular reinforcing layer having a predetermined thickness at a higher density than the holding body layer is formed at least on the inner peripheral side of the inner diameter of the holding body layer. Dispersion of concentrated stress is achieved. Also, the inner circumference
The thickness of the entire circular reinforcing layer on the side is 4% to 10% of the radius of the inner diameter.
% Is set. In the present invention, this is
The thickness of the entire stiffener is greater than 10% of the radius of the inner diameter
And the effect of reducing the weight of the entire reflector decreases,
Increases as the Ikyo distortion of the outer periphery can not be ignored, also the inner
If it is set smaller than 4% of the radius of the diameter, the reinforcing effect itself is not
In addition, distortion and mirror deformation occur around the circular opening in the center.
It will be easier.

【0010】また、本発明では前記保持体層の内径内周
側の円形補強層は、保持体層より高密度の石英ガラス多
孔質体であって、外側から内側に行くほど低密度から高
密度の補強層にすることにより効果的に応力の分散をは
かることができる。また、前記保持体層の鏡面側と内径
内周側を含む全表面を所定肉厚の透明石英ガラス層で被
覆してなる為に、前記保持体層が気孔空隙体積の80%
以上が連通可能な空隙からなる連通気泡石英ガラス多孔
体の構成の場合に、前記石英ガラス被覆層の一部に連通
可能な空隙部にまで達する貫通孔等の貫通手段を形成す
ることによって、反射鏡内外部の圧力を同一にでき、外
部の圧力変化や温度変化に対して鏡面変位を少なくでき
る。また、前記の全表面を被覆してなる為に、前記と同
様に反射膜形成の為のCVD工程の温度変化にも反射鏡
内部の圧力が変化し反射面が変化ないように、前記保持
体層を構成する独立気泡からなる発泡体または連通気泡
からなる石英ガラス多孔体の独立気泡または連通気孔等
の空隙を含む石英ガラス被覆層内部全ての空隙を少なく
とも1300℃以下の温度範囲で大気圧に対して減圧下
に構成するのがよい。
In the present invention, the circular reinforcing layer on the inner peripheral side of the inner diameter of the holder layer is a porous silica glass body having a higher density than the holder layer, and the density increases from low to high as going from the outside to the inside. By using the reinforcing layer, the stress can be effectively dispersed. Further, since the entire surface including the mirror side and the inner peripheral side of the holding layer is covered with a transparent quartz glass layer having a predetermined thickness, the holding layer is 80% of the pore void volume.
In the case of the configuration of the communicating porous quartz glass body including the communicable voids as described above, by forming a penetration means such as a through hole reaching a communicable void portion in a part of the quartz glass coating layer, the reflection is achieved. The pressure inside and outside the mirror can be made the same, and the mirror surface displacement can be reduced with respect to a change in pressure or a change in temperature outside. In addition, since the entire surface is covered, the holding member is so arranged that the pressure inside the reflecting mirror does not change and the reflecting surface does not change even when the temperature changes in the CVD process for forming the reflecting film as described above. All voids inside the quartz glass coating layer including voids such as closed cells or interconnected pores of a quartz glass porous body composed of closed cells or foams composed of open cells constituting the layer are brought to atmospheric pressure in a temperature range of at least 1300 ° C or less. On the other hand, it is preferable that the pressure is reduced.

【0011】[0011]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的記載が無い限りは、この発明の範囲をそれのみに
限定する趣旨ではなく単なる説明例に過ぎない。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention; However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples, unless otherwise specified. Absent.

【0012】先ず1000mmの外径の円輪型平面鏡を
製造する過程を説明しながら本発明の実施例を図1
(A)、(B)に基づいて説明する。水酸基を約300
ppm程度含有する粒径20μm以下の二酸化珪素粉末
を約1400℃の温度で成型焼結して直径が1200m
mの円筒状焼結体を製造した。次に、この焼結体を80
0℃の温度のアンモニア雰囲気中で加熱反応させてアン
モニア化した後、更に1700℃の温度の減圧雰囲気に
て1時間加熱し、融着させると共に離脱ガスにより発泡
させ発泡体を得た。
First, an embodiment of the present invention will be described with reference to FIG. 1 while explaining a process of manufacturing a ring-shaped flat mirror having an outer diameter of 1000 mm.
A description will be given based on (A) and (B). About 300 hydroxyl groups
A silicon dioxide powder having a particle size of 20 μm or less containing about ppm is molded and sintered at a temperature of about 1400 ° C. to have a diameter of 1200 m.
m was manufactured. Next, this sintered body is
After heating and reacting in an ammonia atmosphere at a temperature of 0 ° C. to ammonia, the mixture was further heated in a reduced-pressure atmosphere at a temperature of 1700 ° C. for 1 hour, fused, and foamed by releasing gas to obtain a foam.

【0013】次いで、これをカットして直径が1000
mm、厚さが800mmの円板状の多孔性発泡体部材を
作成した後、中央の円形開口が300mmと400mm
の円輪型円板を各々複数個形成し、各々平面鏡基体11
を製造する。尚この多孔性発泡体部材からなる基体11
は、見かけ密度0.4g/cmで、含有する独立気泡
の全気孔体積にしめる割合は約70%程度であった。こ
の独立気泡の含有率は、部材の見かけ密度と部材を構成
する二酸化珪素質ガラス自体の密度の測定及び元の発泡
体である部材を液体に浸漬けしてから得られる連通気孔
の体積から容易に得られる。
Next, this is cut to have a diameter of 1000
After forming a disc-shaped porous foam member having a thickness of 800 mm and a thickness of 800 mm, the center circular opening is 300 mm and 400 mm.
Each plurality forming a circular ring-type discs, each flat surface mirror base 11
To manufacture. The substrate 11 made of the porous foam member
Was 0.4 g / cm 3 in apparent density, and the ratio of contained closed cells to the total pore volume was about 70%. The content of the closed cells can be easily determined by measuring the apparent density of the member and the density of the silicon dioxide glass itself constituting the member, and from the volume of the interconnected pores obtained by immersing the original foam member in a liquid. can get.

【0014】次に前記基体11に対して内縁部径が約4
mm小さく、前記基体11と同一外径の平面鏡面部と外
縁部を有する円輪蓋体状のカバー体12を透明ガラス材
で形成する。そして該カバー体12は外縁側肉厚1bと
鏡面部肉厚1cを8mmに設定すると共に、内縁側肉厚
1aを各々2mm、4mm、13mm及び20mmに設
定したカバー体12を各々形成する。次に前記カバー体
12の投影平面形状と同一外径の円輪型円板状の上板1
3を用意する。
Next, the inner edge diameter of the base 11 is about 4
An annular lid-shaped cover body 12 having a plane mirror surface portion and an outer edge portion which is smaller by mm and has the same outer diameter as the base body 11 is formed of a transparent glass material. The cover body 12 is formed such that the outer edge side thickness 1b and the mirror surface thickness 1c are set to 8 mm, and the inner edge side thickness 1a is set to 2 mm, 4 mm, 13 mm and 20 mm, respectively. Next, a ring-shaped disk-shaped upper plate 1 having the same outer diameter as the projected plane shape of the cover body 12
Prepare 3

【0015】そして図1(B)に示すように前記平面鏡
面部形状に合わせて、平面状に形成した炉内載置面20
上に、載置したスペー19内にカバー体12を開口を
上向きに向けて載置した後、その内面全面にわたって二
酸化珪素微粉末14を厚さ約1mm程度介在させた後、
前記基体11を嵌入し、更にその上面及び内縁部隙間に
二酸化珪素微粉末14を充填し、その上面に上板13を
載置する。そして前記上板13上面に円板状のカーボン
製重石15を載置した状態で、約1300℃以上の温度
の減圧雰囲気で加熱熔着一体化させた。尚前記重石15
により基体11の発泡体が圧縮されるために、その圧縮
量を見越してカバー体12の高さを基体11の高さより
若干低く設定する。この操作に於て、カバー体12及び
上板13と基体11との間に介在させた二酸化珪素微粉
末14は、熔着一体化の際に収縮してカバー体12等の
透明石英ガラスと発泡体からなる基体11を完全に一体
化させ内縁部の2mm厚程度の焼結層を残してその他の
層厚は消滅した。また、前記内縁部に残った焼結層と石
英ガラス層の密度を調べる為、全ての試験後各々の部分
をダイヤモンドカッターにて切り出し、見かけ密度を調
べたところ、おおよそ焼結層は1.2g/cmであり
石英ガラス層は2.2g/cmであった。尚、二酸化
珪素微粉末14は、四塩化珪素を酸水素火炎で燃焼酸化
分解して得られたものを、5μm以下に調整して使用し
た。
As shown in FIG. 1 (B), the furnace mounting surface 20 is formed in a flat shape according to the shape of the flat mirror surface portion.
Above, after placing the cover body 12 in the space Sa 19 placed toward upward opening, after the silicon dioxide fine powder 14 is about 1mm about intervening thickness over its entire inner surface,
The base 11 is fitted, the upper surface and the inner edge gap are filled with fine silicon dioxide powder 14 , and the upper plate 13 is placed on the upper surface. Then, the disc-shaped carbon weight 15 was placed on the upper surface of the upper plate 13 and heat-welding was integrated in a reduced-pressure atmosphere at a temperature of about 1300 ° C. or more. The weight 15
Thus, the height of the cover body 12 is set slightly lower than the height of the base body 11 in anticipation of the amount of compression. In this operation, the silicon dioxide fine powder 14 interposed between the cover body 12 and the upper plate 13 and the base body 11 contracts during the welding and integration, and foams with the transparent quartz glass of the cover body 12 and the like. The base 11 consisting of the body was completely integrated, and the other layer thickness disappeared except for the sintered layer of about 2 mm thickness at the inner edge. Further, in order to examine the density of the sintered layer and the quartz glass layer remaining at the inner edge, each part was cut out with a diamond cutter after all the tests, and the apparent density was examined. / Cm 3 and the quartz glass layer was 2.2 g / cm 3 . The silicon dioxide fine powder 14 obtained by burning and oxidizing and decomposing silicon tetrachloride with an oxyhydrogen flame was used after adjusting the particle size to 5 μm or less.

【0016】次に前記の様にして得られた穴付き平面鏡
素体の鏡面を平面に研磨した後、該研磨素体表面に40
0℃のCVD法によりアルミ蒸着膜を形成し、光学的反
射層16を形成する。このようにして得られた平面鏡1
は、第3図に示すように外周にシリコンゴム層17を介
してアルミ製の支持枠18で囲繞支持した後に支持枠ご
と垂直状態に姿勢を変更し、各々の状態の時の鏡面変位
を干渉計により調査した。
Next, after the mirror surface of the planar mirror body with holes obtained as described above is polished to a flat surface,
An aluminum deposition film is formed by a CVD method at 0 ° C., and an optical reflection layer 16 is formed. The plane mirror 1 thus obtained
As shown in FIG. 3, after being supported by an aluminum support frame 18 via a silicone rubber layer 17 on the outer periphery, the attitude of the support frame is changed to a vertical state, and the mirror surface displacement in each state is interfered. Investigated by total.

【0017】本干渉縞の観察から、保持体層の内径が4
00mm(内外径比1/3より大)のものは何れも円形
開口2付近の鏡面全体に大きな変位が見られ、内径が3
00mm(内外径比1/3以下)で、焼結層厚と内縁側
石英ガラス肉厚の高密度の補強層の合計を4mm(保持
体層の内径の半径の4%未満)に設定したものは、円形
開口2内周部付近に局所的な小さな変位が見られる。一
方、保持体層の内径が300mm(内外経比1/3以
下)で、焼結層厚と内縁側石英ガラス肉厚からなる高密
度の補強層の合計を22mm(保持体層の内径の半径の
10%より大)に設定したものは、平面鏡の外周部の下
部鏡面に自重によると思われる局所的な小さな変位が見
られるが、内径が300mm(内外径比1/3以下)
で、焼結層厚と内縁側石英ガラス肉厚からなる高密度の
補強層の合計を6mmと15mm(保持体層の内径の半
径の10%以下でかつ4%以上)に設定したものは、何
れも変位が見られず最も望ましい結果が得られた。
From the observation of the interference fringes, it was found that the inner diameter of the support layer was 4
In the case of 00 mm (greater than 1/3 of the inner / outer diameter ratio), a large displacement was observed on the entire mirror surface near the circular opening 2 and the inner diameter was 3 mm.
00 mm (inner / outer diameter ratio is 1/3 or less), and the sum of the sintered layer thickness and the high-density reinforcing layer of the inner edge side quartz glass thickness is set to 4 mm (less than 4% of the radius of the inner diameter of the holding layer). , A small local displacement is seen near the inner peripheral portion of the circular opening 2. On the other hand, the inner diameter of the holder layer is 300 mm (inner / outer radius ratio is 1/3 or less), and the total of the high-density reinforcing layer composed of the sintered layer thickness and the inner edge side quartz glass thickness is 22 mm (radius of the inner diameter of the holder layer). In the case where the inner diameter is set to be larger than 10%, a small local displacement, which is considered to be caused by its own weight, is seen on the lower mirror surface of the outer peripheral portion of the plane mirror, but the inner diameter is 300 mm (inner / outer diameter ratio is 1/3 or less).
In the case where the total of the high-density reinforcing layer composed of the thickness of the sintered layer and the thickness of the quartz glass on the inner edge side is set to 6 mm and 15 mm (10% or less and 4% or more of the radius of the inner diameter of the holding body layer), In each case, no displacement was observed, and the most desirable results were obtained.

【0018】次に水酸基を約200ppm程度含有する
粒径50μm前後の二酸化珪素粉末を用いて、前記実施
例と同様な方法で密度を0.8g/cmに設定した発
泡体を用いて外径1000mm、内径が300mmの基
体11を製作した後、内縁部に2mm厚程度の焼結層が
形成可能にまた内縁側肉厚1aを13mmに設定した前
記カバー体12を用いて平面鏡1を製造して前記と同様
な試験を行ったところ、平面鏡の外周部の下部鏡面に自
重によると思われる大きな変位が生じているのが確認さ
れた。従って本実施例らから明らかなように保持体層の
見かけ密度を0.1〜0.5g/cmの範囲に設定す
るのが良いことが理解できる。
Next, using a silicon dioxide powder containing about 200 ppm of hydroxyl groups and having a particle size of about 50 μm, using a foam having a density set to 0.8 g / cm 3 in the same manner as in the above embodiment, using an outer diameter of After manufacturing a substrate 11 having a thickness of 1000 mm and an inner diameter of 300 mm, a plane mirror 1 is manufactured using the cover body 12 having a thickness of about 2 mm on the inner edge and a thickness of 13 mm on the inner edge. As a result, a test similar to that described above was conducted, and it was confirmed that a large displacement considered to be caused by its own weight occurred on the lower mirror surface of the outer peripheral portion of the plane mirror. Therefore, as apparent from the present examples, it can be understood that it is better to set the apparent density of the support layer in the range of 0.1 to 0.5 g / cm 3 .

【0019】次に前記基体11に連通発泡体を用いた他
の実施例について説明する。先ず、内径が1000mm
より少し大きめのカーボン製坩堝内に、熱気相合成法に
よる石英ガラス微粉を予め850℃のアンモニアガス+
窒素ガス雰囲気内で4時間程熱処理し後に充填し、減圧
雰囲気で(10−1〜10−2torr)で1600℃
〜1700℃にて2時間加熱して前記石英ガラス微粉を
融着発泡させ、多数の独立気泡よりなる石英ガラス発泡
体を得る。ついで、前記の方法で得られた石英ガラス発
泡体を20%の弗酸溶液中にて約10分程度浸漬するこ
とにより、前記発泡体が発泡体中の独立気泡間の薄膜が
破壊されつつ溶液中に沈降し、完全に沈降した後におい
て気泡同士が連通した、残留独立気泡を含めた気孔空隙
体積の80%以上の連通可能な連通気泡の空隙からな
り、見かけ密度が0.1〜0.5g/cmの石英ガラ
ス多孔体が得られる。尚、図2の(A)は独立気泡で、
(B)は連通気泡の状態を示す。
Next, another embodiment using a communicating foam for the base 11 will be described. First, the inner diameter is 1000mm
In a slightly larger carbon crucible, finely divided quartz glass powder by thermal vapor synthesis is preliminarily mixed with 850 ° C ammonia gas +
Filled after heat treatment for about 4 hours in a nitrogen gas atmosphere, and 1600 ° C. in a reduced pressure atmosphere (10 −1 to 10 −2 torr).
The quartz glass fine powder is fused and foamed by heating at 石英 1700 ° C. for 2 hours to obtain a quartz glass foam composed of many closed cells. Then, the quartz glass foam obtained by the above-described method is immersed in a 20% hydrofluoric acid solution for about 10 minutes, so that the foam is broken while the thin film between closed cells in the foam is broken. It is made up of pores of interconnected communicating bubbles that have settled therein and communicated with each other after complete sedimentation, and have a pore volume of 80% or more of the pore volume, including residual closed cells, and have an apparent density of 0.1 to 0.1%. A 5 g / cm 3 porous quartz glass body is obtained. FIG. 2A shows closed cells.
(B) shows the state of communicating bubbles.

【0020】かくして得られた石英ガラス多孔体から前
記実施例の最も望ましい条件であった内径が300m
m、外径が1000mmの保持体層の基体11を製作し
た後、外縁側肉厚1bと鏡面部肉厚1cを8mmに設定
すると共に、前記実施例らと同様に内縁部に2mm厚程
度の焼結層が形成可能にまた内縁側肉厚1aを13mm
に設定した前記カバー体12を用いて約1300℃以上
の温度の減圧雰囲気で加熱熔着一体化させさらに前記実
施例らと同様な方法で研削、鏡面研磨、金属蒸着層の形
成を行って下面鏡を製造して前記と同様な試験を行った
ところ、鏡面の変位が見られなかった。
From the porous quartz glass thus obtained, the inner diameter of 300 m, which was the most desirable condition of the above embodiment, was obtained.
m, after the outer diameter was fabricated base 11 of the holding body layer of 1000 mm, the outer side wall thickness 1b and specular portion thickness 1c and sets to 8 mm, the embodiments et similarly to the inner edge 2mm thickness of about Sintered layer can be formed and inner edge side thickness 1a is 13mm
Using the cover member 12 set as described above, heat-welding and integration are performed in a reduced-pressure atmosphere at a temperature of about 1300 ° C. or more, and grinding, mirror polishing, and formation of a metal deposition layer are performed in the same manner as in the above examples. When a mirror was manufactured and subjected to the same test as above, no displacement of the mirror surface was observed.

【0021】かかる実施例によれば前記保持体層は、連
通気泡の発泡体である石英ガラス多孔体で形成されてい
るものの、該多孔体の連通気泡は少なくとも1300℃
以下の温度範囲では減圧状態にあるために、大出力のレ
ーザービーム等で鏡面層を介して保持体層が加熱されて
も内部残留ガスの熱膨張等が生じることがなく、好まし
い。尚、前記の構成を取らずに図3に示すように前記基
体11を囲繞する透明ガラス層12、13の一部、具体
的には鏡面層の背面側の円輪板13に小孔13aを穿孔
しても前記真空連通気泡と同様な作用を生むことが出来
る。
According to this embodiment, the holding body layer is formed of a porous quartz glass body which is a foam of open cells, but the open cells of the porous body are at least 1300 ° C.
Since the pressure is reduced in the following temperature range, even if the holder layer is heated via the mirror surface layer with a high-power laser beam or the like, thermal expansion of the internal residual gas does not occur, which is preferable. 3, the small holes 13a are formed in a part of the transparent glass layers 12, 13 surrounding the substrate 11, specifically, in the circular plate 13 on the back side of the mirror surface layer, as shown in FIG. Even if the holes are pierced, the same action as the above-mentioned vacuum communication bubbles can be produced.

【0022】[0022]

【効果】以上記載のごとく本発明によれば、内部に石英
ガラス多孔質体を充填し、軽量化をはかった場合におい
ても中央の円形開口に生じる集中荷重を極力逃がしつつ
また例え集中荷重が生じてもこれを歪みや鏡面変形が生
じない程度に軽減し得る円輪型反射鏡を提供することが
出来る。
As described above, according to the present invention, even when the inside is filled with a porous silica glass body and the weight is reduced, the concentrated load generated in the central circular opening is relieved as much as possible and the concentrated load is generated again. However, it is possible to provide a ring-shaped reflecting mirror capable of reducing the distortion to such an extent that no distortion or mirror surface deformation occurs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造過程を示す説明図。FIG. 1 is an explanatory view showing a manufacturing process of the present invention.

【図2】保持層としての気泡の状態を示し(A)は独立
気泡(B)は連通気泡の状態を示す。
FIGS. 2A and 2B show a state of bubbles as a holding layer, and FIGS. 2A and 2B show a state of closed cells; FIGS.

【図3】連通気泡の基体を用いた本発明の実施例にかか
るドーナツ型レンズの断面図を示す。
FIG. 3 is a cross-sectional view of a donut-shaped lens according to an embodiment of the present invention using a base having open cells.

【符号の説明】[Explanation of symbols]

11 平面鏡基体(保持体層) 12 カバー体 13 上板 1a 内縁側肉厚 1b 外縁側肉厚11 flat mirror base (holding body layer) 12 cover body 13 upper plate 1a inner edge side thickness 1b outer edge side thickness

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−60909(JP,A) 特表 昭56−500688(JP,A) (58)調査した分野(Int.Cl.6,DB名) G02B 5/08 - 5/10 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-60909 (JP, A) Tokuyo Sho 56-500688 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G02B 5/08-5/10

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 中央部に円形開口(以下内径という)を
有し外径が300mm以上である円輪型反射鏡におい
て、 中央に円形の内径を有する見かけ密度0.1〜0.5g
/cm3の範囲の石英ガラス多孔質体からなる保持体層
を形成し、該保持体層の鏡面側と内径内周側を含む全表
面を所定肉厚の透明石英ガラス層で被覆すると共に、前記保持体層を構成する石英ガラス多孔質体を気孔空隙
体積の80%以上が連通可能な空隙からなり、前記石英
ガラス層の一部に連通可能な空隙部にまで達する貫通手
段を設けた 事を特徴とする円輪型軽量反射鏡。
1. An annular reflector having a circular opening (hereinafter referred to as an inner diameter) in the center and an outer diameter of 300 mm or more, wherein the apparent density is 0.1 to 0.5 g having a circular inner diameter in the center.
/ Cm 3, a holding layer made of a porous quartz glass body was formed, and the entire surface including the mirror side and the inner diameter inner side of the holding layer was formed.
The surface is covered with a transparent quartz glass layer having a predetermined thickness, and the porous quartz glass body constituting the holding body layer is covered with pores.
80% or more of the volume is formed of a communicable void, and the quartz
Penetrating hand that reaches a gap that can communicate with a part of the glass layer
A ring-shaped lightweight reflector with a step .
【請求項2】 前記保持体層の内径を外径に対して1/
3以下に設定し、内径内周面側に少なくとも前記保持体
層より高密度の所定肉厚の単数または複数の円形補強層
を形成し、該円形補強層全体の肉厚を、内径の半径の4
%〜10%に設定した事を特徴とする請求項1記載の
輪型軽量反射鏡。
2. The method according to claim 1, wherein the inner diameter of said holding body layer is 1 / l of the outer diameter.
3 or less, and forming one or more circular reinforcing layers having a predetermined thickness at a higher density than at least the holding body layer on the inner peripheral surface side of the inner diameter, and setting the entire thickness of the circular reinforcing layer to the radius of the inner diameter. 4
The light-weight circular mirror according to claim 1 , characterized in that the ratio is set to 10% to 10%.
【請求項3】 前記保持体層を構成する石英ガラス多孔
質体の空隙を含む該石英ガラス被覆層内部全ての空隙を
少なくとも1300℃以下の温度範囲で大気圧に対して
減圧下に構成した事を特徴とする請求項1記載の円輪型
軽量反射鏡。
Wherein it is constructed in vacuo the atmospheric pressure at a temperature range of at least 1300 ° C. all voids inside the quartz glass coating layer containing voids porous silica glass body constituting the holding body layer The light reflector according to claim 1, characterized in that:
JP23902893A 1993-08-31 1993-08-31 Circular light reflector Expired - Fee Related JP2910022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23902893A JP2910022B2 (en) 1993-08-31 1993-08-31 Circular light reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23902893A JP2910022B2 (en) 1993-08-31 1993-08-31 Circular light reflector

Publications (2)

Publication Number Publication Date
JPH0772314A JPH0772314A (en) 1995-03-17
JP2910022B2 true JP2910022B2 (en) 1999-06-23

Family

ID=17038814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23902893A Expired - Fee Related JP2910022B2 (en) 1993-08-31 1993-08-31 Circular light reflector

Country Status (1)

Country Link
JP (1) JP2910022B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009005400B4 (en) * 2009-01-19 2011-04-07 Schott Ag Substrate for a mirror support, made of glass or glass ceramic
DE102013106612A1 (en) 2013-06-25 2015-01-08 Schott Ag Tool crown and with the tool crown manufacturable glass ceramic product

Also Published As

Publication number Publication date
JPH0772314A (en) 1995-03-17

Similar Documents

Publication Publication Date Title
US5576884A (en) Base body of reflecting mirror and method for preparing the same
US5461511A (en) Base body of a reflecting mirror and method for the preparation thereof
US7766494B1 (en) Light-weight mirror blank assembly
JPH0664205B2 (en) Lightweight mirror made of silicon carbide
CA1041206A (en) Laser tube mirror assembly
JP6249590B2 (en) Substrate with lightweight structure
US20150028176A1 (en) Lightweight carrier structure, particularly for optical components, and method for its production
CN111527447B (en) Color wheel and projector
JP2910022B2 (en) Circular light reflector
JP2884555B2 (en) Lightweight reflector
US4994141A (en) Method of manufacturing a mask support of SiC for radiation lithography masks
JP2628632B2 (en) Crystal structure for X-ray spectroscopy and X-ray analyzer equipped with the crystal structure
US20050085053A1 (en) Method of activating a getter structure
WO2024249043A2 (en) Method of modifying a cte of an ultra low expansion glass body
US8256910B2 (en) Lightweight aerogel-based optical elements
US20060286387A1 (en) Radio wave-transmitting wavelength-selective plate and method for producing same
JP2569234B2 (en) Manufacturing method of lightweight reflector base
EP0411910A2 (en) Lightweight structures and methods for the fabrication thereof
JP2942158B2 (en) Lightweight double-sided mirror
JP2966619B2 (en) Lightweight reflector base
US7145739B1 (en) Lightweight optical mirrors formed in single crystal substrate
JP2580406B2 (en) Method for manufacturing reflector base
US5627872A (en) Stationary exit window for X-ray lithography beamline
JPH05119207A (en) Method for manufacturing lightweight reflector substrate
JP2750229B2 (en) Large and lightweight reflector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990316

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees