Nothing Special   »   [go: up one dir, main page]

JP2906241B2 - Liquid flow type electrolytic cell - Google Patents

Liquid flow type electrolytic cell

Info

Publication number
JP2906241B2
JP2906241B2 JP63304603A JP30460388A JP2906241B2 JP 2906241 B2 JP2906241 B2 JP 2906241B2 JP 63304603 A JP63304603 A JP 63304603A JP 30460388 A JP30460388 A JP 30460388A JP 2906241 B2 JP2906241 B2 JP 2906241B2
Authority
JP
Japan
Prior art keywords
electrode material
porous
electrode
electrolytic cell
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63304603A
Other languages
Japanese (ja)
Other versions
JPH02148658A (en
Inventor
保志 筑木
康広 飯塚
誠 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP63304603A priority Critical patent/JP2906241B2/en
Publication of JPH02148658A publication Critical patent/JPH02148658A/en
Application granted granted Critical
Publication of JP2906241B2 publication Critical patent/JP2906241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レドックスフロー型電池等に使用される液
流通型電解槽に関し、さらに詳しくは炭素質繊維集合体
等の多孔質電極材にて形成された三次元電極を有する液
流通型電解槽に関する。
Description: TECHNICAL FIELD The present invention relates to a liquid flow type electrolytic cell used for a redox flow type battery or the like, and more particularly, to a liquid electrode type electrolytic cell using a porous electrode material such as a carbonaceous fiber aggregate. The present invention relates to a liquid flow type electrolytic cell having a formed three-dimensional electrode.

(従来の技術) 夜間の余剰電力を貯蔵し、これを昼間の需要増大時に
放出して需要の変動に対応させるための電池として、充
電可能な化学電池の一種であるレドックスフロー型電池
が知られている。また、このレドックスフロー型電池
は、太陽光、風力、波力等の自然エネルギーを利用した
発電のバックアップ装置あるいは電気自動車用電源とし
ても開発が進められている。
(Related Art) A redox flow battery, which is a kind of rechargeable chemical battery, is known as a battery for storing surplus electric power at night and releasing it when daytime demand increases to respond to fluctuations in demand. ing. The redox flow battery is also being developed as a backup device for power generation using natural energy such as sunlight, wind, and wave power, or as a power source for electric vehicles.

このレドックスフロー型電池は、電池活物質を外部か
ら供給して電池本体で電気化学的なエネルギー変換を行
なうもので、液流通型電解槽と称される単電池を最小単
位として構成されている。液流通型電解槽における電気
化学反応は、電極表面で起こる不均一相反応であるた
め、一般的には二次元的な電解反応場を伴うことにな
る。電解反応場が二次元的であると、電解槽の単位体積
当たりの反応量が小さいという難点がある。そこで、単
位面積当たりの反応量、すなわち電流密度を増すために
電気化学反応場の三次元化が行われるようになった。
This redox flow type battery supplies a battery active material from the outside and performs electrochemical energy conversion in the battery body, and is configured with a unit cell called a liquid flow type electrolytic cell as a minimum unit. Since the electrochemical reaction in the liquid flowing type electrolytic cell is a heterogeneous phase reaction occurring on the electrode surface, it generally involves a two-dimensional electrolytic reaction field. When the electrolytic reaction field is two-dimensional, there is a disadvantage that the reaction amount per unit volume of the electrolytic cell is small. Therefore, in order to increase the reaction amount per unit area, that is, the current density, the electrochemical reaction field has been made three-dimensional.

第5図(a),(b)は、三次元電極を有する液流通
型電解槽の模式図である。
FIGS. 5A and 5B are schematic diagrams of a liquid flow type electrolytic cell having a three-dimensional electrode.

該電解槽では、相対向する二枚の集電板1、1間にイ
オン交換膜3が配設され、イオン交換膜3の両側に集電
板1、1の内面に沿った電解液の流通路4a、4bが形成さ
れている。該流通路4a、4bの少なくとも一方には炭素繊
維集合体等の多孔質電極材5が配設されており、このよ
うにして三次元電極が構成されている。
In the electrolytic cell, an ion exchange membrane 3 is provided between two opposing current collectors 1, 1, and the electrolyte flows along the inner surfaces of the current collectors 1, 1 on both sides of the ion exchange membrane 3. Roads 4a and 4b are formed. A porous electrode material 5 such as a carbon fiber aggregate is provided in at least one of the flow passages 4a and 4b, and thus a three-dimensional electrode is formed.

レドックスフロー型電池の場合、放電時には電解液と
してCr2+を含む塩化物水溶液が負極側の流通路4aに供給
され、正極側の流通路4bにはFe3+を含む塩化物水溶液が
供給される。負極側の流通路4aではCr2+が電子を放出し
Cr3+に酸化される。放出された電子は外部回路を通って
正極側の流通路4bに送られ該流通路4bに供給されるFe3+
をFe2+に還元する。この酸化還元反応を伴って負極側の
流通路4aではCl-が不足し、正極側の流通路4bではCl-
過剰になる。イオン交換膜3はCl-を正極側の流通路4b
から負極側の流通路4aに移行させる。充電時には、これ
と逆の反応が進行する。流通路4a、4bに多孔質電極材5
が配設されていると、上記酸化還元反応が三次元場で行
われるため電流密度の増加がもたらされる。
In the case of a redox flow battery, during discharge, an aqueous chloride solution containing Cr 2+ is supplied as an electrolytic solution to the flow passage 4a on the negative electrode side, and an aqueous chloride solution containing Fe 3+ is supplied to the flow passage 4b on the positive electrode side. You. Cr 2+ emits electrons in the flow passage 4a on the negative electrode side.
Oxidized to Cr 3+ . The emitted electrons Fe 3+ fed to flow passage 4b is transmitted through an external circuit to the passage 4b of the positive electrode side
To Fe 2+ . With this oxidation-reduction reaction, Cl becomes insufficient in the flow passage 4a on the negative electrode side, and Cl becomes excessive in the flow passage 4b on the positive electrode side. The ion exchange membrane 3 passes Cl - through the flow passage 4b on the positive electrode side.
From the flow passage 4a on the negative electrode side. During charging, the reverse reaction proceeds. Porous electrode material 5 in flow passages 4a and 4b
Is provided, the redox reaction is performed in a three-dimensional field, thereby increasing the current density.

(発明が解決しようとする課題) このような多孔質電極材による三次元電極を有する液
流通型電解槽では、電極内で電極材による通路圧力損失
が不可避に生じる。電極内へは、ポンプで電解液を供給
する関係から、電極内で通液圧力損失が生じると、ポン
プ稼動のためのエネルギー消費量が増加し、電池として
の全エネルギー効率が低下する。三次元電極を形成する
多孔質電極材が同一密度の場合、該三次元電極の厚みを
増加させれば、通液圧力損失を低下させることができ、
ポンプの負荷を小さくすることができる。しかしなが
ら、三次元電極の厚みを増加させることは、電極材の使
用量を増加させることになり、電池のトータルコストを
高めるという新たな問題を発生させる。
(Problems to be Solved by the Invention) In such a liquid flow type electrolytic cell having a three-dimensional electrode made of a porous electrode material, a passage pressure loss due to the electrode material inevitably occurs in the electrode. Since the electrolyte is supplied to the inside of the electrode by the pump, if a liquid passing pressure loss occurs in the electrode, the energy consumption for operating the pump increases, and the total energy efficiency of the battery decreases. If the porous electrode material forming the three-dimensional electrode has the same density, if the thickness of the three-dimensional electrode is increased, it is possible to reduce the liquid passing pressure loss,
The load on the pump can be reduced. However, increasing the thickness of the three-dimensional electrode increases the amount of electrode material used, and raises a new problem of increasing the total cost of the battery.

また、放電を間欠的に行わせるような場合、例えば、
一旦、三次元電極に電解液を供給した後、送液を停止し
て放電し、三次元電極内の電解液の放電反応がある程度
まで進行した後、再び新たな電解液を供給して同様に放
電し、この操作を繰り返して使用するような場合、上記
圧力損失の問題以外に送液停止時における三次元電極内
の電解液の保持量が問題となる。すなわち、一回の放電
時間を長くするため電解液の保持量を増加させるには、
電極組織が同一密度の場合、三次元電極の厚みを増加さ
せる必要があり、このようにすると、やはり上記した圧
力損失の場合と同じく、電池のトータルコスト高を招く
という問題がある。
In the case where discharge is performed intermittently, for example,
Once the electrolytic solution is supplied to the three-dimensional electrode, the supply of liquid is stopped and discharge is performed, and after the discharge reaction of the electrolytic solution in the three-dimensional electrode has progressed to a certain extent, a new electrolytic solution is supplied again and similarly. In the case where discharge is performed and this operation is repeatedly used, in addition to the problem of the pressure loss, the amount of the electrolyte retained in the three-dimensional electrode at the time of stopping the liquid supply becomes a problem. In other words, in order to increase the amount of retained electrolyte in order to lengthen one discharge time,
When the electrode structure has the same density, it is necessary to increase the thickness of the three-dimensional electrode. In this case, similarly to the case of the above-described pressure loss, there is a problem that the total cost of the battery is increased.

本発明は、これらの問題点を解決したものであり、高
価な電極材の使用量を増加することなく、三次元電極に
おける通液圧力損失の低下及び電解液保持量の増加を図
ることができる経済的で高性能な液流通型電解槽を提供
することを目的とするものである。
The present invention has solved these problems, and it is possible to reduce the pressure loss and increase the electrolyte holding amount in the three-dimensional electrode without increasing the amount of expensive electrode material used. It is an object of the present invention to provide an economical and high-performance liquid-flowing electrolytic cell.

(問題点を解決するための手段) 本発明の液流通型電解槽は、間隙を介した状態で対向
して配設された一対の集電板間にイオン交換膜が配設さ
れ、集電板とイオン交換膜との間に形成される電解液の
通液路に多孔質電極材が配設されている液流通型電解槽
であって、該多孔質電極材とイオン交換膜との間に板状
の多孔質絶縁材が該多孔質電極板上の全面にわたって配
設されていることを特徴としており、そのことにより上
記目的が達成される。
(Means for Solving the Problems) In the liquid flow type electrolytic cell of the present invention, an ion exchange membrane is provided between a pair of current collectors disposed to face each other with a gap therebetween. A liquid circulation type electrolytic cell in which a porous electrode material is provided in a flow path of an electrolytic solution formed between the plate and the ion exchange membrane, wherein the porous electrode material is disposed between the porous electrode material and the ion exchange membrane. In this case, a plate-shaped porous insulating material is provided over the entire surface of the porous electrode plate, thereby achieving the above object.

第1図(a)及び(b)は本発明の一実施例を示す液
流通型電解槽の分解斜視図、縦断面を示したものであ
る。
1 (a) and 1 (b) are an exploded perspective view and a vertical cross section of a liquid flow type electrolytic cell showing one embodiment of the present invention.

液流通型電解槽は、所定間隔をおいて平行に配設され
た一対の集電板1、1と、両集電板1、1間に配設され
る一対の額縁状のスペーサー2、2と、両スペーサー
2、2間に配置される一枚のイオン交換膜3とを有して
いる。
The liquid circulation type electrolytic cell includes a pair of current collectors 1 and 1 disposed in parallel at a predetermined interval, and a pair of frame-shaped spacers 2 and 2 disposed between the current collectors 1 and 1. And one ion exchange membrane 3 disposed between the spacers 2 and 2.

集電板1は炭素板、又は炭素材料を混練した導電性合
成樹脂板等で形成され、集電板1の外面側の下部及び上
部には、それぞれ内外面に連通する電解液の導入管11と
導出管12が設けられている。スペーサー2は絶縁材料か
らなり、四角枠状に形成されている。このスペーサー2
内には通液路4a、4bが設けられ、通液路4a、4bには板状
に形成され厚み方向に重ね合わされた多孔質電極材5及
び多孔質絶縁材6が嵌め込まれている。多孔質電極材5
が集電板1側に配置され、多孔質絶縁材6がイオン交換
膜3側に配置されている。多孔質電極材5及び多孔質絶
縁材6の合計厚みは、集電板1及びイオン交換膜3に対
して隙間が形成されないようにスペーサー2の厚みと実
質的に等しく設定されている。また、多孔質電極材5及
び多孔質絶縁材6の両側面はスペーサー2の内側面に密
着し、それらの上下端部、すなわち通液方向におけるそ
れらの上端部と下端部はスペーサー2の内面に密着せ
ず、多孔質電極材5及び多孔質絶縁材6の上端部とスペ
ーサー2の上枠の内面との間、及び多孔質電極材5及び
多孔質絶縁材6の下端部とスペーサー2の下枠の内面と
の間には、隙間13b、13aが形成されている。そして、下
側の間隙13aに上記電解液の導入管11が連通し、上記の
隙間13bに導出管12が連通するようになっており、導入
管11から間隙13aに導入された電解液が多孔質電極材5
及び多孔質絶縁材6内を通り、間隙13bを経て導出管12
から外部へ導出されるように構成されている。なお、多
孔質電極材5及び多孔質絶縁材6の材質、形態は後述す
る。
The current collector plate 1 is formed of a carbon plate or a conductive synthetic resin plate obtained by kneading a carbon material. The lower and upper portions of the outer surface side of the current collector plate 1 have electrolyte introduction pipes 11 communicating with the inner and outer surfaces, respectively. And an outlet pipe 12 are provided. The spacer 2 is made of an insulating material and is formed in a square frame shape. This spacer 2
Liquid passages 4a and 4b are provided therein, and a porous electrode material 5 and a porous insulating material 6 formed in a plate shape and superposed in the thickness direction are fitted into the liquid passages 4a and 4b. Porous electrode material 5
Are arranged on the current collector 1 side, and the porous insulating material 6 is arranged on the ion exchange membrane 3 side. The total thickness of the porous electrode material 5 and the porous insulating material 6 is set substantially equal to the thickness of the spacer 2 so that no gap is formed between the current collector 1 and the ion exchange membrane 3. Also, both side surfaces of the porous electrode material 5 and the porous insulating material 6 are in close contact with the inner surface of the spacer 2, and the upper and lower ends thereof, that is, the upper and lower ends thereof in the liquid flowing direction are on the inner surface of the spacer 2. It does not adhere, and is between the upper end of the porous electrode material 5 and the porous insulating material 6 and the inner surface of the upper frame of the spacer 2, and the lower end of the porous electrode material 5 and the porous insulating material 6 and below the spacer 2. Gaps 13b and 13a are formed between the inner surface of the frame and the inner surface of the frame. Then, the introduction pipe 11 for the electrolytic solution communicates with the lower gap 13a, and the outlet pipe 12 communicates with the gap 13b.The electrolyte introduced from the introduction pipe 11 into the gap 13a is porous. Electrode material 5
And the outlet pipe 12 through the porous insulating material 6 and through the gap 13b.
Is configured to be derived from the outside. The materials and forms of the porous electrode material 5 and the porous insulating material 6 will be described later.

レドックスフロー型電池の場合、該電解槽は単電池と
して使用される。この単電池は複数組み合わせてスタッ
クとされ、さらに複数のスタックでモジュールが構成さ
れる。モジュールはさらに直列接続されてストリングと
され、このストリングが複数並列に組合わされて発電ユ
ニットとされる。これがレドックスフロー型電池で発電
ユニットを構成する場合の基本的な組合わせである。
In the case of a redox flow battery, the electrolytic cell is used as a unit cell. A plurality of such cells are combined into a stack, and a plurality of stacks form a module. The modules are further connected in series to form a string, and the strings are combined in parallel to form a power generation unit. This is a basic combination when a power generation unit is configured by a redox flow battery.

該電解槽において、第1図(b)に示すイオン交換膜
3の図左側を負極、右側を正極とすれば、放電時には負
極側の通電路4aに電解液としてCr2+を含む塩化物水溶液
が供給され、正極側の通液路4bにはFe3+を含む塩化物水
溶液からなる電解液が供給される。いずれの電解液も独
立したタンクに貯蔵されていて、専用のポンプで通液路
4a、4bに循環される。
In this electrolytic cell, if the left side of the ion exchange membrane 3 shown in FIG. 1 (b) is a negative electrode and the right side is a positive electrode, a chloride aqueous solution containing Cr 2+ as an electrolytic solution is supplied to the current path 4a on the negative electrode side during discharging. Is supplied, and an electrolytic solution composed of a chloride aqueous solution containing Fe 3+ is supplied to the liquid passage 4b on the positive electrode side. All electrolytes are stored in independent tanks, and the dedicated pump
Circulated to 4a, 4b.

負極側においては、電解液は導入管11より通液路4aの
隙間13aに入り、通液路4aに配設された多孔質電極材5
及び多孔質絶縁材6を下方から上方へ向けて流通する。
この時、電解液中のCr2+は電子を放出し、Cr3+になる。
放出された電子は多孔質電極材5に補足され集電板1に
集められる。集電板1に集められた電子は外部回路を通
って正極側に向かう。正極側においても、同様にして多
孔質電極材5及び多孔質絶縁材6を下方から上方へ向け
て電解液が流通する。正極側に向かった電子は正極側の
集電板1を経て多孔質電極材5に到達し、該電極材5を
介して電解液中のFe3+をFe2+に還元する。
On the negative electrode side, the electrolytic solution enters the gap 13a of the liquid passage 4a through the introduction pipe 11, and the porous electrode material 5 disposed in the liquid passage 4a.
And the porous insulating material 6 flows upward from below.
At this time, Cr 2+ in the electrolytic solution emits electrons and becomes Cr 3+ .
The emitted electrons are captured by the porous electrode material 5 and collected on the current collector 1. The electrons collected by the current collector 1 pass through the external circuit toward the positive electrode. Similarly, on the positive electrode side, the electrolyte flows from the bottom to the top through the porous electrode material 5 and the porous insulating material 6. The electrons heading to the positive electrode side reach the porous electrode material 5 via the current collector plate 1 on the positive electrode side, and reduce Fe 3+ in the electrolytic solution to Fe 2+ via the electrode material 5.

該電解槽においては、通液路4a、4bの通液方向の断面
積が、多孔質絶縁材6が設けられている分だけ増加して
おり、そのことによって通液圧力損失が低下している。
多孔質絶縁材6が配設されている部分が、仮に空隙の場
合には電解液はこの空隙の部分に集中して流通するた
め、多孔質電極材5は電極としての機能を失うが、空隙
部に多孔質絶縁材6を配設することにより、電解液がこ
の空隙部に集中して流れるのを防止できると共に、多孔
質絶縁材6が拡散槽として機能し、多孔質絶縁材6を通
過する電解液を隣接する多孔質電極材5の方へも拡散さ
せることができ、酸化還元効率等の電気化学的な反応効
率の低下が防止される。従って、多孔質絶縁材6を設け
る分だけ圧力損失の低下が素子され、且つ電解液の保液
量が増加することになる。
In the electrolytic cell, the cross-sectional area of the liquid passages 4a and 4b in the liquid passage direction is increased by the provision of the porous insulating material 6, thereby decreasing the liquid passage pressure loss. .
If the portion where the porous insulating material 6 is provided is a void, the electrolyte flows intensively in the void, so that the porous electrode material 5 loses its function as an electrode. By arranging the porous insulating material 6 in the portion, it is possible to prevent the electrolytic solution from flowing intensively in the void portion, and the porous insulating material 6 functions as a diffusion tank and passes through the porous insulating material 6. The electrolyte solution to be diffused can also be diffused toward the adjacent porous electrode material 5, and a reduction in electrochemical reaction efficiency such as oxidation-reduction efficiency is prevented. Accordingly, the pressure loss is reduced by the provision of the porous insulating material 6, and the amount of retained electrolyte is increased.

多孔質電極材5での酸化還元反応によって正極側で増
加したCl-はイオン交換膜3を通してCl-の減少した負極
側に移動する。Cl-を移動させる代わりにH+を負極側か
ら正極側に移動させてもよい。充電時には上記とは逆の
反応が進行する。
The Cl increased on the positive electrode side by the oxidation-reduction reaction in the porous electrode material 5 moves to the negative electrode side on which Cl has been reduced through the ion exchange membrane 3. Instead of moving Cl , H + may be moved from the negative electrode side to the positive electrode side. At the time of charging, the reverse reaction proceeds.

次に、本発明の電解槽に使用される多孔質電極材5及
び多孔質絶縁材6の形態、材質を詳細に説明する。
Next, the form and material of the porous electrode material 5 and the porous insulating material 6 used in the electrolytic cell of the present invention will be described in detail.

本発明の電解槽に使用される多孔質電極材としては、
炭素質繊維集合体が代表的である。炭素質繊維集合体
は、炭化可能な原料繊維、例えば石炭、石油から得られ
たピッチ、フェノールノボラック系、アクリル系、芳香
族ポリアミド系、セルロース系等の繊維を原料とする不
織布又は紡績糸やフィラメント集束糸を、編地、織物、
ひも状物に加工した後、炭化することにより得られる。
又は炭化した繊維、糸を用いて上記組織に加工すること
によっても得られる。
As the porous electrode material used in the electrolytic cell of the present invention,
A carbonaceous fiber aggregate is typical. The carbonaceous fiber aggregate is made of non-woven fabric or spun yarn or filament made from carbonizable raw material fibers, such as coal, pitch obtained from petroleum, phenol novolak, acrylic, aromatic polyamide, or cellulose fibers. Knitted fabric, woven fabric,
It is obtained by processing into a string and then carbonizing.
Alternatively, it can also be obtained by processing into the above structure using carbonized fibers or yarns.

炭化処理は、常法によるが、不織布、偏地、織物、又
は糸、フィラメント集束糸に、必要に応じて耐炎化処理
を施し、次いで不活性雰囲気中で500℃、好ましくは100
0℃以上で加熱するのが一般的である。
The carbonization treatment is performed according to a conventional method, but the nonwoven fabric, the uneven ground, the woven fabric, or the yarn, the filament bundle is subjected to an anti-oxidation treatment as necessary, and then 500 ° C in an inert atmosphere, preferably 100 ° C.
It is common to heat above 0 ° C.

この炭化処理により得られた炭素質繊維が、X線広角
解折で求めた〈002〉間隔(d002)が平均3.70Å以下の
凝黒鉛微結晶構造を有していれば、この炭素質繊維から
なる集合体を三次元電極として使用したとき、充電時の
負極における水素発生量が抑制され、電流効率が著しく
向上する。そして、上記の炭化処理の後、さらに1×10
-2torr以上の酸素分圧を有する酸素雰囲気下で加熱し
て、重量収率65〜99%となるように乾式酸化処理を施し
た場合はESCA表面分析によって求めた繊維表面の結合酸
素原子数の炭素原子数に対する割合、すなわち、O/C比
が3%以上になる。こうなると、炭素質繊維表面に電気
化学反応に有効な含酸素官能基が形成されるため、電気
化学反応速度が著しく上昇し、セル抵抗が減少する。
If the carbonaceous fiber obtained by this carbonization treatment has a graphite microcrystal structure with an average (002) interval (d002) of 3.70 ° or less as determined by X-ray wide angle analysis, When such an aggregate is used as a three-dimensional electrode, the amount of hydrogen generated at the negative electrode during charging is suppressed, and the current efficiency is significantly improved. After the above carbonization treatment, 1 × 10
-2 The number of bound oxygen atoms on the fiber surface determined by ESCA surface analysis when heated in an oxygen atmosphere with an oxygen partial pressure of torr or more and subjected to dry oxidation treatment so that the weight yield is 65 to 99%. Of the number of carbon atoms, that is, the O / C ratio becomes 3% or more. In this case, an oxygen-containing functional group effective for the electrochemical reaction is formed on the surface of the carbonaceous fiber, so that the electrochemical reaction rate is significantly increased and the cell resistance is reduced.

また、硼素化合物の添着もセル抵抗の抑制に効果的で
ある。すなわち、該炭化処理前の不織布、編地、織物、
ひも状物又は、糸、フィラメント集束糸に、ほう酸、ほ
う酸縁、酸化ホウ素、ほう酸トリブチル、ほう酸トリプ
ロピル、ほう酸トリフェニル等のほう素化合物を添着さ
せるか、又は低温炭化を行った後の不織布、編地、織
物、ひも状物又は、糸、フィラメント集束糸に上記ほう
素化合物を添着する。しかる後、高温処理を行って得ら
れた炭素質繊維中に0.01〜50重量%のほう素を含有させ
る。この場合は電池の充放電を繰返した際の経時変化に
おいてセル抵抗の増加が防止される。
The addition of a boron compound is also effective in suppressing the cell resistance. That is, the non-woven fabric, knitted fabric, woven fabric before the carbonization treatment,
String-like material, yarn, filament bundled yarn, boric acid, boric acid edge, boron oxide, tributyl borate, tripropyl borate, or a boron compound such as triphenyl borate, or non-woven fabric after low-temperature carbonization, The above-mentioned boron compound is impregnated to a knitted fabric, a woven fabric, a string-like material, a yarn, or a bundle of filaments. Thereafter, 0.01 to 50% by weight of boron is contained in the carbonaceous fiber obtained by performing the high-temperature treatment. In this case, an increase in cell resistance due to a change with time when the battery is repeatedly charged and discharged is prevented.

本発明の電解槽に使用される多孔質絶縁材とは、例え
ば、繊維状の絶縁材料を不織布、編地、織物、紙状物に
加工したも、粉末状の絶縁材料を成形加工したもの、あ
るいはこれらを組み合わせた形態を有するものである。
多孔質絶縁材の材質については、電解液に対して化学的
かつ電気化学的に安定で上記形態に加工可能であれば、
特に限定されるものではない。例えば、ポリエチレン、
ポリプロピレンなどのポリオレフィン、フェノールノボ
ラック、ポリアミド、ポリエステル等の有機物やガラス
繊維、岩石繊維、あるいはシリカ、アルミナなどのセラ
ミックスが挙げられるが、特に安価なポリオレフィン、
フェノールノボラック、ガラス繊維やロックウールが好
ましい。
The porous insulating material used in the electrolytic cell of the present invention is, for example, a non-woven fabric, a knitted fabric, a woven fabric, which is processed into a fibrous insulating material, or a molded product of a powdered insulating material, Alternatively, it has a form in which these are combined.
As for the material of the porous insulating material, if it is chemically and electrochemically stable with respect to the electrolytic solution and can be processed into the above-described form,
There is no particular limitation. For example, polyethylene,
Polyolefins such as polypropylene, phenol novolaks, polyamides, organic materials such as polyester, glass fibers, rock fibers, or silica, ceramics such as alumina, but particularly inexpensive polyolefins,
Phenol novolak, glass fiber and rock wool are preferred.

多孔質絶縁材における空隙率は60%以上が好ましい。
空隙率が60%未満になると、多孔質電極材からイオン交
換膜への電解液中のイオンの移動が抑制され、セル抵抗
が増加したり、電解液の保持量が減少するなどの弊害が
生じることがある。なお、多孔質電極材側への電解液の
拡散を促進するために、該多孔質絶縁材の厚み方向に密
度勾配を持たせてもよい。
The porosity of the porous insulating material is preferably 60% or more.
When the porosity is less than 60%, the movement of ions in the electrolyte from the porous electrode material to the ion exchange membrane is suppressed, and adverse effects such as an increase in cell resistance and a decrease in the amount of retained electrolyte are caused. Sometimes. In order to promote the diffusion of the electrolytic solution to the porous electrode material side, a density gradient may be provided in the thickness direction of the porous insulating material.

次に、本発明の電解槽における多孔質絶縁材の有効性
を定量的に説明する。
Next, the effectiveness of the porous insulating material in the electrolytic cell of the present invention will be quantitatively described.

上述した乾式酸化処理を施した炭素質繊維の平織物を
緯糸方向に10cm、経糸方向に1cmの有効面積10cm2に切り
抜き、これを積層して種々の厚みに調整し、通液圧力損
失を上記した測定法により測定した結果を第2図に示
す。なお、用いた炭素質繊維織物の目付量は98/m2で、
厚みは0.37mmであった。また、通液圧力損失測定の際に
は、該炭素質繊維織物の積層厚みの0.9倍の厚みを有す
るスペーサを用いた。第2図に示す通り、炭素質繊維織
布からなる多孔質電極材の厚みを増す程、通液圧力損失
は低下するが、逆に電極材の使用量は大幅に増加してい
く。
The above-mentioned plain woven fabric of the carbonaceous fiber subjected to the dry oxidation treatment is cut into an effective area of 10 cm 2 of 10 cm in the weft direction and 1 cm in the warp direction, and is laminated and adjusted to various thicknesses. FIG. 2 shows the results measured by the measurement method described above. Incidentally, the basis weight of the carbonaceous fiber fabric used was 98 / m 2,
The thickness was 0.37 mm. In addition, a spacer having a thickness of 0.9 times the lamination thickness of the carbonaceous fiber woven fabric was used in the measurement of the liquid passing pressure loss. As shown in FIG. 2, as the thickness of the porous electrode material made of the carbonaceous fiber woven fabric increases, the liquid passing pressure loss decreases, but on the contrary, the amount of the electrode material used greatly increases.

一方、通液圧損測定セルを用いて上述の測定法により
測定したセル抵抗と電極材厚みの関係を第3図に示す。
この関係より、セル抵抗の電極材厚み、すなわち、単位
電極幾何面積当たりの電極使用量(目付量)への依存性
は、通液圧力損失に比べ非常に小さいことがわかる。換
言すれば、電解液の流量が同じ場合、電極材の使用量を
増加して厚みを増加させてもセル抵抗への寄与は小さい
と言える。ただし、電極材の厚みを極端に薄くしたり、
極端に粗な組織を用いて密度を小さくしたりすると、絶
対的な電極有効面積が不足して電極性能を低下させるこ
とになるので、電極材の目付量は組織にもよるが、通常
は100g/m2以上が必要である。
On the other hand, FIG. 3 shows the relationship between the cell resistance and the thickness of the electrode material measured by the above-described measuring method using the liquid pressure loss measuring cell.
From this relationship, it can be seen that the dependence of the cell resistance on the electrode material thickness, that is, on the amount of electrode used per unit electrode geometrical area (basis weight) is much smaller than that of the liquid passing pressure loss. In other words, when the flow rate of the electrolytic solution is the same, it can be said that the contribution to the cell resistance is small even when the thickness of the electrode material is increased by increasing the use amount of the electrode material. However, if the thickness of the electrode material is extremely thin,
If the density is reduced by using an extremely coarse structure, the absolute electrode effective area will be insufficient and the electrode performance will be reduced.Therefore, the basis weight of the electrode material depends on the structure, but is usually 100 g. / m 2 or more is required.

また、上記炭素質繊維平織物を2枚積層して、スペー
サ厚みを変化させたときのスペーサー厚みとセル抵抗と
の関係を第4図に示す。この場合、電極材の集電板への
接触抵抗の差をなくすため、該炭素質繊維平織物の一層
面を導電性プラスチックからなる集電板へ熱圧着して測
定を行った。第4図の結果から、電極材厚みよりスペー
サ厚が大きくなると、通液圧力損失は減少するが、セル
抵抗は急激に増大し、スペーサ厚みが電極材厚みの1.5
倍以上になるとほとんど測定が不可能になり、もはや電
極材としての機能を消失することがわかる。
FIG. 4 shows the relationship between the thickness of the spacer and the cell resistance when the thickness of the spacer is changed by laminating two carbon fiber plain fabrics. In this case, in order to eliminate the difference in the contact resistance between the electrode material and the current collector, one layer of the carbonaceous fiber plain woven fabric was thermocompression-bonded to the current collector made of conductive plastic, and the measurement was performed. From the results shown in FIG. 4, it can be seen that when the spacer thickness is larger than the electrode material thickness, the liquid passing pressure loss decreases, but the cell resistance sharply increases, and the spacer thickness becomes 1.5 times the electrode material thickness.
It can be seen that when the ratio is twice or more, the measurement becomes almost impossible, and the function as the electrode material is lost.

この減少は、電極材よりもスペーサー厚みを大きくす
ると、イオン交換膜と電極材との間に、空間を生じ、こ
の空間部分の通液厚力損失が電極材の通液厚力損失に比
べ極めて小さくなるため、電解液がこの空間部分を優先
的に流れ、電極材部分へ電解液の供給が有効に行われな
くなるためと理解される。
If the thickness of the spacer is made larger than that of the electrode material, a space is created between the ion exchange membrane and the electrode material, and the loss of liquid passing through this space is much smaller than that of the electrode material. It is understood that the electrolyte solution flows preferentially in this space due to the reduction in size, and the supply of the electrolyte solution to the electrode material portion is not effectively performed.

以上のことから、第1図に示すように多孔質電極材5
とイオン交換3との間にガラス繊維不織布などの多孔質
絶縁材6を配設することにより、電極材5の使用量を増
加させることなく、電解槽の通液路の断面積を増加させ
ることができ、電解液の通液圧力損失を低下させること
ができるのである。しかも、該多孔質絶縁材6が電解液
の拡散層としても働くために、多孔質電極材5への電解
液の拡散供給を促進し、セル抵抗が増加するのを防止す
ることができる。また、多孔質絶縁材6にも電解液が保
持されるため、間欠放電時における放電時間を長くする
ことができる。本発明では特性を<002>面間隔、O/C
比、セル電流効率、セル抵抗、通液圧力損失、間欠放電
時間で評価しているので、評価法について予め説明す
る。
From the above, as shown in FIG.
By disposing a porous insulating material 6 such as a glass fiber nonwoven fabric between the ion-exchange 3 and the ion-exchange 3, the cross-sectional area of the passage of the electrolytic cell can be increased without increasing the amount of the electrode material 5 used. Thus, the pressure loss caused by passing the electrolytic solution can be reduced. In addition, since the porous insulating material 6 also functions as a diffusion layer for the electrolyte, it is possible to promote the supply of the electrolyte to the porous electrode material 5 and prevent the cell resistance from increasing. Further, since the electrolytic solution is also held in the porous insulating material 6, the discharge time during intermittent discharge can be lengthened. In the present invention, the characteristics are <002> spacing, O / C
Since the evaluation is made based on the ratio, cell current efficiency, cell resistance, liquid passing pressure loss, and intermittent discharge time, the evaluation method will be described in advance.

(a)<002>面間隔 炭素質繊維製の糸又は編織物をメノウ乳鉢で粉末化
し、試料に対して5〜10重量%のX線標準用高純度シリ
コン粉末を内部標準物質として加えて混合し、試料セル
に詰め、CuKα線を線源とし、透過型デイフラクトメー
ター法によって広角X線回折曲線を測定する。曲線の補
正には、いわゆるローレンツ、偏光因子、吸収因子、原
子散乱因子等に関する補正は行わず、次の簡便法を用い
る。すなわち、<002>回折に相当するピークのベース
ラインを引き、ベースラインからの実質強度をプロット
し直して<002>補正強度曲線を得る。この曲線のピー
ク高さの2/3の高さに引いた角度軸に平行な線が上記の
補正強度曲線と交わる線分の中点を求め、中点の角度を
内部標準で補正し、これを回折角の2倍とし、CuKαの
波長λとから下記Braggの式によって<002>面間隔d002
を求める。
(A) <002> Spacing The carbonaceous fiber yarn or knitted fabric is powdered in an agate mortar, and 5 to 10% by weight of the sample is mixed with high purity silicon powder for X-ray standard as an internal standard substance. Then, the sample is packed in a sample cell, and a wide-angle X-ray diffraction curve is measured by a transmission diffractometer using CuKα radiation as a radiation source. For the correction of the curve, the following simple method is used without correcting so-called Lorentz, polarization factor, absorption factor, atomic scattering factor and the like. That is, a baseline of the peak corresponding to the <002> diffraction is drawn, and the substantial intensity from the baseline is re-plotted to obtain a <002> corrected intensity curve. Find the midpoint of a line where the line parallel to the angle axis drawn to 2/3 of the peak height of this curve intersects the above corrected intensity curve, correct the angle of the midpoint with the internal standard, Is twice the diffraction angle, and the <002> plane spacing d 002 is calculated from the wavelength λ of CuKα and the following Bragg equation.
Ask for.

(ただし、λ:1.5418Å、θ:回折角) (b)O/C比 ESCA又はXPと略称されているX線光電子分光法によっ
て測定する。O/C比の測定には島津ESCA750を用い、ESCA
PAC760で解析した。具体的には各試料を6mm径に打ち抜
き、両面テープによって加熱式試料台に貼り付け分析に
供した。ただし、測定前に試料を120℃に加熱し、3時
間以上真空脱気した。線源にはMgKα線(1253.6eV)を
用い、装置内真空度は10-7torrに設定した。測定は、Cl
s,Olsピークに対して行い、各ピークをESCAPAC760(J.
H.Scofieldによる補正法に基づく)を用いて補正解析
し、各ピーク面積を求め、得られた面積はClsについて
は1.00、Olsに対して2.85の相対強度に乗じたものであ
り、その面積から直接表面(酸素/炭素)原子数比を%
で算出する。
(However, λ: 1.5418 °, θ: diffraction angle) (b) O / C ratio Measured by X-ray photoelectron spectroscopy, abbreviated as ESCA or XP. Shimadzu ESCA750 was used to measure the O / C ratio.
Analyzed with PAC760. Specifically, each sample was punched out to a diameter of 6 mm, attached to a heated sample stand with a double-sided tape, and provided for analysis. However, before the measurement, the sample was heated to 120 ° C. and evacuated for 3 hours or more. MgKα radiation (1253.6 eV) was used as the radiation source, and the degree of vacuum in the apparatus was set to 10 −7 torr. Measure Cl
s, Ols peaks, each peak is ESCAPAC760 (J.
H. Scofield) (based on the correction method), the peaks were obtained and the area obtained was obtained by multiplying the relative intensity of 1.00 for Cls and 2.85 for Ols. Direct surface (oxygen / carbon) atomic ratio%
Is calculated by

(c)セル電流効率 第1図に示すように、上下方向(通液方向)に10cm、
幅方向に1cmの有効電極面積10cm2を有する小型の流通型
電解槽を作り、定電流密度で充放電を繰り返し、電極性
能のテストを行う。正極には塩化第一鉄、塩化第二鉄濃
度各1M/の4N塩酸酸性水溶液を用い、正極液量は負極
液量に対して大過剰とし、負極特性を中心に検討できる
ようにした。液流量は毎分4.5mlに設定し、電流密度は4
0mA/cm2に設定し、充電に始まり放電で終わる1サイク
ルのテストにおいて、1.2Vまでの充電に要した電気量Q1
クローン、続く0.2Vまでの定電流放電、及びこれに続く
0.8Vでの定電位放電で取り出した電気量をそれぞれQ2
ローン、Q3クローンとし、次式で電流効率を求める。
(C) Cell Current Efficiency As shown in FIG.
A small flow-type electrolytic cell having an effective electrode area of 10 cm 2 in the width direction is made, and charge and discharge are repeated at a constant current density to test the electrode performance. For the positive electrode, a 4N hydrochloric acid aqueous solution having a concentration of ferrous chloride and ferric chloride of 1 M / each was used. The liquid flow rate was set to 4.5 ml per minute and the current density was 4
Set to 0 mA / cm 2 , in one cycle test starting from charging and ending with discharging, the amount of electricity Q 1 required for charging up to 1.2 V
Clone followed by constant current discharge to 0.2V, followed by
And the quantity of electricity taken out at a constant potential discharge at 0.8V and Q 2 clones respectively, and Q 3 clones, obtaining the current efficiency by the following equation.

充電時にCr3+からCr2+への還元以外の反応、例えばH+
の還元等の副反応が起こると、取り出せる電気量が減
り、電流効率は減少する。
Reactions other than the reduction of Cr 3+ to Cr 2+ during charging, such as H +
When a side reaction such as reduction occurs, the amount of electricity that can be extracted decreases, and the current efficiency decreases.

(d)セル抵抗 負極液中のCr3+をCr2+に完全に還元するのに必要な理
論電気量Qthに対して、放電途中までに取り出した電気
量の比を充電率とし、 充電率が50%のときの電流・電圧曲線の傾きから電極
幾何面積に対するセル抵抗(Ωcm2)を求める。セル抵
抗が小さい程、電極でのイオンの酸化還元反応は速やか
に起こり、高電流密度での放電電位は高く、セルの電圧
効率が高く、優れた電極と判断される。なお、上記のセ
ル電流効率及びセル抵抗のテストは40℃で行なった。
(D) Cell resistance The ratio of the quantity of electricity taken out during the discharge to the theoretical quantity of electricity Qth required to completely reduce Cr 3+ in the negative electrode solution to Cr 2+ is defined as the charge rate, The cell resistance (Ωcm 2 ) with respect to the electrode geometric area is obtained from the slope of the current / voltage curve when the charging rate is 50%. The smaller the cell resistance, the quicker the oxidation-reduction reaction of ions at the electrode, the higher the discharge potential at a high current density, the higher the cell voltage efficiency, and the cell is judged to be an excellent electrode. The above cell current efficiency and cell resistance tests were performed at 40 ° C.

(e)通液圧力損失 第1図に示す電解槽の正負両極の電解液導入管及び導
出管流通路に水銀マノメータを取り付け、室温下、毎分
4.5mlの速度で電解液を流し、正負両極の圧力の平均値
から電極に入れないときのブランク圧力損失を差し引い
て電極部分にかかる通液圧力損失を求める。
(E) Flow pressure loss A mercury manometer was attached to the positive and negative electrolytic solution inlet and outlet flow passages of the electrolytic cell shown in FIG.
The electrolyte is allowed to flow at a rate of 4.5 ml, and the pressure loss through the electrode is calculated by subtracting the blank pressure loss when the electrode is not inserted from the average of the positive and negative electrode pressures.

(f)間欠放電時間 セル電流効率の測定に用いた電解槽で、同様に1.20V
まで、電流密度40mA/cm2で定電流充電を行った後、電解
後の送液を停止して、電流密度20mA/cm2まで0.2Vまで放
電を行い、この時の放電に要した時間を測定した。電極
部分への電解液の放電時間が長い程、電解液の保持量が
多く、間欠放電の繰り返し操作が軽減できる。
(F) Intermittent discharge time The electrolytic cell used to measure the cell current efficiency.
Until, after the constant current charge at a current density of 40 mA / cm 2, to stop the feed solution after electrolysis, was discharged to 0.2V until the current density 20 mA / cm 2, the time required for discharge at this time It was measured. As the discharge time of the electrolytic solution to the electrode portion is longer, the amount of the electrolytic solution held is larger, and the repeated operation of intermittent discharge can be reduced.

(作用) イオン交換膜と多孔質電極材との間に配設された多孔
質絶縁材は、次のように機能する。
(Operation) The porous insulating material provided between the ion exchange membrane and the porous electrode material functions as follows.

第1に、電極材の使用量が増加することなく、多孔質
絶縁材の分だけ通液路の断面積を増加することができる
ので、その結果通液圧力損失が低下し、且つ電解液の保
持量が増大する。
First, the cross-sectional area of the liquid passage can be increased by the amount of the porous insulating material without increasing the amount of the electrode material used. As a result, the pressure loss of the liquid passage is reduced, and the amount of the electrolyte solution is reduced. Retention increases.

第2に、多孔質絶縁材は電解液の通路を形成すると同
時に、電解液の流通に対して適度の抵抗を示すので、電
解液の有効な拡散層としても機能する。
Secondly, the porous insulating material forms a passage for the electrolytic solution and at the same time has an appropriate resistance to the flow of the electrolytic solution, so that it functions as an effective diffusion layer for the electrolytic solution.

すなわち、通液路を通過する電解液は多孔質絶縁材側
へ集中して流通することはなく、多孔質電極材側へも効
果的に拡散供給され、そのことにより酸化還元反応効率
の低下が防止される。
That is, the electrolytic solution passing through the liquid passage is not concentrated and circulated to the porous insulating material side, but is also effectively diffused and supplied to the porous electrode material side, thereby lowering the oxidation-reduction reaction efficiency. Is prevented.

第3に、多孔質絶縁材がイオン交換膜側へ設けられて
いて集電板側には多孔質電極材が配設されているので、
集電板への集電効率は低下しない。
Third, since the porous insulating material is provided on the ion exchange membrane side and the porous electrode material is provided on the current collector plate side,
The current collection efficiency to the current collector does not decrease.

第4に、多孔質絶縁材は多孔質電極材に比べて非常に
安価であり、その使用によるコスト増は僅かである。
Fourth, the porous insulating material is very inexpensive as compared with the porous electrode material, and the cost increase due to its use is small.

(実施例) 比較例 フェノールノボラック繊維の20番手紡績糸の双糸を用
い、織密度がインチ間当り緯糸47本、経糸45本である平
織物を製織した。これを不活性ガス中で室温から850℃
まで1時間30分かけて昇温し、1時間保持した後、毎時
600℃の昇温速度で2000℃まで昇温し、さらに30分間保
持して炭素化し、冷却後に炭素質繊維製平織物を得た。
(Example) Comparative Example A plain woven fabric having a weft density of 47 weft yarns and 45 warp yarns per inch was woven using a twentieth yarn of phenol novolak fiber, which is a 20th spun yarn. This is heated from room temperature to 850 ° C in an inert gas
Up to 1 hour and 30 minutes, hold for 1 hour
The temperature was raised to 2000 ° C. at a temperature rising rate of 600 ° C., and further kept for 30 minutes for carbonization, and after cooling, a carbon fiber plain woven fabric was obtained.

次いで、この平織物を空気中で700℃に加熱し、10分
間保持して酸化処理を行い、目付量168g/m2、厚さ95mm
の多孔質電極材得た。X線解析による多孔質電極材の<
002>面間隔は3.62Å、ESCAによるO/C比は、8.1%であ
った。
Next, the plain fabric was heated to 700 ° C. in the air, kept for 10 minutes to perform an oxidation treatment, and a basis weight of 168 g / m 2 and a thickness of 95 mm.
Of a porous electrode material was obtained. X-ray analysis of porous electrode material <
002> The spacing was 3.62mm, and the O / C ratio by ESCA was 8.1%.

この多孔質電極材を緯糸方向に10cm、経糸方向に1cm
の大きさで2枚の試験片を切り出し、厚さ0.45mmのスペ
ーサーを用いて電極テストを行ったところ、セル抵抗1.
82Ωcm2、電流効率97.5%、通液圧力損失338mmHg、間欠
放電時間1.4分(16.8クローン)であった。
This porous electrode material is 10 cm in the weft direction and 1 cm in the warp direction.
Two test pieces were cut out in the size of, and an electrode test was performed using a spacer having a thickness of 0.45 mm.
82 Ωcm 2 , current efficiency 97.5%, liquid pressure drop 338 mmHg, intermittent discharge time 1.4 minutes (16.8 clones).

実施例 厚さ1.5mmのスペーサーを用い、上記多孔質電極材と
イオン交換膜との間に、多孔質電極材として正負両極側
共、目付量100g/m2、厚さ3.5mm、空隙率98.9%のガラス
繊維不織布を圧縮して介在させ、同様の電極テストを行
った。なお、スペーサー内に設置させたときの該ガラス
繊維不織布の空隙率は、96.0%であった。測定の結果、
セル抵抗1.83Ωcm2、電流効率97.9%、通液圧力損失27m
mHg、間欠放電時間5.1分(61.2クローン)であった。
Example Using a spacer having a thickness of 1.5 mm, between the porous electrode material and the ion exchange membrane, both the positive and negative electrode sides as a porous electrode material, a basis weight of 100 g / m 2 , a thickness of 3.5 mm, a porosity of 98.9 % Of glass fiber nonwoven fabric was compressed and interposed, and the same electrode test was performed. The porosity of the glass fiber nonwoven fabric when installed in the spacer was 96.0%. As a result of the measurement,
Cell resistance 1.83Ωcm 2 , Current efficiency 97.9%, Fluid pressure loss 27m
mHg, intermittent discharge time was 5.1 minutes (61.2 clones).

すなわち、本発明の実施例では、比較例に比べ同一量
の炭素質繊維集合体よりなる多孔質電極材を用いたにも
関わらず、通液圧力損失は1/10以下と著しく低く、ま
た、電解液保持量の増加に伴う間欠放電時間は約3.6倍
という高い値を得た。またセル抵抗は実質的に同一であ
った。
That is, in Examples of the present invention, despite the use of a porous electrode material made of the same amount of carbonaceous fiber aggregates as compared with the Comparative Example, the liquid passing pressure loss was significantly lower than 1/10, and The intermittent discharge time with the increase of the electrolyte holding amount was as high as about 3.6 times. The cell resistance was substantially the same.

(発明の効果) 本発明は、このように多孔質電極材とイオン交換膜と
の間に多孔質絶縁材を配設しているので、電極材の使用
量を増加することなく、通液圧力損失を著しく低下さ
せ、通液に要するポンプ駆動エネルギー等を低下させる
ことができて、全エネルギー効率を大幅に向上させるこ
とができる。また、電解液保持量も増加させることがで
きるため、間欠放電における1回の放電時間(放電容
量)を大幅に増加させることができる。しかし、上記多
孔質絶縁材は多孔質電極への電解液拡散を促進し、電気
化学反応効率の低下を生じさせることもない。さらに、
多孔質絶縁材は多孔質電極材に比べて安価であるので、
その使用は電池のトータルコストをわずかしか上昇させ
ない。従って、本発明の電解槽は、例えば、レドックス
フロー型電池に使用して全エネルギー効率及び経済性を
著しく向上させることができる。
(Effect of the Invention) According to the present invention, since the porous insulating material is disposed between the porous electrode material and the ion exchange membrane, the liquid passing pressure can be increased without increasing the usage of the electrode material. The loss can be significantly reduced, and the pump driving energy and the like required for liquid passing can be reduced, and the overall energy efficiency can be greatly improved. In addition, since the amount of retained electrolyte can be increased, a single discharge time (discharge capacity) in intermittent discharge can be significantly increased. However, the porous insulating material promotes the diffusion of the electrolytic solution to the porous electrode, and does not cause a reduction in electrochemical reaction efficiency. further,
Since porous insulating material is cheaper than porous electrode material,
Its use only slightly increases the total cost of the battery. Therefore, the electrolytic cell of the present invention can be used for, for example, a redox flow type battery to significantly improve overall energy efficiency and economy.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)(b)は本発明の一実施例を示す液流通型
電解槽の分解斜視図及び縦断面図、第2図は多孔質電極
材厚みと、通液圧力損失及び電極材重量との関係を示す
グラフ、第3図は多孔質電極材厚みとセル抵抗との関係
を示すグラフ、第4図はスペーサー厚みと、セル抵抗及
び通液圧力損失との関係を示すグラフ、第5図(a)
(b)は液流通型電解槽の基本構造を示す模式図であ
る。 1……集電板、3……イオン交換膜、4a、4b……通液
路、5……多孔質電極材、6……多孔質絶縁材。
1 (a) and 1 (b) are an exploded perspective view and a longitudinal sectional view of a liquid flow type electrolytic cell showing one embodiment of the present invention, and FIG. FIG. 3 is a graph showing the relationship between the thickness of the porous electrode material and the cell resistance, FIG. 4 is a graph showing the relationship between the thickness of the spacer, the cell resistance and the pressure loss through the liquid, and FIG. Fig. 5 (a)
(B) is a schematic diagram showing a basic structure of a liquid flowing electrolytic cell. 1 ... current collecting plate, 3 ... ion exchange membrane, 4a, 4b ... liquid passage, 5 ... porous electrode material, 6 ... porous insulating material.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 8/00 - 8/02 H01M 8/08 - 8/24 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) H01M 8/00-8/02 H01M 8/08-8/24

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】間隙を介した状態で対向して配設された一
対の集電板間にイオン交換膜が配設され、集電板とイオ
ン交換膜との間に形成される電解液の通液路に多孔質電
極材が配設されている液流通型電解槽であって、該多孔
質電極材とイオン交換膜との間に板状の多孔質絶縁材が
該多孔質電極板上の全面にわたって配設されていること
を特徴とする液流通型電解槽。
An ion exchange membrane is disposed between a pair of current collectors disposed opposite each other with a gap therebetween, and an electrolyte formed between the current collector and the ion exchange membrane is formed. A liquid-flowing electrolytic cell in which a porous electrode material is provided in a liquid passage, wherein a plate-shaped porous insulating material is provided between the porous electrode material and the ion exchange membrane on the porous electrode plate. A liquid flow type electrolytic cell, which is disposed over the entire surface of the electrolytic cell.
JP63304603A 1988-11-30 1988-11-30 Liquid flow type electrolytic cell Expired - Fee Related JP2906241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63304603A JP2906241B2 (en) 1988-11-30 1988-11-30 Liquid flow type electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63304603A JP2906241B2 (en) 1988-11-30 1988-11-30 Liquid flow type electrolytic cell

Publications (2)

Publication Number Publication Date
JPH02148658A JPH02148658A (en) 1990-06-07
JP2906241B2 true JP2906241B2 (en) 1999-06-14

Family

ID=17934995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63304603A Expired - Fee Related JP2906241B2 (en) 1988-11-30 1988-11-30 Liquid flow type electrolytic cell

Country Status (1)

Country Link
JP (1) JP2906241B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8808888B2 (en) * 2010-08-25 2014-08-19 Applied Materials, Inc. Flow battery systems
JP2013065530A (en) * 2011-09-20 2013-04-11 Sumitomo Electric Ind Ltd Redox flow battery
DE102012017306A1 (en) * 2012-09-03 2014-03-06 Thyssenkrupp Uhde Gmbh Electrochemical cell of flow type
WO2017022564A1 (en) * 2015-07-31 2017-02-09 東洋紡株式会社 Carbon electrode material for redox batteries
KR20180080318A (en) * 2015-11-18 2018-07-11 아발론 배터리 (캐나다) 코포레이션 Electrode Assembly and Flow Battery with Improved Electrolyte Distribution
US20190198904A1 (en) * 2016-09-02 2019-06-27 Showa Denko K.K. Redox flow secondary battery and electrode thereof
CN110036513B (en) * 2016-12-01 2020-10-02 东丽株式会社 Electrode and redox flow battery
WO2022153615A1 (en) * 2021-01-12 2022-07-21 住友電気工業株式会社 Battery cell, cell stack, and redox flow battery system

Also Published As

Publication number Publication date
JPH02148658A (en) 1990-06-07

Similar Documents

Publication Publication Date Title
JP2920230B2 (en) Redox flow battery
JP2595519B2 (en) Electrode for liquid flow type electrolytic cell
US4496637A (en) Electrode for flowcell
US5648184A (en) Electrode material for flow-through type electrolytic cell, wherein the electrode comprises carbonaceous material having at least one groove
JP3601581B2 (en) Carbon electrode material for vanadium redox flow battery
JP6617464B2 (en) Carbon electrode material for redox batteries
JP3496385B2 (en) Redox battery
JP2955938B2 (en) Carbon-based electrode materials for electrolytic cells
KR102081006B1 (en) Method for producing carbon felt electrode for redox flow battery
JP2906241B2 (en) Liquid flow type electrolytic cell
JPH0992321A (en) Redox cell
JPH05234612A (en) Carbon electrode material for electrolytic cell
JP2015138692A (en) integrated carbon electrode
JP3555303B2 (en) Redox battery
JP6809257B2 (en) Carbon material and batteries using it
US20220153591A1 (en) Carbon electrode material for manganese/titanium-based redox flow battery
JPH0690933B2 (en) Stacked electrolytic cell
JP2001085028A (en) Carbon electrode material assembly
JPH0711969B2 (en) Metal-halogen secondary battery
JP2001085022A (en) Carbon electrode material and carbon electrode material assembly
JPH08138685A (en) Whole vanadium redox battery
JPH11317231A (en) Carbon-based electrode material for electrolytic cell
JP2003308851A (en) Electrode material and its manufacturing method
JPH11260377A (en) Carbon electrode material and its manufacture
JP3589285B2 (en) Carbon electrode material for redox flow batteries

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees