JP2989418B2 - Humidity detector of cooking device - Google Patents
Humidity detector of cooking deviceInfo
- Publication number
- JP2989418B2 JP2989418B2 JP5092918A JP9291893A JP2989418B2 JP 2989418 B2 JP2989418 B2 JP 2989418B2 JP 5092918 A JP5092918 A JP 5092918A JP 9291893 A JP9291893 A JP 9291893A JP 2989418 B2 JP2989418 B2 JP 2989418B2
- Authority
- JP
- Japan
- Prior art keywords
- heating
- humidity
- state
- self
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B40/00—Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
Landscapes
- Control Of High-Frequency Heating Circuits (AREA)
- Electric Ovens (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は加熱調理器の湿度検出装
置に係り、さらに詳細には、加熱調理器の加熱室内の食
品から排出された水蒸気等の量に基いて加熱出力を自動
制御する加熱調理器の湿度検出装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for detecting the humidity of a cooking device, and more particularly, to automatically controlling the heating output based on the amount of water vapor or the like discharged from food in a heating room of the cooking device. The present invention relates to a humidity detector for a cooking device.
【0002】[0002]
【従来の技術】従来から、例えば、加熱調理を自動的に
実行する電子レンジとして、食品から発散される水蒸気
等の量に基いて加熱出力を制御するものがある。つま
り、加熱完了付近となると、食品から水蒸気等が多量に
発散するようになるので、加熱室から排出される水蒸気
等を検知する温度センサを設け、その温度センサからの
電気信号に基いてマグネトロンの出力を制御する構成で
ある。たとえば、特開昭60−32288号公報には、
本出願人の提案として、湿度センサとして2つの感温抵
抗体を具備し一方を雰囲気に暴露、一方を密閉構造にし
各々の抵抗比より絶対湿度検出を行い加熱制御を行う加
熱調理器が公知となっている。2. Description of the Related Art Conventionally, for example, there has been a microwave oven that automatically performs cooking by controlling heating output based on the amount of water vapor or the like emitted from food. In other words, near the completion of heating, a large amount of water vapor and the like will emanate from the food.Therefore, a temperature sensor that detects the water vapor and the like discharged from the heating chamber is provided, and the magnetron is operated based on the electric signal from the temperature sensor. This is a configuration for controlling the output. For example, JP-A-60-32288 discloses that
As a proposal of the present applicant, a heating cooker that includes two temperature-sensitive resistors as a humidity sensor and exposes one to the atmosphere, and one has a sealed structure and performs absolute humidity detection from each resistance ratio to perform heating control is known. Has become.
【0003】また本出願人は、特願平3−351716
号により、湿度センサとして1つのサーミスタを自己加
熱させ湿度検出を行ない加熱制御を行なう加熱調理器を
さらに提案している。一方、特開平4−254113
号、特開平4−254115号、特開平4−27082
2号、特開平4−283321号各公報には、加熱室の
排気温度の、いわゆる「ゆらぎ」により、水蒸気の発生
を認識し、加熱状態を判断する加熱調理器が公知となっ
ている。また、実開平4−120504号公報には1つ
の温度センサにより、沸騰検知と通常の温度検知との両
者を行なう制御手段を有する加熱調理装置が開示されて
いる。[0003] The present applicant has also filed Japanese Patent Application No. 3-351716.
According to the document, a heating cooker that performs heating control by performing self-heating of one thermistor as a humidity sensor to perform humidity detection is further proposed. On the other hand, JP-A-4-254113
JP-A-4-254115, JP-A-4-27082
No. 2, JP-A-4-283321 discloses a heating cooker which recognizes the generation of water vapor by the so-called "fluctuation" of the exhaust temperature of a heating chamber and judges the heating state. Japanese Utility Model Laid-Open No. 4-120504 discloses a heating cooking apparatus having a control means for performing both boiling detection and normal temperature detection with one temperature sensor.
【0004】さらに、特開昭63−145954号公報
ならびに特開平2−179459号公報には、温度、湿
度に対する高速応答性を目指した感温抵抗体による温度
センサおよび湿度センサとして本出願人の提案が開示さ
れている他、前記高速応答型湿度センサの検出回路につ
いても、本出願人が特願平4−120408号により提
案を行なっている。たとえば図16(a),(b)は、
特開昭63−145954号公報に示す高速応答感湿素
子の斜視図および断面図である。Further, Japanese Patent Application Laid-Open Nos. 63-145954 and 2-179559 have proposed a temperature sensor and a humidity sensor using a temperature-sensitive resistor aiming for high-speed response to temperature and humidity. In addition, the present applicant has proposed a detection circuit of the high-speed response type humidity sensor in Japanese Patent Application No. 4-120408. For example, FIGS. 16 (a) and (b)
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view and a cross-sectional view of a high-speed response moisture-sensitive element disclosed in JP-A-63-145954.
【0005】すなわち図16(a),(b)に示す如く
Si基板31上にブリッジ形状の薄膜絶縁層32を形成
した後、基板31であるSiの結晶軸異方性エッチング
を行なうことにより絶縁層ブリッジ部下のエッチングに
て基板31−絶縁層ブリッジ部(以下マイクロブリッジ
と称す。)33間に中空構造を有し、熱絶縁すなわち低
熱容量化に優れた素子構造とし、さらにマイクロブリッ
ジ33上に薄膜センサ材料である感応膜34を形成して
いる。感応膜34には、同図に示す如く電気抵抗を検出
するための電極35が直結されている。That is, as shown in FIGS. 16 (a) and 16 (b), after forming a bridge-shaped thin-film insulating layer 32 on a Si substrate 31, the substrate 31, which is Si, is anisotropically etched by crystal axis. A hollow structure is formed between the substrate 31 and the insulating layer bridge portion (hereinafter, referred to as a micro bridge) 33 by etching under the layer bridge portion to provide an element structure excellent in thermal insulation, that is, a low heat capacity. A sensitive film 34, which is a thin film sensor material, is formed. An electrode 35 for detecting electrical resistance is directly connected to the sensitive film 34 as shown in FIG.
【0006】この素子のマイクロブリッジ33の作製に
ついては、Si基板上に、マイクロブリッジ33となり
且つエッチング時のマスクとなる薄膜絶縁層32を材料
に応じて熱酸化法、真空蒸着法、スパッタ法またはCV
D法等により積層形成し、ホトリソグラフィー技術と化
学エッチング法もしくはドライエッチング法によりブリ
ッジ形状に微細加工を行うなどの手段により、形成する
ことができる。なお、素子の形状としては、マイクロブ
リッジに限らず、片持ち梁形状あるいはダイヤフラム形
状を採用することもできる。The microbridge 33 of this device is manufactured by forming a thin film insulating layer 32, which becomes a microbridge 33 and serves as a mask at the time of etching, on a Si substrate by a thermal oxidation method, a vacuum deposition method, a sputtering method, or the like. CV
It can be formed by laminating by a method D or the like, and performing fine processing into a bridge shape by a photolithography technique and a chemical etching method or a dry etching method. The shape of the element is not limited to the microbridge, but may be a cantilever shape or a diaphragm shape.
【0007】一方、加熱室から多量の水蒸気等が排出さ
れたときは、温度センサの周囲に水蒸気等の密度に大き
な変化(いわゆる、ゆらぎ)を生じて温度センサからの
電気信号の交流成分レベルが変化するので、温度センサ
からの電気信号の交流成分の信号レベルが所定レベルを
上回ったタイミング若しくはそのタイミングから所定時
間経過後にマグネトロンの駆動を停止するように制御す
る手段が特開平4−350421号公報に開示されてい
る。On the other hand, when a large amount of water vapor or the like is discharged from the heating chamber, a large change (so-called fluctuation) occurs in the density of the water vapor or the like around the temperature sensor, and the AC component level of the electric signal from the temperature sensor becomes low. Japanese Patent Application Laid-Open No. 4-350421 discloses a means for controlling the magnetron to stop at a timing when the signal level of the AC component of the electric signal from the temperature sensor exceeds a predetermined level or after a lapse of a predetermined time from the timing. Is disclosed.
【0008】[0008]
【発明が解決しようとする課題】しかるに以上のべたよ
うな技術はいずれも一長一短があり、完全に満足できる
ものとは必ずしも言えないのが現状である。たとえば、
従来の感温抵抗体を2個使用した形の湿度センサによる
制御では、調理開始時の絶対湿度量に対して加熱の進行
と共に上昇する絶対湿度量を検出し、その増加分が予め
設定された量になった時間により、加熱を制御してい
た。しかしながら、特開昭60−32288号公報に見
られる従来の湿度センサでは、感温抵抗体の熱容量が大
きいため、湿度変化に対する応答性が遅く、設定値に到
達したときには既に過加熱状態にあることがあり、必ず
しも最適状態での加熱制御はなされていなかった。However, all of the above-mentioned technologies have their advantages and disadvantages, and at present, they cannot always be said to be completely satisfactory. For example,
In the conventional control using a humidity sensor in the form of using two temperature-sensitive resistors, an absolute humidity amount that increases with the progress of heating is detected with respect to the absolute humidity amount at the start of cooking, and the increase is set in advance. The heating was controlled by the amount of time. However, in the conventional humidity sensor disclosed in Japanese Patent Application Laid-Open No. Sho 60-32288, since the heat capacity of the temperature-sensitive resistor is large, the response to a change in humidity is slow, and when the temperature reaches the set value, the sensor is already in an overheated state. Therefore, heating control in an optimal state was not always performed.
【0009】この対策として、本出願人は前記の通り、
特開昭63−145954号公報、特開平2−1794
59号公報、さらには特願平4−120408号によ
り、高速応答型湿度センサに関する提案を行なってい
る。しかしながら、従来の如く絶対湿度の増加分に基づ
く制御では、やはり最適状態での加熱が必ずしもなされ
るとは言えない場合がある。また上記湿度センサは2つ
の感温抵抗体を自己加熱させて構成されており、各々の
感温抵抗体の温度特性(抵抗値、温度係数、熱放散係数
等)を高精度で合致させる必要があるため、製造コスト
/歩留の面で不利であった。As a countermeasure against this, the present applicant has, as described above,
JP-A-63-145954, JP-A-2-1794
No. 59 and Japanese Patent Application No. 4-120408 propose a high-speed response type humidity sensor. However, in the conventional control based on the increase in the absolute humidity, the heating in the optimum state may not always be performed. Further, the humidity sensor is configured by self-heating two temperature-sensitive resistors, and it is necessary to match the temperature characteristics (resistance value, temperature coefficient, heat dissipation coefficient, etc.) of each temperature-sensitive resistor with high accuracy. Therefore, it is disadvantageous in terms of manufacturing cost / yield.
【0010】この対策としては排気風温度をサーミスタ
で検出し、排気温度の沸騰時のゆらぎで加熱を制御する
手段が前記特開平4−254113号、特開平4−25
4115号、特開平4−270822号、特開平4−2
83321号公報に提案されているが、これらはいずれ
も沸騰検知となっており、最適状態での加熱制御にはな
っていない。また前記制御を、より雰囲気温度の影響を
低減して、より精度高く沸騰を検出するために、前記サ
ーミスタを自己加熱させて、雰囲気温度上昇と蒸気発生
を分離認識する手段が本出願人により特願平3−351
716号で提案されているが、使用されるサーミスタの
熱容量が大きいため、沸騰直前の状態を認識し得るのみ
であり、やはり最適加熱状態の制御を行なうことは困難
である。As a countermeasure against this, means for detecting the exhaust air temperature with a thermistor and controlling the heating by fluctuations of the exhaust temperature at the time of boiling is disclosed in Japanese Patent Laid-Open Nos. 4-254113 and 4-25.
No. 4115, JP-A-4-270822 and JP-A-4-2
No. 83321 proposes that all of these methods detect boiling and do not control heating in an optimum state. In order to further reduce the influence of the ambient temperature and detect boiling more accurately, the present applicant has a means by which the thermistor is self-heated to separately recognize the rise in ambient temperature and the generation of steam. 3-351 Ganping
No. 716, it is only possible to recognize the state immediately before boiling because of the large heat capacity of the thermistor used, and it is also difficult to control the optimum heating state.
【0011】一方、実開平4−120504号公報の手
段は1つのサーミスタにより沸騰検知および温度検知を
行なう技術であるが、これは加熱モードでのちがいによ
り、制御手段を変えるものであって、1つの加熱モード
中に両者の信号を得るものではない。さらに、特開平4
−350421号公報の手段は、水蒸気のゆらぎによる
温度センサからの電気信号の内の交流成分を交流信号と
して出力させ、マグネトロンによる加熱をON/OFF
させながら制御するものであるが、この技術において
は、高速応答型感温センサを用いるものではなく、セン
サ出力の直流成分が上昇する前に早い段階で交流成分と
して蒸気のゆらぎを検出するものではないので、湿度変
化に対する応答性が速いものとは言えない。従って本発
明の目的は従来過加熱であった加熱制御の最適条件を
得、また、ゆらぎ成分の検出を自己加熱状態の感温素子
1つで実施可能とし、さらには、1つの素子で湿度なら
びに温度の両者の検出が可能となる等、優れた機能を有
する加熱調理器の湿度検出装置を提供することにある。On the other hand, the means disclosed in Japanese Utility Model Laid-Open No. 4-120504 is a technique for detecting boiling and temperature using one thermistor. This technique changes the control means depending on the difference in the heating mode. No signal is obtained during one heating mode. Further, Japanese Unexamined Patent Publication No.
The means disclosed in JP-A-350421 outputs an AC component of an electric signal from a temperature sensor due to fluctuation of water vapor as an AC signal, and turns on / off heating by a magnetron.
In this technology, a rapid response type temperature sensor is not used, but a technology that detects steam fluctuation as an AC component at an early stage before the DC component of the sensor output rises. Therefore, it cannot be said that the response to the humidity change is fast. Therefore, an object of the present invention is to obtain the optimum condition of the heating control which has conventionally been overheating, and to make it possible to detect the fluctuation component with one thermosensitive element in a self-heating state. An object of the present invention is to provide a humidity detecting device for a heating cooker having excellent functions such as detection of both temperatures.
【0012】[0012]
【課題を解決するための手段】本発明は上記課題を解決
するためなされたものであって、その要旨とするところ
のものは、被加熱物を加熱する加熱室と加熱手段と、感
温抵抗体1個で構成され、湿度変化に対する応答性を9
0%応答で10秒以下とし、加熱の進行とともに発生す
る蒸気(湿度)を検出する湿度センサと、前記湿度セン
サを、湿度検出時には自己加熱し、雰囲気温度検出時は
非自己加熱の状態とし、該2つの状態を、被加熱物を加
熱中に、交互に切り替える状態制御部と、前記状態制御
部に切り替え信号を与えるとともに、自己過熱と非自己
過熱の各々の状態での抵抗値から2つの状態の抵抗比を
求めて、該抵抗比の変動で絶対湿度の変化値を求めて、
該絶対湿度の変化値により加熱を制御する制御部と、を
具備した加熱調理器の湿度検出装置にある。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and its gist is to provide a heating chamber for heating an object to be heated, a heating means, and a temperature-sensitive resistor. It is composed of one body and has a response to humidity change of 9
0% response is set to 10 seconds or less, a humidity sensor for detecting steam (humidity) generated with the progress of heating, and the humidity sensor is self-heated when humidity is detected, and is set to a non-self-heated state when ambient temperature is detected. The two states are alternately switched while the object to be heated is being heated, and a switching signal is provided to the state control unit, and two resistance values in the respective states of self-heating and non-self-heating are used. Obtain the resistance ratio of the state, obtain the change value of the absolute humidity by the change of the resistance ratio,
And a control unit for controlling heating based on the change value of the absolute humidity.
【0013】前記状態制御部は、前記湿度センサと定電
流電源の間に接続された負荷抵抗からなり、前記制御部
は、湿度検出時および温度検出時の各々の状態となるよ
うに前記負荷抵抗部の抵抗値を可変させてもよい。The state control section includes a load resistor connected between the humidity sensor and a constant current power supply. The control section controls the load resistance so as to be in the respective states when detecting humidity and when detecting temperature. The resistance value of the unit may be changed.
【0014】また、前記状態制御部は、定電流電源から
電流を供給される前記湿度センサに接続された負荷抵抗
からなり、前記制御部は、湿度検出時および温度検出時
の各々の状態となるように前記負荷抵抗部の抵抗値を可
変させてもよい。The state control unit includes a load resistor connected to the humidity sensor supplied with a current from a constant current power supply, and the control unit is in each of a state when detecting humidity and a state when detecting temperature. Thus, the resistance value of the load resistance section may be varied.
【0015】また、前記湿度センサは、自己加熱の際の
通電開始時および非通電時の抵抗安定時間が5秒以下で
あることが望ましい。The humidity sensor preferably has a resistance stabilization time of 5 seconds or less at the start of energization and at the time of non-energization during self-heating.
【0016】また、前記湿度センサは、負の特性を持つ
感温抵抗体であり、前記状態制御部は、前記湿度センサ
に電流を供給する可変電流電源であり、電流の上昇時若
しくは下降時の少なくともいずれか一方の際に時間と共
に徐々に変化する特性を有し、前記制御部は、前記可変
電流電源からの電流値が時間と共に徐々に変化する際、
前記湿度センサの両端電圧が予め設定された自己加熱と
非自己加熱の電圧に達した場合の電流値を検出すること
によって、各々の状態の抵抗値を算出することであって
もよい。The humidity sensor is a temperature-sensitive resistor having a negative characteristic, and the state control unit is a variable current power supply for supplying a current to the humidity sensor. At least one of them has a characteristic that gradually changes with time, the control unit, when the current value from the variable current power supply gradually changes with time,
The resistance value of each state may be calculated by detecting a current value when the voltage between both ends of the humidity sensor reaches a preset self-heating and non-self-heating voltage.
【0017】この場合、最初に測定する一方の状態の予
め設定された電圧は、後で測定する他方の状態の予め定
められた電圧より等しいか若しくは大きいこと、あるい
は、各状態の抵抗値を求めるための電流値を予め定めら
れた範囲に設定すること、はいずれも有効である。In this case, the predetermined voltage of one state to be measured first is equal to or larger than the predetermined voltage of the other state to be measured later, or the resistance value of each state is determined. Setting the current value to a predetermined range is effective.
【0018】[0018]
【作用】本発明においては、高速応答型の湿度センサを
用いるものであるが、高速応答型の場合、湿度センサ出
力の直流成分が上昇する前、すなわち被加熱物温度がほ
ぼ70℃を超える時点より、早い段階に、交流成分とし
て蒸気のゆらぎの検出ができるので、この交流成分によ
り加熱制御を行なうものである。また、感温抵抗体を短
時間で、かつ自己加熱、非自己加熱状態に交互に切り替
えて設定できるので、1個の感温抵抗体で湿度情報、温
度情報である抵抗値を得ることが可能であり、さらにこ
れら2つの状態の抵抗比から絶対湿度量を演算処理で求
め、これによって加熱制御を行なうことも可能となる。In the present invention, a high-speed response type humidity sensor is used. However, in the case of the high-speed response type, before the DC component of the humidity sensor output rises, that is, when the temperature of the object to be heated exceeds approximately 70 ° C. Since the fluctuation of steam can be detected as an AC component at an earlier stage, the heating control is performed by using the AC component. In addition, since the temperature-sensitive resistor can be set in a short time and alternately switched between self-heating and non-self-heating, it is possible to obtain resistance values as humidity information and temperature information with one temperature-sensitive resistor. In addition, it is possible to calculate the absolute humidity amount from the resistance ratio of these two states by arithmetic processing, thereby performing the heating control.
【0019】[0019]
【実施例】以下、実施例について、図面を参照しながら
本発明を詳細に述べる。まず、本発明にいう湿度変化に
対する応答性が、90%応答で10秒以下である高速応
答型感温抵抗体とは、先に図16において示したような
公知の湿度センサを指すものであり、本発明においては
このような抵抗体を使用することを前提とするものであ
る。なお、図16の態様においては、薄膜タイプの素子
が例示されているが、前記の如く、湿度変化に対する応
答性が、90%応答で10秒以下となるような高速応答
が可能となる同等品であれば適用可能であり、薄膜タイ
プの素子に限定されるものではない。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. First, the high-speed response type temperature sensitive resistor having a response to a humidity change of 90% or less for 10 seconds or less in the present invention refers to a known humidity sensor as shown in FIG. In the present invention, it is assumed that such a resistor is used. In the embodiment shown in FIG. 16, a thin-film type element is illustrated, but as described above, an equivalent product capable of high-speed response such that the response to a humidity change is 10 seconds or less at 90% response. If it is, it is applicable and is not limited to a thin film type element.
【0020】次に、図1および図2は本発明の湿度検出
装置の適用される加熱調理器の一実施態様である電子レ
ンジの正面図および概略説明断面図を示す。まず、図1
の正面図に示すように、レンジ本体1の正面には、被加
熱物(食品)を出入れするためのドア2が取り付けら
れ、ドア2は操作パネル3上に設けた開放ボタン3aを
押すことで開放可能になる。また、操作パネル3上には
加熱時間、加熱温度、加熱源の出力を表示するための表
示部3bが設けられるとともに、食品の種類に応じて加
熱するための複数個の加熱ボタン3c,3dが設けられ
ている。この加熱ボタン3c,3dを使用者が押すこと
により、レンジ本体1は加熱を開始する。FIGS. 1 and 2 are a front view and a schematic explanatory sectional view of a microwave oven as an embodiment of a heating cooker to which the humidity detecting device of the present invention is applied. First, FIG.
As shown in the front view of FIG. 1, a door 2 for taking in and out an object to be heated (food) is attached to the front of the range body 1, and the door 2 is pressed by an open button 3 a provided on the operation panel 3. Can be opened with. A display unit 3b for displaying a heating time, a heating temperature and an output of a heating source is provided on the operation panel 3, and a plurality of heating buttons 3c and 3d for heating according to the type of food are provided. Is provided. When the user presses the heating buttons 3c and 3d, the range body 1 starts heating.
【0021】また、図2において、マグネトロン5から
発生したマイクロ波は導波管6を通り加熱室7内の受皿
8上に置かれた被加熱物(食品)4に吸収され、被加熱
物(食品)4を加熱することは通常の電子レンジの機能
と同様である。また、レンジ本体1の加熱室7には、加
熱された被加熱物(食品)4からの蒸気や蒸気の熱を含
んだ排気風を排出するための排気口9が形成され、この
排気口9の通路に感温素子10が配設されている。な
お、3はマグネトロン5を冷却するための冷却ファンで
ある。In FIG. 2, the microwave generated from the magnetron 5 passes through the waveguide 6 and is absorbed by the object to be heated (food) 4 placed on the saucer 8 in the heating chamber 7 and the object to be heated ( Heating the food 4 is similar to the function of a normal microwave oven. In the heating chamber 7 of the microwave oven 1, an exhaust port 9 for discharging steam from the heated object (food) 4 or exhaust air containing heat of the steam is formed. The temperature sensing element 10 is disposed in the passage. Reference numeral 3 denotes a cooling fan for cooling the magnetron 5.
【0022】次に、本発明における湿度検出装置の制御
回路の一実施例について、図3の回路図により説明す
る。図3において、Rsは湿気を含む雰囲気に暴露さ
れ、湿度変化を検出する感温抵抗であり、Rrは、その
雰囲気の温度変化を検出するために雰囲気に対して密閉
された感温抵抗である。また、A1およびA2は演算増幅
器であり、固有抵抗R1〜R5を具備して出力Vout1を生
じる回路を形成するが、図3の回路においてはさらに演
算増幅器A2の出力端子に固有抵抗R6、コンデンサ
C1、ならびに比較器A3から構成される積分回路(点線
内)が接続され、出力Vout2を生じるものであって、こ
れらの出力Vout2さらにはVout1は加熱調理器の制御部
20に入力され、調理の制御が行なわれる。Next, an embodiment of the control circuit of the humidity detecting device according to the present invention will be described with reference to the circuit diagram of FIG. In FIG. 3, Rs is a temperature-sensitive resistor that is exposed to an atmosphere containing moisture and detects a change in humidity, and Rr is a temperature-sensitive resistor that is sealed with respect to the atmosphere to detect a temperature change in the atmosphere. . Further, A 1 and A 2 is an operational amplifier, forms a circuit that produces an output Vout1 comprises a resistivity R 1 to R 5, specific to the output terminal of the further operational amplifier A 2 in the circuit of FIG. 3 An integrating circuit (within a dotted line) composed of a resistor R 6 , a capacitor C 1 , and a comparator A 3 is connected to generate an output Vout 2, and these outputs Vout 2 and Vout 1 are control units of the cooking device. 20 and control of cooking is performed.
【0023】次に図3の回路による制御手段について図
面を参照しながら説明する。電圧Vc1は出力Vout1を抵
抗R6、コンデンサC1で設定される時定数により積分さ
れた電圧で、前記時定数は出力Vout1の交流成分の周波
数より長い時間が設定されている。このVout1及びVc1
の2つの電圧を比較器A3で比較すると出力Vout2は出
力Vout1の交流成分のみを示す電圧となる。制御部20
では交流成分のパルス数、若しくは振幅幅等で調理を制
御する。なお、この場合、加熱の制御を出力Vout2のみ
で制御することに限定するものではなく食品によっては
出力Vout1で従来どおりの制御を行ってもよい。参考ま
でに、図3の回路による被加熱物たる食品の加熱(牛乳
の加熱)時の出力Vout1,Vc1,Vout2,の経時特性を
図4のカーブに示す。また別の手法として出力Vout1の
みを使用し波形を制御部20の演算処理で交流成分を
得、交流成分のパルス数、若しくは振幅幅等で調理を制
御してもよい。Next, control means by the circuit of FIG. 3 will be described with reference to the drawings. Voltage Vc 1 resistance output Vout1 R 6, at a voltage which is integrated by a time constant set by the capacitor C 1, the time constant is set longer than the frequency of the AC component of the output Vout1. This Vout1 and Vc 1
Output compare two voltages by the comparator A 3 Vout2 becomes a voltage indicating only the AC component of the output Vout1 of. Control unit 20
In, cooking is controlled by the number of pulses of the AC component or the amplitude width. In this case, the heating control is not limited to the control using only the output Vout2, and the conventional control may be performed using the output Vout1 depending on the food. For reference, showing the circuit output when the object to be heated serving heated food (heating milk) by Vout1, Vc 1, Vout2 in Fig. 3, the aging characteristics of the curve of FIG. As another method, an AC component may be obtained from the waveform by arithmetic processing of the control unit 20 using only the output Vout1, and cooking may be controlled by the number of pulses or the amplitude width of the AC component.
【0024】次に、本発明における湿度検出装置の制御
回路の他の実施例について図5の回路図により説明す
る。図5の回路例は、感温抵抗体1個のみで構成された
例であって、湿度センサは雰囲気に暴露した感温抵抗体
Rsのみで構成されている。感温抵抗体は正の温度係数
を持つ白金抵抗体とする。また、図5の回路において、
VSは被加熱物を加熱する際の出力であって、このVS
は抵抗R8、コンデンサC2を介して演算増幅器A4の反
転入力端子に接続され、非反転入力端子は抵抗R10を介
して接地されている。また演算増幅器A4の出力端子と
反転入力端子は抵抗R9を介して接続されている。この
回路は汎用の微分回路であり、従ってその作用として
は、出力Vout3はVSの交流成分をパルス成分に変換し
たことになり、このパルスのパルス数、波高値、周波数
等でセンサ出力の交流成分が認識出来る。参考までに図
6に、この回路による食品の加熱(牛乳の加熱)時の出
力VSおよびVout3の経時変化特性のカーブを示す。Next, another embodiment of the control circuit of the humidity detecting apparatus according to the present invention will be described with reference to the circuit diagram of FIG. The circuit example in FIG. 5 is an example in which only one temperature-sensitive resistor is provided, and the humidity sensor is configured only with the temperature-sensitive resistor Rs exposed to the atmosphere. The temperature sensitive resistor is a platinum resistor having a positive temperature coefficient. In the circuit of FIG.
VS is an output at the time of heating the object to be heated.
The resistor R 8, is connected to the inverting input terminal of the operational amplifier A 4 via the capacitor C 2, the non-inverting input terminal is grounded via a resistor R 10. The output terminal and the inverting input terminal of the operational amplifier A 4 is connected via a resistor R 9. This circuit is a general-purpose differentiating circuit. Therefore, the effect is that the output Vout3 is obtained by converting the AC component of VS into a pulse component, and the AC component of the sensor output is determined by the pulse number, peak value, frequency, and the like of this pulse. Can be recognized. For reference, FIG. 6 shows a curve of the change over time of the output VS and Vout3 during heating of food (heating of milk) by this circuit.
【0025】次に本発明における湿度検出装置の制御回
路のさらに他の実施例について、図7の制御ブロック図
を参照しながら説明する。図7では制御部20よりの信
号により湿度センサの状態を自己加熱、非自己加熱の状
態に切替える状態制御部21を具備しており、この状態
制御部21により湿度センサは自己加熱、非自己加熱の
2つの状態に切替えられる。湿度センサの両端電圧は微
分回路部22および抵抗値演算回路23に入力され、自
己加熱時は微分回路22の出力によりゆらぎ湿度検出、
非自己加熱時は抵抗演算回路部23を介して雰囲気温度
検出として働く。また2つの状態を加熱中に交互に切替
え自己加熱、非自己加熱いずれの状態でも抵抗演算回路
部23を介し各々の状態での抵抗値を演算しその抵抗比
を制御部20で求め前記抵抗比の変動で絶対湿度の変化
値を求めることも出来る。加熱調理器における絶対湿度
情報としては少なくとも10秒以下での分解能で情報が
必要のため通電開始時の抵抗値安定時間は5秒以下が必
要となる。Next, still another embodiment of the control circuit of the humidity detecting apparatus according to the present invention will be described with reference to a control block diagram of FIG. FIG. 7 includes a state control unit 21 that switches the state of the humidity sensor between a self-heating state and a non-self-heating state according to a signal from the control unit 20. The state control unit 21 causes the humidity sensor to perform self-heating and non-self-heating. The two states are switched. The voltage between both ends of the humidity sensor is input to a differentiating circuit unit 22 and a resistance value calculating circuit 23. During self-heating, fluctuation humidity is detected by an output of the differentiating circuit 22,
At the time of non-self-heating, it functions as ambient temperature detection via the resistance calculation circuit unit 23. In addition, the two states are alternately switched during heating, and in either the self-heating state or the non-self-heating state, the resistance value in each state is calculated via the resistance calculation circuit section 23, and the resistance ratio is obtained by the control section 20. The change value of the absolute humidity can also be obtained by the fluctuation of. Since the absolute humidity information in the heating cooker needs information with a resolution of at least 10 seconds or less, the resistance stabilization time at the start of energization needs to be 5 seconds or less.
【0026】次に図7の制御ブロック図に示した実施例
について、さらに具体的な回路として感温抵抗体Rsが
白金抵抗体の場合を図8に示す。白金抵抗体Rsは抵抗
R11を介して定電圧電源E0に接続されており、負荷抵
抗R11は制御部20よりの信号S1により接続状態を可
変される抵抗R12と並列に接続されている。ここではR
11>R12の設定になっている。非自己加熱状態ではR12
は接続されておらず従ってRsに流れる電流は小さく非
自己加熱の状態になっている。一方自己加熱状態ではR
12はR11に並列に接続されておりR11,R12の合成抵抗
値が小さくなりRsに流れる電流値は大きくなり自己加
熱状態になる。制御部20にはセンサの両端電圧Vout4
が入力されており既知の抵抗値R11,R12よりそれぞれ
の状態での抵抗値が演算算出され各々の抵抗値より抵抗
比を求め、この抵抗比の変化より絶対湿度の変化量が求
められる。Next, in the embodiment shown in the control block diagram of FIG. 7, as a more specific circuit, a case where the temperature-sensitive resistor Rs is a platinum resistor is shown in FIG. Platinum resistor Rs is connected to a constant voltage source E0 via the resistor R 11, the load resistor R 11 is connected in parallel with the resistor R 12 which is variably connected state by signals S 1 from the control unit 20 I have. Where R
It has become the setting of 11> R 12. R 12 in the non-self heating state
Is not connected, and therefore, the current flowing through Rs is small and is in a non-self-heating state. On the other hand, in the self-heating state, R
12 is a current value flowing through the combined resistance value is reduced Rs of R 11, R 12 are connected in parallel to R 11 becomes becomes self-heating state greatly. The control unit 20 includes a voltage Vout4 across the sensor.
Is input, and the resistance value in each state is calculated from the known resistance values R 11 and R 12 , the resistance ratio is obtained from each resistance value, and the change in the absolute humidity is obtained from the change in the resistance ratio. .
【0027】次に、本発明における湿度検出装置の制御
回路のさらに別の実施例について図9の回路図により説
明する。図9の回路は湿度センサRsを定電流で駆動さ
せる回路である。湿度センサは演算増幅器A5の出力端
子と反転入力端子間に接続される。反転入力端子は更に
抵抗R13で接地されている。抵抗R13は制御部よりの信
号S2により接続状態を可変される抵抗R14と並列に接
続されている。ここではR13>R14の設定になってい
る。演算増幅器A5の非反転入力端子には基準電圧E0
が入力される。非自己加熱状態ではR14は接続されてお
らず、従ってRsに流れる電流は小さく非自己加熱の状
態になっている。一方自己加熱状態ではR14はR13に並
列に接続されており、R13,R14の合成抵抗値が小さく
なり、Rsに流れる電流値は大きくなり自己加熱状態に
なる。Rsに流れる電流値IはE0/R13,若しくはE
0/(R13//R14)で決定される値になる。出力Vou
t5は(E0+I×Rs)の値になり、E0,Iは既知の
ためセンサ抵抗値Rsが演算算出され、各々の抵抗値よ
り抵抗比を求め、この抵抗比の変化より絶対湿度の変化
量が求められる。Next, still another embodiment of the control circuit of the humidity detecting device according to the present invention will be described with reference to the circuit diagram of FIG. The circuit in FIG. 9 is a circuit for driving the humidity sensor Rs with a constant current. Humidity sensor is connected between the output terminal of the operational amplifier A 5 and the inverting input terminal. Inverting input terminal is grounded further resistor R 13. Resistor R 13 is connected in parallel with the resistor R 14 which varies the connection state by a signal S 2 from the control unit. Here, R 13 > R 14 is set. Reference voltage E0 to the non-inverting input terminal of the operational amplifier A 5
Is entered. R 14 is not connected to a non-self-heating state, therefore the current flowing through the Rs is in a state of small non-self heating. Whereas a self-heating state R 14 is connected in parallel to R 13, the combined resistance value of R 13, R 14 becomes smaller, the current value flowing to Rs will be self-heated state greatly. Current value I E0 / R 13 flowing through Rs, or E
The value is determined by 0 / (R 13 // R 14 ). Output Vou
t5 is a value of (E0 + I × Rs). Since E0 and I are known, the sensor resistance value Rs is calculated and calculated, and the resistance ratio is obtained from each resistance value. Desired.
【0028】一方、感温抵抗体が負の温度特性を持つ素
子、例えばサーミスタの場合は、次のようにして制御が
行なわれる。まず、サーミスタの電流−電圧特性を図1
0に示す。この場合は、正の温度特性を持つ感温特性と
異なり、電流−電圧特性は山型の特性を持つ。すなわ
ち、電流の小さいゾーン(I)の範囲では、サーミスタ
の両端電圧は電流の増加と共に徐々に増加する。しかし
ながら、電流の増加とサーミスタは自己加熱を開始する
ため、自身の温度が上昇し、抵抗値は低下して来る。従
って、更に電流を増加させる(ゾーンII)と、電流の増
加による抵抗値低下が促進し、その結果電圧は低下して
くる。よって、非自己加熱状態はゾーンI、自己加熱状
態はゾーンIIで使用することになる。ここで、温度T
0,T1(T0<T1)絶対湿度AH0,AH1(AH
0<AH1)とすると、サーミスタの電流−電圧特性は
図11のようになる。On the other hand, when the temperature-sensitive resistor is an element having a negative temperature characteristic, for example, a thermistor, the control is performed as follows. First, the current-voltage characteristics of the thermistor are shown in FIG.
0 is shown. In this case, unlike the temperature-sensitive characteristic having a positive temperature characteristic, the current-voltage characteristic has a mountain-shaped characteristic. That is, in the range of the zone (I) where the current is small, the voltage across the thermistor gradually increases as the current increases. However, as the current increases and the thermistor starts self-heating, the temperature of the thermistor increases and the resistance value decreases. Therefore, when the current is further increased (Zone II), the decrease in the resistance value due to the increase in the current is promoted, and as a result, the voltage is reduced. Therefore, the non-self-heating state is used in zone I, and the self-heating state is used in zone II. Here, the temperature T
0, T1 (T0 <T1) Absolute humidity AH0, AH1 (AH
If 0 <AH1), the current-voltage characteristics of the thermistor are as shown in FIG.
【0029】そこで、図12のカーブに示すように、電
流を徐々に変化させたときのセンサの両端電圧VSが予
め定めた電圧VSN(非自己加熱)、VSH(自己加
熱)の電圧になったときの各々の電流値IN,IHを検
出することで各々の状態の抵抗値を演算算出可能とな
る。このような制御を行なうための回路の例の制御ブロ
ック図を図13に示す。センサの両端電圧Vout6は制御
部20で予め定められたVSH,VSNと比較される。
ここで、制御部20よりの信号S3によりセンサへの可
変電流電源24の通電電流は徐々に変化されるので、V
out6がVSH,VSNと一致したときのS3のレベルに
より電流値は認識され、従ってセンサ抵抗値Rsが演算
算出され各々の抵抗値より抵抗比を求め、この抵抗比の
変化より絶対湿度の変化量が求められる。Then, as shown by the curve in FIG. 12, the voltage VS across the sensor when the current is gradually changed becomes a predetermined voltage VSN (non-self-heating) or VSH (self-heating). By detecting the current values IN and IH at that time, the resistance value in each state can be calculated and calculated. FIG. 13 shows a control block diagram of an example of a circuit for performing such control. The voltage Vout6 between both ends of the sensor is compared with VSH and VSN predetermined by the control unit 20.
Since the variable power supply current of the current source 24 is gradually changed to the sensor by a signal S 3 from the control unit 20, V
out6 is VSH, the current value by the level of S 3 when the match the VSN is recognized, therefore the sensor resistance Rs is sought resistance ratio than the resistance value of each calculated calculated, a change in absolute humidity than the change of the resistance ratio The quantity is required.
【0030】次に図14のカーブに基いて、電流を小か
ら大に変化させる場合について考える。この場合、最初
に測定する電流は非自己加熱状態でのVSとVSNが一
致したときの電流値となる(IN)。そして次に自己加
熱状態のVSHと比較する。ここでVSHの設定がVS
H(=VSH0)>VSNであると電流増加時には2つ
のポイント、すなわちIH01とIH02とを持つこととな
り、真の自己加熱状態IH02を読み損なうことになる。
従ってVSH(=VHS1)<VSNであれば電流増加
と共に発生する電圧はIH1の1点しか存在しないの
で、従って正しく自己加熱状態の電流が検出出来る。電
流を大から小へ変化させるときも同様で、最初に測定す
る状態の設定電圧が次に測定する状態の設定電圧より大
きければ誤認識は起こらない。また、先に図10に示し
た通り、非自己加熱状態、自己加熱状態では通電電流値
はおのずと異なるため、予め非自己加熱状態(ゾーン
I)、自己加熱状態(ゾーンII)での電流値範囲を設定
しておけば、それぞれのゾーンでの設定電圧(VSN,
VSH)は任意に設定出来る。Next, a case where the current is changed from small to large based on the curve of FIG. 14 will be considered. In this case, the current measured first is a current value when VS and VSN in the non-self-heating state match (IN). Then, it is compared with the VSH in the self-heating state. Here, the setting of VSH is VS
If H (= VSH 0 )> VSN, the current has two points when the current increases, that is, IH 01 and IH 02, and the true self-heating state IH 02 is not read.
Therefore, if VSH (= VHS 1 ) <VSN, there is only one voltage IH 1 as the current increases, so that the current in the self-heating state can be correctly detected. The same is true when the current is changed from large to small. If the set voltage in the first measurement state is larger than the set voltage in the next measurement state, no erroneous recognition occurs. Further, as shown in FIG. 10, since the energizing current value is naturally different in the non-self-heating state and the self-heating state, the current value range in the non-self-heating state (Zone I) and the self-heating state (Zone II) is determined in advance. Is set, the set voltage (VSN,
VSH) can be set arbitrarily.
【0031】次に、電流を徐々に変化させるための制御
回路例を図15の回路図に示す。すなわち、制御部20
からの信号S4は抵抗R16,R17,R18,コンデンサ
C3,演算増幅器A6で構成される積分回路に入力され
る。積分回路の出力E0は、演算増幅器A7,抵抗
R15、及びA7の出力端子、反転入力端子間に接続され
る湿度センサRsで構成される定電流回路の基準電源E
0(t)として入力される。制御部20からの信号S4
は、デューティを制御されたパルスが発生される。積分
回路の出力E(t)は、S4のデューティ時間に応じた
三角波形を出力する。積分回路の回路定数は既知のた
め、オン時間(t)に応じたE(t)の値は予め既知と
なる。また定電流回路Rsに流れる電流値Iは、既知の
R15との関係でI=E0(t)/R15で決まるため、I
は信号S4のオン時間(t)の関数I(t)となる。Vo
ut7は(E0(t)+Rs×I(t))で決定されるた
め、センサ抵抗値Rsが演算算出され、各々の抵抗値よ
り抵抗比を求め、この抵抗比の変化より絶対湿度の変化
量が求められる。なお、精度を上げるためにE0(t)
の値を直接制御部20で認識して演算処理を行なっても
よい。Next, an example of a control circuit for gradually changing the current is shown in the circuit diagram of FIG. That is, the control unit 20
The signal S 4 from the resistor R 16, R 17, R 18 , capacitors C 3, is input to the integration circuit constituted by an operational amplifier A 6. The output E0 of the integrating circuit is a reference power supply E of a constant current circuit composed of an operational amplifier A 7 , a resistor R 15 , and a humidity sensor Rs connected between the output terminal and the inverting input terminal of A 7.
Input as 0 (t). Signal S 4 from control unit 20
Generates a pulse whose duty is controlled. The output of the integrating circuit E (t), and outputs a triangular waveform corresponding to the duty time of S 4. Since the circuit constant of the integration circuit is known, the value of E (t) according to the on-time (t) is known in advance. The current I flowing through the constant current circuit Rs is determined depending on a I = E0 (t) / R 15 in relation to the known R 15, I
Is a function I (t) of the signal S 4 on-time (t). Vo
Since ut7 is determined by (E0 (t) + Rs × I (t)), the sensor resistance value Rs is calculated and calculated, the resistance ratio is obtained from each resistance value, and the change in the absolute humidity is obtained from the change in the resistance ratio. Is required. In order to increase the accuracy, E0 (t)
May be directly recognized by the control unit 20 to perform the arithmetic processing.
【0032】[0032]
【発明の効果】以上の実施例からも明らかな通り、自己
加熱と非自己加熱の2つの状態を、被加熱物を加熱中
に、交互に切り替えて、湿度検出における感温抵抗体の
抵抗値と雰囲気温度検出における感温抵抗体の抵抗値を
求め、この2つ状態の抵抗比を次々と求めて、抵抗比の
変動から絶対湿度の変化値を求めることができるので、
感温抵抗体1個で絶対湿度の変化を知ることができる。
また、本発明によれば、湿度変化に対する応答性が90
%応答で10秒以下の高速応答型感温抵抗体を用いてい
ることにより、まず、食品の低温度時での発生蒸気をゆ
らぎ成分が検出可能になるため、このゆらぎ成分を交流
成分として検出し、この成分で加熱制御を行なうこと
で、従来過加熱になっていた食品加熱制御の最適加熱制
御が可能となる。また、ゆらぎ成分の検出は自己加熱状
態の感温素子1つで検出が可能となるため従来の2つの
感温素子による絶対湿度検出が不要となり湿度センサの
大幅なコストダウンが可能となる。さらに、1つの素子
で湿度検出、温度検出も可能となる。As is clear from the above embodiments, the self-heating and non-self-heating states are alternately switched while the object to be heated is being heated, and the resistance value of the temperature-sensitive resistor in the humidity detection is changed. And the resistance value of the temperature-sensitive resistor in the detection of the ambient temperature, the resistance ratio of the two states is obtained one after another, and the change value of the absolute humidity can be obtained from the fluctuation of the resistance ratio.
The change of the absolute humidity can be known with one temperature sensitive resistor.
Further, according to the present invention, the responsiveness to humidity change is 90%.
By using a high-speed response type thermosensitive resistor with a% response of 10 seconds or less, first, it is possible to detect a fluctuating component of steam generated at a low temperature of food, so that this fluctuating component is detected as an AC component. However, by performing heating control with this component, it becomes possible to perform optimal heating control of food heating control which has conventionally been overheated. In addition, since the fluctuation component can be detected by one thermosensitive element in a self-heating state, absolute humidity detection by two conventional thermosensitive elements becomes unnecessary, and the cost of the humidity sensor can be greatly reduced. Further, humidity detection and temperature detection can be performed by one element.
【0033】また、前記高速応答型湿度センサは低熱容
量型のため、通電安定時間がごく短いので、1素子につ
いて自己加熱、非自己加熱状態の切替えが短時間で可能
なため、1素子でも前記湿度検出が可能となり、湿度セ
ンサの大幅なコストダウンが可能となる。さらに、負の
温度特性を持つ感温抵抗体の場合の自己加熱状態、非自
己加熱状態の認識が誤確認なく測定が可能となる、など
の効果も有する。本発明は以上の通り、多くの優れた効
果を発揮するものであり、実用上極めて有益である。Since the high-speed response type humidity sensor has a low heat capacity and has a very short stabilization time, it is possible to switch between self-heating and non-self-heating for one element in a short time. Humidity can be detected, and the cost of the humidity sensor can be significantly reduced. Further, there is an effect that the self-heating state and the non-self-heating state in the case of a temperature-sensitive resistor having a negative temperature characteristic can be measured without erroneous confirmation. As described above, the present invention exerts many excellent effects, and is extremely useful in practical use.
【図1】本発明の湿度検出装置の適用される加熱調理器
の一実施態様である電子レンジの正面図である。FIG. 1 is a front view of a microwave oven which is an embodiment of a heating cooker to which a humidity detecting device of the present invention is applied.
【図2】図1の電子レンジの概略説明断面図である。2 is a schematic explanatory sectional view of the microwave oven of FIG. 1;
【図3】本発明における湿度検出装置の制御回路の一実
施例を示す回路図である。FIG. 3 is a circuit diagram showing one embodiment of a control circuit of the humidity detecting device according to the present invention.
【図4】図3の回路による食品加熱時の出力の経時特性
を示すカーブである。FIG. 4 is a curve showing output characteristics over time when food is heated by the circuit of FIG. 3;
【図5】本発明における湿度検出装置の制御回路の他の
実施例を示す回路図である。FIG. 5 is a circuit diagram showing another embodiment of the control circuit of the humidity detecting device according to the present invention.
【図6】図5の回路による食品加熱時の出力の経時特性
を示すカーブである。FIG. 6 is a curve showing a temporal characteristic of an output when food is heated by the circuit of FIG. 5;
【図7】本発明における湿度検出装置の制御回路のさら
に他の実施例を示す制御ブロック図である。FIG. 7 is a control block diagram showing still another embodiment of the control circuit of the humidity detecting device according to the present invention.
【図8】図7の制御ブロック図の具体的な回路例を示す
回路図である。8 is a circuit diagram showing a specific circuit example of the control block diagram of FIG. 7;
【図9】本発明における湿度検出装置の制御回路のさら
に別の実施例を示す回路図である。FIG. 9 is a circuit diagram showing still another embodiment of the control circuit of the humidity detecting device according to the present invention.
【図10】サーミスタの電流−電圧特性を示すカーブで
ある。FIG. 10 is a curve showing current-voltage characteristics of a thermistor.
【図11】サーミスタの電流−電圧特性を示すカーブで
ある。FIG. 11 is a curve showing current-voltage characteristics of a thermistor.
【図12】サーミスタの電流−電圧特性を示すカーブで
ある。FIG. 12 is a curve showing current-voltage characteristics of a thermistor.
【図13】図12の制御を行なうための本発明実施例の
制御ブロック図である。13 is a control block diagram of an embodiment of the present invention for performing the control of FIG.
【図14】サーミスタの電流−電圧特性を示すカーブで
ある。FIG. 14 is a curve showing current-voltage characteristics of a thermistor.
【図15】本発明における湿度検出装置の制御回路のさ
らに異なる実施例を示す回路図である。FIG. 15 is a circuit diagram showing still another embodiment of the control circuit of the humidity detecting device according to the present invention.
【図16】公知の高速応答感湿素子の構成を示す(a)
斜視図、および(b)断面図である。FIG. 16 shows a configuration of a known high-speed response moisture-sensitive element (a).
It is a perspective view and (b) sectional drawing.
1 電子レンジ本体 2 ドア 3 操作パネル 3a 開放ボタン 3b 表示部 3c,3d 加熱ボタン 4 被加熱物 5 マグネトロン 6 導波管 7 加熱室 8 受皿 9 排気口 10 感温素子 20 制御部 21 状態制御部 22 微分回路 23 抵抗値演算回路部 24 可変電流電源 31 基板 32 薄膜絶縁層 33 マイクロブリッジ 34 感応膜 35 電極 A1,A2,A4,A5,A6,A7 演算増幅器 A3 比較器 Rr 感温抵抗 Rs 感温抵抗(湿度センサ) R1〜R18 固有抵抗 C1,C2,C3 コンデンサDESCRIPTION OF SYMBOLS 1 Microwave oven main body 2 Door 3 Operation panel 3a Release button 3b Display part 3c, 3d Heating button 4 Heated object 5 Magnetron 6 Waveguide 7 Heating chamber 8 Receiving tray 9 Exhaust port 10 Temperature sensing element 20 Control part 21 State control part 22 differentiating circuit 23 resistance value calculating circuit 24 a variable current source 31 substrate 32 thin film insulating layer 33 microbridge 34 sensitive film 35 electrodes A 1, A 2, A 4 , A 5, A 6, A 7 operational amplifier A 3 comparator Rr temperature sensing resistor Rs thermal sensitive resistor (humidity sensor) R 1 to R 18 resistivity C 1, C 2, C 3 capacitor
Claims (7)
と、 感温抵抗体1個で構成され、湿度変化に対する応答性を
90%応答で10秒以下とし、加熱の進行とともに発生
する蒸気(湿度)を検出する湿度センサと、 前記湿度センサを、湿度検出時には100℃以上に自己
加熱し、雰囲気温度検出時は非自己加熱の状態とし、該
2つの状態を、被加熱物を加熱中に、交互に切り替える
状態制御部と、 前記状態制御部に切り替え信号を与えるとともに、自己
過熱と非自己過熱の各々の状態での抵抗値から2つの状
態の抵抗比を求めて、該抵抗比の変動で絶対湿度の変化
値を求めて、該絶対湿度の変化値により加熱を制御する
制御部と、 を具備した加熱調理器の湿度検出装置。1. A heating chamber for heating an object to be heated, a heating means, and one temperature-sensitive resistor. The response to a humidity change is set to 10 seconds or less at a 90% response, and steam generated as heating proceeds. A humidity sensor that detects (humidity); and the humidity sensor self-heats to 100 ° C. or more when humidity is detected, and is set to a non-self-heating state when the ambient temperature is detected. In addition, a state control unit that switches alternately, while providing a switching signal to the state control unit, the resistance ratio of the two states is obtained from the resistance value in each state of self-heating and non-self-heating, A control unit that obtains a change value of the absolute humidity by the fluctuation and controls heating based on the change value of the absolute humidity.
電流電源の間に接続された負荷抵抗からなり、 前記制御部は、湿度検出時および温度検出時の各々の状
態となるように前記負荷抵抗部の抵抗値を可変させるこ
とを特徴とする請求項1記載の加熱調理器の湿度検出装
置。2. The state control section includes a load resistor connected between the humidity sensor and a constant current power supply, and the control section controls the state so as to be in each of a state at the time of humidity detection and a state at the time of temperature detection. 2. The humidity detecting device for a cooking device according to claim 1, wherein the resistance value of the load resistance section is variable.
を供給される前記湿度センサに接続された負荷抵抗から
なり、 前記制御部は、湿度検出時および温度検出時の各々の状
態となるように前記負荷抵抗部の抵抗値を可変させるこ
とを特徴とする請求項1記載の加熱調理器の湿度検出装
置。3. The state control unit includes a load resistor connected to the humidity sensor supplied with a current from a constant current power supply, and the control unit enters a state when detecting humidity and a state when detecting temperature. The humidity detecting device for a heating cooker according to claim 1, wherein the resistance value of the load resistance section is varied.
開始時および非通電時の抵抗安定時間が5秒以下である
ことを特徴とする請求項1記載の加熱調理器の湿度検出
装置。4. The humidity detecting device according to claim 1, wherein the humidity sensor has a resistance stabilization time of 5 seconds or less at the start of energization and at the time of non-energization during self-heating.
抵抗体であり、 前記状態制御部は、前記湿度センサに電流を供給する可
変電流電源であり、電流の上昇時若しくは下降時の少な
くともいずれか一方の際に時間と共に徐々に変化する特
性を有し、 前記制御部は、前記可変電流電源からの電流値が時間と
共に徐々に変化する際、前記湿度センサの両端電圧が予
め設定された自己加熱と非自己加熱の電圧に達した場合
の電流値を検出することによって、各々の状態の抵抗値
を算出することを特徴とする請求項1記載の加熱調理器
の湿度検出装置。5. The humidity sensor is a temperature-sensitive resistor having a negative characteristic, and the state control unit is a variable current power supply that supplies a current to the humidity sensor. The control unit has a characteristic that gradually changes with time in at least one of the cases, and the control unit is configured such that when the current value from the variable current power supply gradually changes with time, the voltage across the humidity sensor is set in advance. The humidity detecting device for a cooking device according to claim 1, wherein the resistance value of each state is calculated by detecting a current value when the voltage reaches the self-heating and non-self-heating voltages.
れた電圧は、後で測定する他方の状態の予め定められた
電圧より等しいか若しくは大きいことを特徴とする請求
項5記載の加熱調理器の湿度検出装置。6. The cooking method according to claim 5, wherein the preset voltage of one state measured first is equal to or greater than the predetermined voltage of the other state measured later. Vessel humidity detector.
予め定められた範囲に設定することを特徴とする請求項
5記載の加熱調理器の湿度検出装置。7. The humidity detecting device for a cooking device according to claim 5, wherein a current value for obtaining a resistance value in each state is set in a predetermined range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5092918A JP2989418B2 (en) | 1993-04-20 | 1993-04-20 | Humidity detector of cooking device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5092918A JP2989418B2 (en) | 1993-04-20 | 1993-04-20 | Humidity detector of cooking device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06300266A JPH06300266A (en) | 1994-10-28 |
JP2989418B2 true JP2989418B2 (en) | 1999-12-13 |
Family
ID=14067874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5092918A Expired - Fee Related JP2989418B2 (en) | 1993-04-20 | 1993-04-20 | Humidity detector of cooking device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2989418B2 (en) |
-
1993
- 1993-04-20 JP JP5092918A patent/JP2989418B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06300266A (en) | 1994-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2014823C (en) | Heating apparatus | |
US4734554A (en) | Heating apparatus with humidity sensor | |
EP1109012A2 (en) | Measurement method and system for a humidity of gas concentration sensor | |
EP0093173A1 (en) | High frequency heating device | |
JP3955747B2 (en) | Flow measuring device | |
JP2989418B2 (en) | Humidity detector of cooking device | |
JPS60203811A (en) | Detector | |
JP3316384B2 (en) | Absolute humidity detector | |
US4501147A (en) | Control circuit for a humidity sensor | |
Oliveira et al. | Compensation of the fluid temperature variation in a hot-wire anemometer | |
JP3596596B2 (en) | Flow measurement device | |
KR940004978B1 (en) | Heat control system for a microwave range | |
GB2243916A (en) | Pyroelectric anemometer | |
JP3274564B2 (en) | Gas flow meter | |
JPS62112929A (en) | Electronic range equipped with piezoelectric element sensor | |
KR940006523B1 (en) | Automatic heating apparatus of microwave oven | |
JP2931378B2 (en) | Cooking device | |
JPH1019823A (en) | Temperature control circuit of thermal humidity sensor | |
JPS5942667Y2 (en) | light detection device | |
JPH0465092A (en) | Electromagnetic cooking device | |
KR900006476Y1 (en) | Heating appiance with humidity sensor | |
JP2003042989A (en) | Gas detection device | |
JPH02118424A (en) | Heat detecting circuit | |
JP2592364B2 (en) | Cooker | |
KR930007515B1 (en) | Humidity measuring apparatus of a microwave range |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |