JP2985220B2 - Projection display device - Google Patents
Projection display deviceInfo
- Publication number
- JP2985220B2 JP2985220B2 JP2096735A JP9673590A JP2985220B2 JP 2985220 B2 JP2985220 B2 JP 2985220B2 JP 2096735 A JP2096735 A JP 2096735A JP 9673590 A JP9673590 A JP 9673590A JP 2985220 B2 JP2985220 B2 JP 2985220B2
- Authority
- JP
- Japan
- Prior art keywords
- mirror
- light
- parabolic mirror
- liquid crystal
- spherical mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 claims description 29
- 239000011261 inert gas Substances 0.000 claims description 4
- 230000014509 gene expression Effects 0.000 claims description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 46
- 238000005286 illumination Methods 0.000 description 22
- 230000004907 flux Effects 0.000 description 10
- 239000011521 glass Substances 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 238000012356 Product development Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Lenses (AREA)
- Projection Apparatus (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は,液晶ライトバルブ上に形成された画像をス
クリーン上に拡大投写する投写型表示装置の高輝度化に
関するものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection type display device which enlarges and projects an image formed on a liquid crystal light valve onto a screen, and to a high brightness.
[従来の技術] 第6図は従来の投写型表示装置の光学系の説明図であ
る。[Prior Art] FIG. 6 is an explanatory diagram of an optical system of a conventional projection display device.
図において、(1)は光源、(120)はランプ、(13
0)は反射鏡、(2)は光源(1)から出射する照明光
束、(3)は液晶ライトバルブ、(8),(9)は液晶
ライトバルブの前後に配置された偏光板、(4)は投写
レンズ、(5)はスクリーン、(10)はコンデンサレン
ズである。In the figure, (1) is a light source, (120) is a lamp, (13)
0) is a reflecting mirror, (2) is an illumination light beam emitted from the light source (1), (3) is a liquid crystal light valve, (8) and (9) are polarizing plates disposed before and after the liquid crystal light valve, and (4) ) Is a projection lens, (5) is a screen, and (10) is a condenser lens.
次に動作について説明する。 Next, the operation will be described.
光源(1)はランプ(120)と反射鏡(130)から成
り、液晶ライトバルブ(3)に照明光束(2)を照射す
る。ランプ(120)としては、例えばメタルハライドラ
ンプ,キセノンランプ等の放電ランプや、ハロゲンラン
プ等が用いられる。また、反射鏡(130)の反射面は、
図中に一点鎖線で示す中心線(20)に対して回転対称な
放物面であり、公知のように放物面の焦点位置にランプ
(120)の発光中心(121)を配置することにより、円形
の断面形状を有する平行照明光束(2)が得られる。液
晶ライトバルブ(3)の面上には、後述するように画像
が表示され、画像の濃淡及び色に応じて面内の透過率が
変化する。液晶ライトバルブ(3)を透過した光束はさ
らに投写レンズ(4)を透過して投写光(110)とな
り、スクリーン(5)上に拡大結像され鑑賞に供され
る。なお、コンデンサレンズ(10)は、照明光束を高効
率で投写レンズに入射し高輝度の投写画像を得るために
設けられている。The light source (1) comprises a lamp (120) and a reflecting mirror (130), and irradiates a liquid crystal light valve (3) with an illumination light beam (2). As the lamp (120), for example, a discharge lamp such as a metal halide lamp or a xenon lamp, or a halogen lamp is used. The reflecting surface of the reflecting mirror (130)
It is a paraboloid that is rotationally symmetric with respect to a center line (20) indicated by a dashed line in the figure, and the emission center (121) of the lamp (120) is arranged at the focal position of the paraboloid as is known. , A parallel illumination light beam (2) having a circular cross-sectional shape is obtained. An image is displayed on the surface of the liquid crystal light valve (3) as described later, and the transmittance in the surface changes according to the density and color of the image. The light beam transmitted through the liquid crystal light valve (3) is further transmitted through the projection lens (4) to become a projection light (110), and is enlarged and formed on a screen (5) for viewing. The condenser lens (10) is provided to allow the illumination light beam to enter the projection lens with high efficiency and obtain a high-brightness projection image.
次に、液晶ライトバルブ(3)の構成と動作につい
て、第7図により説明する。Next, the configuration and operation of the liquid crystal light valve (3) will be described with reference to FIG.
液晶(6)は2枚のガラス基板(7)に挟まれ、さら
に両側に偏光板(8),(9)を配している。電圧無印
加時V=0(第7図(a))においては、入射側偏光板
(8)を透過した直線偏光(2a)は、液晶(6)を透過
する際に液晶の旋光性によって偏光方向が90゜回転し、
入射側偏光板(8)と偏光軸が直交するように配された
出射側偏光板(9)を透過する。一方、しきい値電圧Vt
h以上の電圧Vを印加する(第7図(b))と、液晶の
旋光性が小さくなって、出射側偏光板(9)を透過する
光量が電圧の増加に伴って減少する。この様な透過率の
制御作用を利用し、さらに2次元アレイ状に電極を構成
することにより、2次元の画像表示素子が形成できる。
なお、上記液晶は旋光角が90゜のTN(Twisted Nemati
c)液晶をノーマリーホワイトモードで使用した例につ
いて説明した。液晶相の種類,旋光角の大きさ等につい
ては公知のごとく、上記の他にも変形例が知られている
が、本発明の主題に直接関係しないので説明を省略す
る。The liquid crystal (6) is sandwiched between two glass substrates (7), and polarizing plates (8) and (9) are arranged on both sides. When no voltage is applied, V = 0 (FIG. 7A), the linearly polarized light (2a) transmitted through the incident-side polarizing plate (8) is polarized by the optical rotation of the liquid crystal when transmitted through the liquid crystal (6). The direction rotates 90 °,
The light passes through the exit-side polarizing plate (9) disposed so that the polarization axis of the entrance-side polarizing plate (8) is orthogonal to that of the polarizing plate. On the other hand, the threshold voltage Vt
When a voltage V equal to or more than h is applied (FIG. 7 (b)), the optical rotation of the liquid crystal decreases, and the amount of light transmitted through the exit-side polarizing plate (9) decreases with an increase in the voltage. A two-dimensional image display element can be formed by utilizing such a transmittance control function and further forming the electrodes in a two-dimensional array.
The above liquid crystal has a TN (Twisted Nemati
c) The example in which the liquid crystal is used in the normally white mode has been described. The types of liquid crystal phase, the magnitude of the optical rotation angle, and the like are well known, and other modified examples are known. However, since they are not directly related to the subject of the present invention, the description is omitted.
さらに、第2の従来装置として、第8図に3枚の液晶
ライトバルブを用いた装置の光学系を示す。図におい
て、(1)は光源であり、具体的にはメタルハライドラ
ンプ,キセノンランプ,ハロゲンランプ等の白色光を発
生するランプ(120)と、回転対称な放物面の反射鏡(1
30)から成る。(2)は光源(1)を出射する照明光束
であり、第1の従来例と同様に円形の断面形状を有する
平行光束である。(14R),(14B)は色分離用ダイクロ
イックミラー、(15B),(15G)は色合成用ダイクロイ
ックミラー、(11),(12)はミラー、(3R),(3
G),(3B)は液晶ライトバルブ、(8R),(8G),(8
B)は入射側偏光板、(9R),(9G),(9B)は出射側
偏光板、(10R),(10G),(10B)はコンデンサレン
ズである。FIG. 8 shows an optical system of a device using three liquid crystal light valves as a second conventional device. In the figure, reference numeral (1) denotes a light source, specifically, a lamp (120) for generating white light such as a metal halide lamp, a xenon lamp, or a halogen lamp, and a rotationally symmetric parabolic reflector (1).
30). (2) is an illumination light beam emitted from the light source (1), and is a parallel light beam having a circular cross-sectional shape as in the first conventional example. (14R) and (14B) are dichroic mirrors for color separation, (15B) and (15G) are dichroic mirrors for color synthesis, (11) and (12) are mirrors, (3R) and (3
G), (3B) are liquid crystal light valves, (8R), (8G), (8
B) is an incident side polarizing plate, (9R), (9G) and (9B) are outgoing side polarizing plates, and (10R), (10G) and (10B) are condenser lenses.
次に、第2の従来装置の動作について説明する。 Next, the operation of the second conventional apparatus will be described.
照明光束(2)は、放物面反射鏡の焦点位置に置かれ
た白色光源ランプ(120)を出射後、反射鏡(130)で反
射され、平行光束となって光源(1)を出射する。The illumination light beam (2) exits the white light source lamp (120) placed at the focal position of the parabolic reflector, is reflected by the reflector (130), and emerges as a parallel light beam from the light source (1). .
ダイクロイックミラー(14R)は赤色光を反射し青・
緑光を透過する。また、ダイクロイックミラー(14B)
は青色光を反射し、緑色光を透過させる。従って、液晶
ライトバルブ(3G),(3B),(3R)には、各々緑・青
・赤の照明光束が照射される。液晶ライトバルブ(3
G),(3B),(3R)には、特に図示しない外部回路に
よって緑・青・赤の色光に相当する画像が形成され、照
射光をライトバルブ面内で透過変調する。液晶ライトバ
ルブ(3G),(3B),(3R)の出射光は、青色光を反射
するダイクロイックミラー(15B),緑色光を反射する
ダイクロイックミラー(15G)、及び反射ミラー(12)
によって合成光束(100)として投写レンズ(4)に入
射し、投写光束(110)としてスクリーン(5)上に結
像され、拡大されたカラー画像が鑑賞に供される。な
お、コンデンサレンズ(10R),(10G),(10B)は、
各々赤・緑・青色光を高効率で投写レンズ(4)に入射
させるために用いられる。また、各液晶ライトバルブ
(3R),(3G),(3B)の構成及び動作は、先に第7図
で説明したものと同様である。The dichroic mirror (14R) reflects red light and
Transmits green light. In addition, dichroic mirror (14B)
Reflects blue light and transmits green light. Accordingly, the liquid crystal light valves (3G), (3B), and (3R) are irradiated with green, blue, and red illumination light beams, respectively. LCD light valve (3
In G), (3B), and (3R), an image corresponding to green, blue, and red light is formed by an external circuit (not shown), and the irradiation light is transmitted and modulated in the light valve surface. The light emitted from the liquid crystal light valves (3G), (3B) and (3R) is a dichroic mirror (15B) that reflects blue light, a dichroic mirror (15G) that reflects green light, and a reflecting mirror (12)
As a result, the light enters the projection lens (4) as a combined light beam (100), and is formed on the screen (5) as the projected light beam (110), and the enlarged color image is provided for viewing. The condenser lenses (10R), (10G) and (10B)
Each of them is used to make red, green, and blue light incident on the projection lens (4) with high efficiency. The configuration and operation of each of the liquid crystal light valves (3R), (3G), and (3B) are the same as those described above with reference to FIG.
[発明が解決しようとする課題] 従来の投写型表示装置は、以上のように構成されてい
るので、第9図に(d)で示したように反射鏡(130)
で反射されないで前方に発散する光束は殆ど液晶ライト
バルブ(3)に入射せず、光束の損失を増やし高輝度化
を妨げる要因となっていた。[Problem to be Solved by the Invention] Since the conventional projection display device is configured as described above, as shown in FIG.
The luminous flux which is not reflected by the light and diverges forward hardly enters the liquid crystal light valve (3), which increases the loss of the luminous flux and prevents high brightness.
本発明は上記のような問題点を解消するためになされ
たもので、放物面鏡で反射されずに前方へ発散すること
により発生していた照明光束の損失を防止し、より高輝
度な画像表示が実現できる投写型表示装置を提供するも
のである。The present invention has been made in order to solve the above-described problems, and prevents a loss of an illumination light beam caused by diverging forward without being reflected by a parabolic mirror. An object of the present invention is to provide a projection display device capable of realizing image display.
[課題を解決するための手段] 本発明に係る投写型表示装置は、矩形領域に画像を形
成するライトバルブと、このライトバルブに形成された
画像を拡大投写する投写レンズと、ライトバルブを照明
する光束を出射する光源手段よりなる光学系を有し、光
源手段は、ランプ、該ランプを焦点に配置する放物面
鏡、この放物面鏡と光軸を共有して対向し、かつ上記放
物面鏡の焦点と曲率中心点を共有点として以下の式を満
たすように上記放物面鏡と接合された球面鏡を備え、前
記球面鏡に設けられた矩形開口より前記光束を出射する
ことを特徴とする。[Means for Solving the Problems] A projection display device according to the present invention includes a light valve for forming an image in a rectangular area, a projection lens for enlarging and projecting an image formed on the light valve, and illuminating the light valve. An optical system comprising light source means for emitting a light beam, the light source means being a lamp, a parabolic mirror disposed at the focal point of the lamp, facing the parabolic mirror sharing an optical axis, and A spherical mirror joined to the parabolic mirror so as to satisfy the following equation with the focal point and the center of curvature of the parabolic mirror as common points, and emitting the light beam from a rectangular aperture provided in the spherical mirror. Features.
r=X1+f X2=2f Y2=Y1 ただし、rは球面鏡の曲率半径、X1は放物面鏡の頂点
からの深さ、X2は球面鏡の頂点からの深さ、Y1は放物面
鏡の開口の半径、Y2は球面鏡の開口の半径、fは放物面
鏡の焦点距離を示す。r = X1 + f X2 = 2f Y2 = Y1, where r is the radius of curvature of the spherical mirror, X1 is the depth from the vertex of the parabolic mirror, X2 is the depth from the vertex of the spherical mirror, and Y1 is the opening of the parabolic mirror. The radius, Y2, is the radius of the opening of the spherical mirror, and f is the focal length of the parabolic mirror.
また、放物面鏡と球面鏡が接合された内部に不活性ガ
スを気密封入したことを特徴とするものである。In addition, an inert gas is hermetically sealed in the inside where the parabolic mirror and the spherical mirror are joined.
[作用] 上記の様に光軸を共有し、放物面鏡の焦点と球面鏡の
曲率中心とが共有点となるように対向配置し、かつ上記
放物面鏡と球面鏡を上記式を満たすように接合すること
により、コンパクトな構成を実現しつつ、従来放物面鏡
で反射されずに前方へ発散していた光束の一部を開口か
ら平行光束として出射させ、有効な照明光束とする作用
がある。[Operation] As described above, the optical axis is shared, the parabolic mirror and the spherical mirror are arranged so as to face each other such that the focal point and the center of curvature of the spherical mirror are shared, and the parabolic mirror and the spherical mirror satisfy the above equation. By connecting to the aperture, a part of the luminous flux that has been diverged forward without being reflected by the conventional parabolic mirror is emitted as a parallel luminous flux from the aperture while realizing a compact configuration, and it becomes an effective illumination luminous flux. There is.
さらに光源から出射する光束はライトバルブと略相似
形状の矩形形状にできるので、表示面に到達する光束の
形状と表示面の形状を略一致させ、けられによる光束損
失を殆どなくすことができる。Further, since the light beam emitted from the light source can be formed in a rectangular shape substantially similar to the shape of the light valve, the shape of the light beam reaching the display surface and the shape of the display surface can be substantially matched, and the light beam loss due to the shaking can be almost eliminated.
さらに、放物面鏡と球面鏡とが接合された内部に不活
性ガスを封入することにより、ランプの電極やリード線
の酸化を防ぐことができる。Furthermore, by injecting an inert gas into the interior where the parabolic mirror and the spherical mirror are joined, oxidation of the lamp electrodes and lead wires can be prevented.
[実施例] 本発明を図に基づいて説明する。Example The present invention will be described with reference to the drawings.
第1図は本発明の第1実施例の説明図である。 FIG. 1 is an explanatory diagram of a first embodiment of the present invention.
図において、(120)はランプ、(130)は放物面鏡、
(140)は球面鏡、(141)は球面鏡に設けられた矩形開
口であり、図のz方向(照明光(2)の出射方向)から
みた場合、液晶ライトバルブ(3)の画像表示領域と相
似な矩形形状となっている。なお、放物面鏡(130)の
内面、及び球面鏡(140)の矩形開口(141)以外の内面
は反射鏡として作用するように、鏡面仕上げされ,必要
に応じて反射膜コーティングが施されている。In the figure, (120) is a lamp, (130) is a parabolic mirror,
(140) is a spherical mirror, and (141) is a rectangular opening provided in the spherical mirror, which is similar to the image display area of the liquid crystal light valve (3) when viewed in the z direction (the emission direction of the illumination light (2)) in the figure. It has a simple rectangular shape. The inner surface of the parabolic mirror (130) and the inner surface other than the rectangular opening (141) of the spherical mirror (140) are mirror-finished so as to act as a reflecting mirror, and are coated with a reflecting film as necessary. I have.
光源(1)は上記のランプ(120),放物面鏡(13
0),球面鏡(140),矩形開口(141)により構成して
いる。それ以外の構成要素は、第1の従来例を示す第6
図と同様である。The light source (1) consists of the lamp (120) and the parabolic mirror (13
0), a spherical mirror (140), and a rectangular aperture (141). The other components are the same as those in the sixth conventional example.
It is the same as the figure.
次に実施例の動作を説明する。 Next, the operation of the embodiment will be described.
放物面鏡(130)と球面鏡(140)は、光軸を共有し、
放物面の焦点と球面の曲率中心が共有点となるように対
向配置されている。ランプ(120)はこの共有点位置に
発光中心(121)が位置するように配置されている。ラ
ンプ(120)を出射した光線は、放物面鏡(130)で直接
反射されて、1点鎖線で示した中心線(20)と平行な光
線として矩形開口(141)より出射するか、放物面鏡(1
30)と球面鏡(140)との間で反射されて矩形開口(14
1)より光軸(20)に平行な光線として出射する。この
状況について、光源(1)の内部を詳細に描いた第2図
で説明する。図において、斜線で示した放物面鏡(13
0)と球面鏡(140)の内面が反射鏡として作用する部分
であり、破線で示した部分(141)が矩形開口部であ
る。図中には3本の代表的な光線(a),(b),
(c)の挙動を示している。光線(a)はランプ(12
0)を出射後、放物面鏡(130)で反射され、矩形開口
(141)の端を通って出射する光線である。ランプ(12
0)の発光中心(121)は、一点鎖線で示した光軸(20)
に対して垂直な面で対向する放物面鏡(130)の焦点と
球面鏡(140)の曲率中心の共有点位置に置かれている
ので、光線(a)は光軸(20)に平行な照明光線(2)
となる。光線(a)よりも光軸(20)に近い点で放物面
鏡(130)で反射される光線は、光線(a)と同様に矩
形開口(141)より平行照明光束として出射する。光線
(c)は、矩形開口より高い位置で球面鏡(140)に入
射し、反射後共有点(ランプ(120)の発光中心(12
1))を通って放物面鏡(130)に入射し、反射後光軸
(20)と平行な光線として矩形開口(141)より出射す
る。The parabolic mirror (130) and the spherical mirror (140) share the optical axis,
They are arranged facing each other such that the focal point of the paraboloid and the center of curvature of the spherical surface become a common point. The lamp (120) is arranged so that the light emission center (121) is located at this common point position. The light beam emitted from the lamp (120) is directly reflected by the parabolic mirror (130) and emitted from the rectangular aperture (141) as a light beam parallel to the center line (20) shown by a dashed line, or emitted. Object mirror (1
30) and the spherical mirror (140) are reflected between the rectangular aperture (14
1) The light is emitted as a light beam parallel to the optical axis (20). This situation will be described with reference to FIG. 2, which illustrates the inside of the light source (1) in detail. In the figure, the parabolic mirror (13
0) and the inner surface of the spherical mirror (140) are portions that function as a reflecting mirror, and the portion (141) shown by a broken line is a rectangular opening. In the figure, three representative rays (a), (b),
The behavior of (c) is shown. Ray (a) is a lamp (12
0) is a light ray that is reflected by the parabolic mirror (130) and exits through the end of the rectangular aperture (141). Lamp (12
The light emission center (121) of (0) is the optical axis (20) indicated by the dashed line.
The ray (a) is parallel to the optical axis (20) since it is located at the common point of the focal point of the parabolic mirror (130) and the center of curvature of the spherical mirror (140), which faces in a plane perpendicular to Illumination ray (2)
Becomes The light beam reflected by the parabolic mirror (130) at a point closer to the optical axis (20) than the light beam (a) is emitted as a parallel illumination light beam from the rectangular aperture (141), similarly to the light beam (a). The light ray (c) is incident on the spherical mirror (140) at a position higher than the rectangular aperture, and after reflection, the common point (12
1)), enters the parabolic mirror (130), and exits from the rectangular aperture (141) as a ray parallel to the optical axis (20) after reflection.
以上の説明より明かなように、ランプ(120)から直
接矩形開口(141)内に入射する光線と、光線(a)よ
り高い位置で放物面鏡(130)に入射する光線(光線
(b))以外の光線は、全て矩形開口(141)より光軸
(20)に平行で、断面形状が矩形の照明光束(2)とし
て出射される。照明光束(2)はコンデンサレンズ(1
0)を透過し、その直後に配置された液晶ライトバルブ
(3)に入射する。照明光束(2)は、液晶ライトバル
ブ(3)内の矩形表示領域の大きさにほぼ等しい矩形形
状光束として、照射されるよう矩形開口(141)の大き
さ及びコンデンサレンズ(10)と液晶ライトバルブ
(3)の配置関係が設定されている。また、コンデンサ
レンズ(10)を省略した光学系では照明光束(2)は平
行光束のままで液晶ライトバルブ(3)に入射するが、
この場合は平行照明光束(2)の断面形状がほぼ液晶ラ
イトバルブの矩形表示領域と等しい寸法に設定されてい
る。第1図で、液晶ライトバルブ(3)の透過光が、投
写レンズ(4)を透過後、投写光(110)なってスクリ
ーン(5)に拡大投写される点は従来装置と変わりな
い。As is clear from the above description, the light beam directly entering the rectangular aperture (141) from the lamp (120) and the light beam (light beam (b) incident on the parabolic mirror (130) at a position higher than the light beam (a) Light rays other than)) are all emitted from the rectangular aperture (141) as an illumination light beam (2) having a rectangular cross section and being parallel to the optical axis (20). The illumination light beam (2) is a condenser lens (1
0), and is incident on the liquid crystal light valve (3) disposed immediately thereafter. The illumination light beam (2) is illuminated as a rectangular light beam having a size substantially equal to the size of the rectangular display area in the liquid crystal light valve (3), the size of the rectangular opening (141), the condenser lens (10), and the liquid crystal light. The arrangement relationship of the valve (3) is set. In an optical system in which the condenser lens (10) is omitted, the illumination light beam (2) enters the liquid crystal light valve (3) as a parallel light beam.
In this case, the cross-sectional shape of the parallel illumination light beam (2) is set to substantially the same size as the rectangular display area of the liquid crystal light valve. In FIG. 1, the point that the transmitted light of the liquid crystal light valve (3) passes through the projection lens (4), becomes the projected light (110), and is enlarged and projected on the screen (5) is the same as the conventional apparatus.
次に、光源(1)の作成法について述べる。 Next, a method for producing the light source (1) will be described.
まず第1に、矩形開口(141)は、球面鏡(140)に設
けられた孔であれば、開口からの不要な反射等が防げる
ので好適である。放物面鏡(130)及び球面鏡(140)は
公知のようにAl等の金属を成型または切削するか、ガラ
ス材を成型して作られる。ガラス製の場合には、内面に
反射コーティングを施すのが適当である。液晶ライトバ
ルブ(3)側に不要な赤外線・紫外線が照射されるのを
防ぐには、放物面鏡(130)に対して、可視光(例えば
波長400〜700nm)のみを選択的に反射するコーティング
を施し、球面鏡(140)の矩形開口(141)以外の部分を
広帯域反射(例えば、200〜1000nmの波長範囲で反射率9
0%以上)するコーティングを施しておけばよい。First, the rectangular opening (141) is preferably a hole provided in the spherical mirror (140), because unnecessary reflection from the opening can be prevented. As is well known, the parabolic mirror (130) and the spherical mirror (140) are made by molding or cutting a metal such as Al, or by molding a glass material. In the case of glass, it is appropriate to apply a reflective coating to the inner surface. In order to prevent unnecessary infrared rays and ultraviolet rays from being irradiated to the liquid crystal light valve (3) side, only the visible light (for example, a wavelength of 400 to 700 nm) is selectively reflected by the parabolic mirror (130). After coating, a part of the spherical mirror (140) other than the rectangular aperture (141) is broadband reflected (for example, with a reflectance of 9 in the wavelength range of 200 to 1000 nm).
0% or more).
第2に、矩形開口(141)は、透明ガラス材料で作成
された球面鏡(140)に部分的に設けられた透過領域
(窓領域)として、必ずしも物理的に孔を開けなくても
よい。この場合、矩形開口部(141)は反射コーティン
グを施さず単なる透明ガラス窓としてもよいし、必要に
応じて可視光(波長400〜700nm)に対する無反射コーテ
ィングを施してもよい。矩形開口(141)以外の球面鏡
(140)の内面には、広帯域の反射コーティング(例え
ば、200〜1000nmの波長範囲で反射率90%以上)を施す
のが適当である。また、矩形開口部(141)のコーティ
ングに紫外線(波長400nm以下)・赤外線(波長700nm以
上)の反射機能をもたせて、液晶ライトバルブ(3)へ
の不要スペクトルの照射を防いでもよい。Second, the rectangular opening (141) does not necessarily have to be physically opened as a transmission area (window area) partially provided in a spherical mirror (140) made of a transparent glass material. In this case, the rectangular opening (141) may be a mere transparent glass window without applying a reflective coating, or may be provided with a non-reflective coating for visible light (wavelength 400 to 700 nm) as necessary. The inner surface of the spherical mirror (140) other than the rectangular aperture (141) is suitably provided with a broadband reflective coating (for example, a reflectance of 90% or more in a wavelength range of 200 to 1000 nm). The coating of the rectangular opening (141) may be provided with a function of reflecting ultraviolet rays (wavelength of 400 nm or less) and infrared rays (wavelength of 700 nm or more) to prevent the liquid crystal light valve (3) from being irradiated with unnecessary spectrum.
第3に、放物面鏡(130)と球面鏡(140)を互いに対
向させ、第2図に示したように外周部(記号Aで示す)
を溶着等の公知の方法で接合してもよい。この場合、上
記第2の構成のように矩形開口(141)を透明ガラスと
し、対向する放物面鏡と球面鏡の内部を公知の方法で気
密封止し、内部にN2,Ar等の不活性ガスを封入しておけ
ばランプ(120)の特に図示しない電極及び電極と駆動
回路をつなぐリード線の酸化を防げるので長寿命化に有
効である。第3図で、気密封止するための、放物面及び
球面(内面)の形状決定方法を説明する。第3図で、下
記〜式が成立する。Third, the parabolic mirror (130) and the spherical mirror (140) are opposed to each other, and the outer peripheral portion (indicated by symbol A) as shown in FIG.
May be joined by a known method such as welding. Not this case, the second rectangular opening (141) and transparent glass as in the configuration, the inside of the opposite parabolic mirror and the spherical mirror hermetically sealed in a known manner, inside the N 2, Ar, etc. By enclosing the active gas, it is possible to prevent the oxidation of the electrodes (not shown) of the lamp (120) and the lead wires connecting the electrodes and the driving circuit, which is effective for extending the life. FIG. 3 illustrates a method for determining the shape of a paraboloid and a spherical surface (inner surface) for hermetic sealing. In FIG. 3, the following expressions are established.
X1+X2=f+r ・・・・ Y1=Y2 ・・・・ Y1 2=4fX1 ・・・・ r2=(X1−f)2+Y1 2 ・・・・ 但し、X1は放物面鏡の頂点からの深さ、X2は球面鏡の
頂点からの深さ、Y1は放物面鏡の開口の半径、Y2は球面
鏡の開口の半径、fは放物面鏡の焦点距離、rは球面鏡
の曲率半径である。 X 1 + X 2 = f + r ···· Y 1 = Y 2 ···· Y 1 2 = 4fX 1 ···· r 2 = (X 1 -f) 2 + Y 1 2 ···· However, X 1 Is the depth from the vertex of the parabolic mirror, X 2 is the depth from the vertex of the spherical mirror, Y 1 is the radius of the opening of the parabolic mirror, Y 2 is the radius of the opening of the spherical mirror, and f is the parabolic mirror. And r is the radius of curvature of the spherical mirror.
放物面鏡のパラメータ(f,X1,Y1)が与えられている
とすると、、、式よりY1,X2を消去することによ
り式が得られる。Assuming that the parameters (f, X 1 , Y 1 ) of the parabolic mirror are given, an equation can be obtained by eliminating Y 1 and X 2 from the equation.
r2=(X1+f)2 ・・・・ ここでrは正の値とするので、式の解は、 r=X1+f ・・・・ となる。また、式を式に用いると X2=2f ・・・・ となる。式の半径rと、式のX2、式のY2というパ
ラメータの球面鏡(140)を用いることにより、上記の
ように外周部で接合され対向した放物面鏡及び球面鏡が
得られる。r 2 = (X 1 + f) 2 ... Here, since r is a positive value, the solution of the equation is r = X 1 + f. When the equation is used in the equation, X 2 = 2f... By using the spherical mirror (140) having the parameters of the radius r of the equation, X 2 of the equation, and Y 2 of the equation, a parabolic mirror and a spherical mirror joined at the outer peripheral portion and opposed to each other are obtained as described above.
[数値例] f=12.5mm,Y1=46.5mm,X1=43.245mmなる放物面鏡を
用いると、、、式より、球面鏡は、r=55.745m
m,Y2=46.5mm,X2=25.0mmとなる。[Numerical example] When a parabolic mirror having f = 12.5 mm, Y 1 = 46.5 mm, and X 1 = 43.245 mm is used, from the equation, the spherical mirror is r = 55.745 m.
m, Y 2 = 46.5 mm and X 2 = 25.0 mm.
なお、第3図の右側には、球面鏡の平面図を示した。
矩形開口(141)は、平面図上で長辺H,短辺Vの寸法を
有している。H:Vは液晶ライトバルブ(3)の有効表示
領域の長辺:短辺比にほぼ等しくなっている。A plan view of the spherical mirror is shown on the right side of FIG.
The rectangular opening (141) has dimensions of a long side H and a short side V in a plan view. H: V is almost equal to the ratio of the long side to the short side of the effective display area of the liquid crystal light valve (3).
[他の実施例] 次に、本発明の第2の実施例を第4図により説明す
る。Another Embodiment Next, a second embodiment of the present invention will be described with reference to FIG.
本実施例は、第2の従来例を示す第8図の光学系に第
1の実施例を示す第1図と同様の放物面鏡(130),球
面鏡(140),共有点位置に発光中心(121)が配置され
たランプ(120),矩形開口(141)よりなる光源(1)
を適用した例である。第1の実施例と同様に、矩形開口
(141)から断面形状が矩形の照明光束(2)が出射
し、ダイクロイックミラー(14R)以降の光学系に入射
する。また、液晶ライトバルブ(3R),(3G),(3B)
の有効表示領域の大きさと、照射光束の寸法が略一致す
るように矩形開口(141)の大きさ、及びコンデンサレ
ンズ(10R),(10G),(10B)、液晶ライトバルブ(3
R),(3G),(3B)の位置関係が設定される。本例で
も第1実施例と同様に、ランプ(120)から前方に発散
して損失となっていた光束の一部が平行照明光束として
有効利用され、高輝度化が実現できる利点は同じであ
る。なお、光源(1)以外は第2の従来例で説明をした
ので省略する。In this embodiment, a parabolic mirror (130) and a spherical mirror (140) similar to those in FIG. 1 showing the first embodiment are used in the optical system shown in FIG. Light source (1) consisting of a lamp (120) with a center (121) arranged and a rectangular aperture (141)
This is an example in which is applied. As in the first embodiment, an illumination light beam (2) having a rectangular cross section exits from the rectangular opening (141) and enters the optical system after the dichroic mirror (14R). In addition, liquid crystal light valves (3R), (3G), (3B)
The size of the rectangular opening (141), the condenser lenses (10R), (10G), (10B), and the liquid crystal light valve (3
R), (3G), and (3B) are set. In this embodiment, as in the first embodiment, a part of the light beam diverging forward from the lamp (120) and being lost is effectively used as a parallel illumination light beam, and the advantage of realizing high brightness is the same. . Except for the light source (1), the description has been given in the second conventional example, and a description thereof will be omitted.
本発明の各実施例は液晶ライトバルブとして透過型の
ものを使用しているが、反射型液晶ライトバルブを使用
した装置も公知である。第5図に、本発明の光源(1)
を反射型液晶ライトバルブ(3)を用いた光学系に適用
した第3の実施例を示す。第1及び第2の実施例と同様
に、放物面鏡(130)、矩形開口(141)を有する球面鏡
(140)、共有点に発光中心(121)が配置されたランプ
(120)からなる光源(1)から出射する矩形断面の照
明光束(2)は、偏光ビームスプリッタ(200)で反射
されて液晶ライトバルブ(3)側に向かうS偏光の照明
光となる。反射型ライトバルブに入射した光束は、画素
に電圧が印加されていない場合には下側のガラス基板
(7)に設けられた反射鏡で反射されて液晶から出射す
る際に偏光面が90゜回転するが、画素にしきい値以上の
電圧Vが印加されていると上記旋光作用が小さくなる。
一方、液晶ライトバルブの反射光は偏光ビームスプリッ
タ(200)を透過後、投写レンズ(4)側に向かう光束
(100)となる。偏光ビームスプリッタ(200)はP偏光
を透過し、これと偏光面の直交するS偏光は反射する特
性を有するので、液晶ライトバルブの画素への印加電圧
の強弱に応じて光束断面内の透過率が変調されて画像情
報となる。投写レンズ(4)を出射した光束(110)
は、従来例と同様にスクリーン(5)上に拡大投写され
る。In each of the embodiments of the present invention, a transmissive liquid crystal light valve is used, but an apparatus using a reflective liquid crystal light valve is also known. FIG. 5 shows a light source (1) of the present invention.
A third embodiment in which is applied to an optical system using a reflection type liquid crystal light valve (3) is shown. As in the first and second embodiments, a parabolic mirror (130), a spherical mirror (140) having a rectangular opening (141), and a lamp (120) having a light emission center (121) at a common point are provided. The illumination light beam (2) having a rectangular cross section emitted from the light source (1) is reflected by the polarizing beam splitter (200) and becomes S-polarized illumination light traveling toward the liquid crystal light valve (3). When no voltage is applied to the pixels, the luminous flux incident on the reflective light valve is reflected by a reflecting mirror provided on the lower glass substrate (7) and has a polarization plane of 90 ° when exiting from the liquid crystal. Although the light rotates, when the voltage V equal to or higher than the threshold value is applied to the pixel, the above-mentioned optical rotation effect is reduced.
On the other hand, the reflected light from the liquid crystal light valve passes through the polarizing beam splitter (200) and then becomes a light flux (100) heading for the projection lens (4). The polarizing beam splitter (200) has a characteristic of transmitting P-polarized light and reflecting S-polarized light perpendicular to the plane of polarization, so that the transmittance in the cross section of the light beam according to the strength of the voltage applied to the pixels of the liquid crystal light valve. Is modulated into image information. Light flux (110) emitted from the projection lens (4)
Is enlarged and projected on the screen (5) as in the conventional example.
以上述べた反射型ライトバルブを用いた実施例でも、
透過型の場合と同様に、液晶ライトバルブ(3)の画像
表示面は矩形であり、第1、第2実施例と同様に、光源
(1)の効果により高輝度化が可能である。以上の実施
例では液晶ライトバルブとして、液晶の旋光性を利用し
た方式について説明した。このほかにも液晶の複屈折を
電気的に制御する方式、例えばECB(electrically cont
rolled birefringence)形等も公知であり、旋光性以外
の光学的表示メカニズムを持つ液晶ライトバルブを用い
た投写型表示装置にも、本発明が適用出来ることもちろ
んである。また、ライトバルブの枚数も3枚に限らず3
枚以上、あるいは1〜2枚でも問題なく適用できる。In the embodiment using the reflection type light valve described above,
As in the case of the transmissive type, the image display surface of the liquid crystal light valve (3) is rectangular, and high brightness can be achieved by the effect of the light source (1) as in the first and second embodiments. In the above embodiments, the method using the optical rotation of the liquid crystal has been described as the liquid crystal light valve. In addition, a method of electrically controlling the birefringence of the liquid crystal, such as ECB (electrically cont
A rolled birefringence type or the like is also known, and it goes without saying that the present invention can be applied to a projection display device using a liquid crystal light valve having an optical display mechanism other than optical rotation. Also, the number of light valves is not limited to three, but may be three.
More than one sheet or one or two sheets can be applied without any problem.
以上のことから明らかなように、本発明の主な特徴を
列記すると次のとおりである。As is clear from the above, the main features of the present invention are listed as follows.
(1)矩形開口は、球面鏡の一部に設けられ、光軸方向
からみた形状が矩形孔であること。(1) The rectangular opening is provided in a part of the spherical mirror, and has a rectangular shape as viewed from the optical axis direction.
(2)矩形開口は、球面鏡の一部に設けられた透明部で
あり、前記光軸方向からみた形状が矩形であること。(2) The rectangular opening is a transparent portion provided in a part of the spherical mirror, and has a rectangular shape when viewed from the optical axis direction.
(3)放物面鏡、及び球面鏡は各々光軸に対して回転対
称であり、互いに外径が等しく、密閉構造となるよう対
向して貼合わせられていること。(3) The parabolic mirror and the spherical mirror are each rotationally symmetric with respect to the optical axis, have the same outer diameter, and are adhered to each other so as to form a closed structure.
[発明の効果] 以上詳述したように、本発明の投写型表示装置によれ
ば、光軸を共有し、かつ放物面鏡の焦点と球面鏡の曲率
中心とが共有点となるように対向配置し、かつ上記放物
面鏡と球面鏡を以下の式を満たすように接合することに
より、コンパクトな構成を実現しつつ、従来放物面鏡で
反射されずに前方へ発散していた光束の一部を開口から
平行光束として出射させ、有効な照明光束とする作用が
ある。[Effects of the Invention] As described in detail above, according to the projection display device of the present invention, the optical axis is shared, and the focal point of the parabolic mirror and the center of curvature of the spherical mirror are opposed to each other so as to be a common point. By arranging and joining the parabolic mirror and the spherical mirror so as to satisfy the following formula, while realizing a compact configuration, the luminous flux of the light beam that has diverged forward without being reflected by the parabolic mirror in the past is realized. There is an effect that a part of the light is emitted from the opening as a parallel light beam to make it an effective illumination light beam.
r=X1+f X2=2f Y2=Y1 ただし、rは球面鏡の曲率半径、X1は放物面鏡の頂点
からの深さ、X2は球面鏡の頂点からの深さY1は放物面鏡
の開口の半径、Y2は球面鏡の開口の半径、fは放物面鏡
の焦点距離を示す。r = X1 + f X2 = 2f Y2 = Y1, where r is the radius of curvature of the spherical mirror, X1 is the depth from the vertex of the parabolic mirror, X2 is the depth from the vertex of the spherical mirror, and Y1 is the radius of the opening of the parabolic mirror. , Y2 is the radius of the opening of the spherical mirror, and f is the focal length of the parabolic mirror.
さらに、放物面鏡と球面鏡とが接合された内部に不活
性ガスを封入することにより、ランプの電極やリード線
の酸化を防ぐことができ長寿命化となる。この結果、高
輝度な投写画像の投写型表示装置が実現可能である。Further, by filling an inert gas into the inside where the parabolic mirror and the spherical mirror are joined, oxidation of the lamp electrodes and lead wires can be prevented, and the life can be extended. As a result, it is possible to realize a projection type display device for a high-brightness projection image.
第1図は本発明の第1の実施例の説明図、第2図は本発
明に用いられる光源の詳細説明図、第3図は本発明の投
写型表示装置の光源を構成する、対向した放物面鏡及び
球面鏡の設計法及び矩形開口の形状を説明する図、第4
図は本発明の第2の実施例の説明図、第5図は本発明の
第3の実施例の説明図、第6図は従来の投写型表示装置
の第1の構成図、第7図は液晶ライトバルブの動作原理
の説明図、第8図は従来の投写型表示装置の第2の構成
図、第9図は従来装置の問題点である光束損失の説明図
である。 図において、(3),(3R),(3G),(3B)は液晶ラ
イトバルブ、(4)は投写レンズ、(1)は光源手段、
(120)はランプ、(130)は放物面鏡、(140)は球面
鏡、(141)は矩形開口、(121)は発光中心である。 なお、各図中同一符号は同一、または相当部分を示す。FIG. 1 is an explanatory view of a first embodiment of the present invention, FIG. 2 is a detailed explanatory view of a light source used in the present invention, and FIG. 3 is an opposing light source of a projection display device of the present invention. FIG. 4 is a view for explaining a design method of a parabolic mirror and a spherical mirror, and a shape of a rectangular opening.
FIG. 5 is an explanatory diagram of a second embodiment of the present invention, FIG. 5 is an explanatory diagram of a third embodiment of the present invention, FIG. 6 is a first configuration diagram of a conventional projection display device, and FIG. FIG. 8 is an explanatory view of the operation principle of a liquid crystal light valve, FIG. 8 is a second structural view of a conventional projection display apparatus, and FIG. 9 is an explanatory view of a luminous flux loss which is a problem of the conventional apparatus. In the figure, (3), (3R), (3G), and (3B) are liquid crystal light valves, (4) is a projection lens, (1) is light source means,
(120) is a lamp, (130) is a parabolic mirror, (140) is a spherical mirror, (141) is a rectangular aperture, and (121) is a light emission center. In the drawings, the same reference numerals indicate the same or corresponding parts.
フロントページの続き (72)発明者 都出 英一 京都府長岡京市馬場図所1番地 三菱電 機株式会社電子商品開発研究所内 (72)発明者 木田 博 京都府長岡京市馬場図所1番地 三菱電 機株式会社電子商品開発研究所内 (56)参考文献 実開 昭64−10724(JP,U) 実開 平1−123881(JP,U) (58)調査した分野(Int.Cl.6,DB名) G03B 21/00 G03B 21/14 Continuing on the front page (72) Inventor Eiichi Tsude 1 Baba Zujo, Nagaokakyo-shi, Kyoto Prefecture Mitsubishi Electric Corp. Electronic Product Development Laboratory (72) Inventor Hiroshi Kida 1 Baba Zujo, Nagaokakyo-shi, Kyoto Mitsubishi Electric (56) References Japanese Utility Model Sho-64-10724 (JP, U) Japanese Utility Model Hei 1-123881 (JP, U) (58) Fields surveyed (Int. Cl. 6 , DB name) ) G03B 21/00 G03B 21/14
Claims (2)
と、 該ライトバルブに形成された画像を拡大投写する投写レ
ンズと、 前記ライトバルブを照明する光束を出射する光源手段よ
りなる光学系を有する 投写型表示装置において、 前記光源手段は、ランプ、該ランプの発光部を焦点に配
置する放物面鏡、この放物面鏡と光軸を共有して対向
し、かつ前記放物面鏡の焦点と曲率中心点を共有点とし
て以下の式を満たすように前記放物面鏡と接合された球
面鏡を備え、前記球面鏡に設けられた矩形開口より前記
光束を出射することを特徴とする投写型表示装置。 r=X1+f X2=2f Y2=Y1 rは球面鏡の曲率半径、X1は放物面鏡の頂点からの深
さ、X2は球面鏡の頂点からの深さ Y1は放物面鏡の開口の半径、Y2は球面鏡の開口の半径、
fは放物面鏡の焦点距離An optical system comprising a light valve for forming an image in a rectangular area, a projection lens for enlarging and projecting an image formed on the light valve, and light source means for emitting a light beam for illuminating the light valve. In the projection display device, the light source means includes a lamp, a parabolic mirror that places a light-emitting portion of the lamp at a focal point, an optical axis shared by the parabolic mirror, and the parabolic mirror. A projection type comprising a spherical mirror joined to the parabolic mirror so as to satisfy the following expression with a focal point and a center of curvature as a common point, and emitting the light beam from a rectangular aperture provided in the spherical mirror. Display device. r = X1 + f X2 = 2f Y2 = Y1 r is the radius of curvature of the spherical mirror, X1 is the depth from the vertex of the parabolic mirror, X2 is the depth from the vertex of the spherical mirror, Y1 is the radius of the opening of the parabolic mirror, Y2 Is the radius of the aperture of the spherical mirror,
f is the focal length of the parabolic mirror
部に不活性ガスを気密封入したことを特徴とする特許請
求の範囲第1項記載の投写型表示装置。2. The projection display device according to claim 1, wherein an inert gas is hermetically sealed in the inside where said parabolic mirror and said spherical mirror are joined.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2096735A JP2985220B2 (en) | 1990-04-11 | 1990-04-11 | Projection display device |
US07/682,626 US5142387A (en) | 1990-04-11 | 1991-04-09 | Projection-type display device having light source means including a first and second concave mirrors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2096735A JP2985220B2 (en) | 1990-04-11 | 1990-04-11 | Projection display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03293615A JPH03293615A (en) | 1991-12-25 |
JP2985220B2 true JP2985220B2 (en) | 1999-11-29 |
Family
ID=14172970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2096735A Expired - Fee Related JP2985220B2 (en) | 1990-04-11 | 1990-04-11 | Projection display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2985220B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100703700B1 (en) * | 2005-04-06 | 2007-04-06 | 삼성전자주식회사 | A method of displaying, selecting and enlarging a plurality of micro images, and a display device and a portable terminal device using the same |
US7234820B2 (en) * | 2005-04-11 | 2007-06-26 | Philips Lumileds Lighting Company, Llc | Illuminators using reflective optics with recycling and color mixing |
-
1990
- 1990-04-11 JP JP2096735A patent/JP2985220B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03293615A (en) | 1991-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5142387A (en) | Projection-type display device having light source means including a first and second concave mirrors | |
JP3635867B2 (en) | Projection type liquid crystal display device | |
EP1420597A2 (en) | Projector | |
EP1744197A2 (en) | Illuminating device and projection type video display apparatus | |
JP2002023106A (en) | Illumination optical system and projector having the same | |
JPH05264904A (en) | Illuminating optical system and projection type image display device using the system | |
JPH02250026A (en) | Polarization beam splitter device and light valve optical device using same | |
US6089718A (en) | Projection display device | |
JP2006145644A (en) | Polarization separator and projection display device using the same | |
JP3646597B2 (en) | Projection-type image display device | |
JP2833147B2 (en) | Projection display device | |
JP3110181B2 (en) | Projection display device | |
JP4380030B2 (en) | Illumination optical system and projector equipped with the same | |
JPWO2005019929A1 (en) | projector | |
US20050157501A1 (en) | Illumination device and projector | |
JP2985220B2 (en) | Projection display device | |
JP2978202B2 (en) | Projection display device | |
JPH10339852A (en) | Projection type display device | |
JPH11160791A (en) | Illumination optical device and projection display device using the illumination optical device | |
JP4513516B2 (en) | Video display device | |
JP2768345B2 (en) | LCD projector | |
JP2643893B2 (en) | Projection display device | |
JP4270190B2 (en) | projector | |
JP3615869B2 (en) | Liquid crystal projector and projection display system using the same | |
JP3568346B2 (en) | Rear projection display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |