JP2975725B2 - Surface-emitting type semiconductor laser device - Google Patents
Surface-emitting type semiconductor laser deviceInfo
- Publication number
- JP2975725B2 JP2975725B2 JP3180393A JP18039391A JP2975725B2 JP 2975725 B2 JP2975725 B2 JP 2975725B2 JP 3180393 A JP3180393 A JP 3180393A JP 18039391 A JP18039391 A JP 18039391A JP 2975725 B2 JP2975725 B2 JP 2975725B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- refractive index
- semiconductor laser
- type
- laser device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1003—Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
- H01S5/1017—Waveguide having a void for insertion of materials to change optical properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18355—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a defined polarisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2222—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/3202—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、面発光型半導体レーザ
装置に関し、特にその偏波方向が一定であることを必要
とする分野、例えば光磁気ディスク分野やコヒーレント
光通信分野などに用いて好適な面発光型半導体レーザ装
置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-emitting type semiconductor laser device, and more particularly, to a surface-emitting type semiconductor laser device which is required to have a constant polarization direction, such as a magneto-optical disk field and a coherent optical communication field. Related to a surface emitting semiconductor laser device.
【0002】[0002]
【従来の技術】活性層を埋め込んだ構造の面発光型半導
体レーザ装置は、第38回応用物理学関係連合講演会の
予稿集「31a−D−3」の「埋め込みDBR面発光レ
ーザの偏波特性」に示されてように、面発光型半導体レ
ーザの偏波方向は、素子によって〔011〕方向の直線
偏波か、〔0−11〕方向の直線偏波か、または偏波方
向が不安定なものの3種に分けられている。2. Description of the Related Art A surface-emitting type semiconductor laser device having a structure in which an active layer is embedded is disclosed in "Preliminary Collection of the 38th Joint Lecture on Applied Physics""31a-D-3","Polarization of embedded DBR surface-emitting laser." As shown in “Characteristics”, the polarization direction of the surface emitting semiconductor laser is linearly polarized in the [011] direction, linearly polarized in the [0-11] direction, or the polarization direction depending on the element. It is divided into three types, which are unstable.
【0003】[0003]
【発明が解決しようとする課題】このような偏波方向が
一定でない面発光型半導体レーザ装置では、光磁気ディ
スク分野やコヒーレント光通信分野など偏波方向が一定
であることを必要とする分野には応用できないという問
題があった。Such a surface-emitting type semiconductor laser device in which the polarization direction is not constant is used in a field requiring a constant polarization direction, such as a magneto-optical disk field or a coherent optical communication field. Was not applicable.
【0004】この発明は上述した問題点を解消するため
になされたものにして、面発光型半導体レーザの偏波方
向を素子によらず、一定にすることをその目的とする。An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to make a polarization direction of a surface emitting semiconductor laser constant irrespective of an element.
【0005】[0005]
【課題を解決するための手段】この発明の第1の発明に
かかる面発光型半導体レーザ装置は、GaAs半導体基
板の〔100〕結晶面上に、埋め込み活性層が形成され
た面発光型半導体レーザ装置において、結晶方位の〔0
10〕方向または〔001〕方向の偏光成分を遮る損失
付加層を設けることを特徴とする。According to a first aspect of the present invention, there is provided a surface emitting semiconductor laser device having a buried active layer formed on a [100] crystal plane of a GaAs semiconductor substrate. In the apparatus, the crystal orientation [0
It is characterized in that a loss-adding layer that blocks the polarized light component in the [10] direction or the [001] direction is provided.
【0006】この発明の第2の発明にかかる面発光型半
導体レーザ装置は、活性領域を含む共振器内部または光
出射側の反射鏡の共振器外部側に、レーザ光を吸収しな
い屈折率がn1の層、屈折率がn2の層、屈折率がn1の
層を連続して設け、かつその3層で構成される2つの境
界面は平行平面に形成するとともに、その境界面の法線
とレーザ光軸となす角度θ1がθ1=tan-1(n2/
n1)を満足することを特徴とする。The surface emitting type semiconductor laser device according to a second aspect of the present invention has a refractive index n that does not absorb laser light is provided inside the resonator including the active region or outside the resonator of the light-emitting side reflector. One layer, a layer having a refractive index of n 2, and a layer having a refractive index of n 1 are successively provided, and two boundary surfaces formed of the three layers are formed in parallel planes, and a method of the boundary surface is used. The angle θ 1 between the line and the laser optical axis is θ 1 = tan −1 (n 2 /
n 1 ).
【0007】[0007]
【作用】第1の発明は、面発光レーザに〔010〕方向
または〔001〕方向のどちらかの偏光成分に対して損
失を受け、その方向には、発振しない。従って、もう一
方の方向に直線偏波するレーザ光が取り出せる。According to the first aspect of the present invention, the surface emitting laser receives a loss in either the [010] direction or the [001] polarization component and does not oscillate in that direction. Therefore, laser light linearly polarized in the other direction can be extracted.
【0008】第2の発明では、x方向に偏光している光
は損失を受けないのに対して、y方向に偏光している光
は、2つの境界面で反射による損失を受ける。このた
め、レーザ光軸と境界面の法線とで決まる平面に存在す
る偏光が最も発振する。In the second invention, light polarized in the x direction does not suffer loss, whereas light polarized in the y direction suffers loss due to reflection at two interfaces. Therefore, polarized light existing on a plane determined by the laser optical axis and the normal to the boundary surface oscillates most.
【0009】[0009]
【実施例】以下、この発明の実施例につき図面を参照し
て説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0010】まず図1ないし図3に従い第1の発明につ
き説明する。First, the first invention will be described with reference to FIGS.
【0011】図1において、1は、〔100〕結晶面の
n型GaAs基板であり、この基板1上にn型半導体多
層膜からなる反射鏡2及びn型クラッド層3が設けられ
る。In FIG. 1, reference numeral 1 denotes an n-type GaAs substrate having a [100] crystal plane. On this substrate 1, a reflecting mirror 2 and an n-type cladding layer 3 made of an n-type semiconductor multilayer film are provided.
【0012】4は、GaAsからなる活性層、5はp型
クラッド層であり、LPE選択メルトバック法により、
基板1の〔100〕結晶面に円形に埋め込み形成され
る。Reference numeral 4 denotes an active layer made of GaAs, and reference numeral 5 denotes a p-type cladding layer.
It is buried in a [100] crystal plane of the substrate 1 in a circular shape.
【0013】6は、p型電流ブロック層、7は、n型電
流ブロック層である。8は、Ga0.9Al0.1Asからな
る高屈折率層、9は、Ga0.5Al0.5Asからなる低屈
折率層であり、この高屈折率層8及び低屈折率層9で損
失付加層Aが構成される。そして、高屈折率層8と低屈
折率層9とにより、共振器内部に傾斜面が形成され、こ
の実施例においては、傾斜面は〔010〕方向の偏波に
対して錯乱損失となっている。6 is a p-type current blocking layer, and 7 is an n-type current blocking layer. 8 is a high refractive index layer made of Ga 0.9 Al 0.1 As, 9 is a low refractive index layer made of Ga 0.5 Al 0.5 As, and the high refractive index layer 8 and the low refractive index layer 9 constitute a loss adding layer A. Be composed. An inclined surface is formed inside the resonator by the high refractive index layer 8 and the low refractive index layer 9, and in this embodiment, the inclined surface causes a confusion loss with respect to the polarization in the [010] direction. I have.
【0014】10は、p型コンタクト層、11は、光出
射側反射鏡、12は、p側電極、13は、n側電極であ
る。Reference numeral 10 denotes a p-type contact layer, 11 denotes a light-emitting-side reflecting mirror, 12 denotes a p-side electrode, and 13 denotes an n-side electrode.
【0015】ところで、GaAs(100)面上に形成
したLPE選択メルトバック法を用いた円形埋め込み面
発光型半導体レーザ装置の活性領域の形状は、結晶表面
側から見ると、図2に示すような〔0−11〕方向を長
軸とし、〔011〕方向を短軸とする楕円形となる。こ
の時の真円率は約1.3である。By the way, the shape of the active region of the circular buried surface-emitting type semiconductor laser device formed on the GaAs (100) surface using the LPE selective melt-back method is as shown in FIG. The ellipse has a long axis in the [0-11] direction and a short axis in the [011] direction. The roundness at this time is about 1.3.
【0016】このような場合、前述したように、偏波特
性は、〔011〕直線偏波、〔0−11〕直線偏波、偏
波方向が不安定の3種に分かれる。一方、これら3タイ
プの素子すべてにおいて、偏光ビームスプリッタを用い
て〔010〕方向と〔001〕方向の偏光成分のI−L
特性をを描くと、図3のように、直線的で安定である。
図3(a)は〔010〕のI−L特性、図3(b)は
〔001〕のI−L特性である。すなわち、〔010〕
方向または、〔001〕方向のどちらかの偏光成分をさ
えぎれば、もう一方の方向に直線偏波している光が取り
出せる。In such a case, as described above, the polarization characteristics are classified into three types: [011] linear polarization, [0-11] linear polarization, and the polarization direction is unstable. On the other hand, in all of these three types of elements, the polarization beam splitter was used to calculate the IL of the polarization components in the [010] and [001] directions.
The characteristics are linear and stable, as shown in FIG.
FIG. 3A shows the IL characteristic of [010], and FIG. 3B shows the IL characteristic of [001]. That is, [010]
If the polarization component in either the direction or the [001] direction is blocked, light linearly polarized in the other direction can be extracted.
【0017】従って、面発光型半導体レーザに〔01
0〕方向または〔001〕方向のどちらかの偏光成分に
対して損失を受け、その方向には、発振しないようにす
れば、もう一方の方向に直線偏波するレーザ光が取り出
せる。このため、この発明では損失付加層Aを設け、一
方の方向には発振しないように構成したものである。Therefore, [011]
Loss occurs in the polarized light component in either the [0] direction or the [001] direction, and laser light that is linearly polarized in the other direction can be extracted if oscillation is not performed in that direction. Therefore, in the present invention, the loss adding layer A is provided so as not to oscillate in one direction.
【0018】即ち、図1に示した実施例においては、活
性層4で発生した光は、反射鏡2、11間で反射され、
しきい値以上でレーザ発振する。ところが、高屈折率層
8と低屈折率層9とにより、共振器内部に傾斜面が形成
され、この傾斜面は〔010〕方向の偏波に対して錯乱
損失となっている。従って、本実施例では、〔010〕
方向の偏波は発振せず、〔001〕方向に直線偏波とな
る。That is, in the embodiment shown in FIG. 1, the light generated in the active layer 4 is reflected between the reflecting mirrors 2 and 11, and
Laser oscillation occurs above the threshold. However, the high-refractive-index layer 8 and the low-refractive-index layer 9 form an inclined surface inside the resonator, and this inclined surface causes confusion loss with respect to polarization in the [010] direction. Therefore, in this embodiment, [010]
Polarization in the direction does not oscillate, but becomes linearly polarized in the [001] direction.
【0019】この傾斜面を90°回転させることによ
り、[001]方向の偏波に対して錯乱損失とすること
もできる。この場合、レーザは[001]方向の直線偏波
となる。By rotating this inclined surface by 90 °, it is possible to reduce the confusion loss with respect to the polarization in the [001] direction. In this case, the laser is linearly polarized in the [001] direction.
【0020】損失付加層Aは、本実施例ではp型クラッ
ド層5、n型電流ブロック7層と10層の間に設けた
が、レーザの電流閉じ込め効果(クラッド−活性層−ク
ラッド)を損なわず、かつ共振器内部にあれば、本実施
例の場所に限らない。Although the loss adding layer A is provided between the p-type cladding layer 5 and the n-type current block layers 7 and 10 in this embodiment, the current confinement effect (cladding-active layer-cladding) of the laser is impaired. The present embodiment is not limited to the location of this embodiment as long as it is inside the resonator.
【0021】又、損失付加層Aは光出射側の反射鏡11
の外側に設けてもよい。Further, the loss adding layer A is provided with a reflecting mirror 11 on the light emitting side.
May be provided on the outside.
【0022】更に、活性層4の材質はGaAsとは限ら
ない。活性層4がGaAs以外の場合、高屈折率層8、
低屈折率層9はその活性層4の光に対して、吸収損失と
ならないように設定すれば良い。Further, the material of the active layer 4 is not limited to GaAs. When the active layer 4 is made of a material other than GaAs, the high refractive index layer 8,
The low refractive index layer 9 may be set so as not to cause absorption loss with respect to the light of the active layer 4.
【0023】本実施例で、p型とn型を反転させても同
様である。本発明は、この他、吸収損失を設けるものな
ど、〔010〕方向か〔001〕方向のどちらかの偏光
成分に対して損失を設けるものであれば、本実施例に限
るものではない。In the present embodiment, the same applies even if the p-type and the n-type are inverted. The present invention is not limited to the present embodiment as long as the loss is provided for the polarization component in either the [010] direction or the [001] direction, such as the one providing an absorption loss.
【0024】次にこの発明の第2の発明について、図4
及び図5に従い説明する。Next, a second embodiment of the present invention will be described with reference to FIG.
And FIG.
【0025】図4において、21は、〔100〕結晶面
のn型GaAs基板であり、この基板21上にn型半導
体多層膜からなる反射鏡22及びn型クラッド層23が
設けられる。In FIG. 4, reference numeral 21 denotes an n-type GaAs substrate having a [100] crystal plane. On this substrate 21, a reflecting mirror 22 and an n-type cladding layer 23 made of an n-type semiconductor multilayer film are provided.
【0026】24は、GaAsからなる活性層、25は
p型クラッド層で有り、LPE選択メルトバック法によ
り、基板21の〔100〕結晶面に円形に埋め込み形成
される。Reference numeral 24 denotes an active layer made of GaAs, and 25 denotes a p-type cladding layer, which is buried in a circular shape on the [100] crystal plane of the substrate 21 by the LPE selective melt back method.
【0027】26は、p型電流ブロック層、27は、n
型電流ブロック層である。26 is a p-type current block layer, and 27 is an n-type current block layer.
It is a type current block layer.
【0028】28は屈折率がn1のp型Ga0.5Al0.5
Asからなる第1の屈折率層、29は屈折率がn2のp
型Ga0.9Al0.1Asからなる第2の屈折率層、30は
屈折率がn1のp型Ga0.5Al0.5Asからなる第3の
屈折率層であり、この屈折率層28、29及び30で損
失付加層Aが構成される。Reference numeral 28 denotes a p-type Ga 0.5 Al 0.5 having a refractive index of n 1.
The first refractive index layer 29 made of As has a refractive index of p 2 having a refractive index of n 2 .
A second refractive index layer 30 of Ga 0.9 Al 0.1 As, and a third refractive index layer 30 of p-type Ga 0.5 Al 0.5 As having a refractive index of n 1 , and the refractive index layers 28, 29 and 30. Constitutes the loss adding layer A.
【0029】31は、p型コンタクト層、32は、光出
射側反射鏡、33は、p側電極、34は、n側電極であ
る。Reference numeral 31 denotes a p-type contact layer, 32 denotes a light-emitting side reflecting mirror, 33 denotes a p-side electrode, and 34 denotes an n-side electrode.
【0030】図5に、本発明の構成と経路の模式図を示
す。この図5を参照して、この第2の発明を更に説明す
る。FIG. 5 is a schematic diagram showing the configuration and route of the present invention. The second invention will be further described with reference to FIG.
【0031】図5において、M1は反射鏡22を、M2は
反射鏡32を示す。P1、P2は第1から第3の屈折率2
8、29、30、3層で構成される2つの境界面であ
り、P 1は第1の屈折率層28と第2の屈折率の層2
9、との境界面、P2は第2の屈折率層28と第3の屈
折率層30との境界面である。θ1は境界面P1と法線
とのなす角度である。Eは反射鏡M1から境界面P1に入
射する光の電界、E’は電界Eの境界面での反射成分、
E”は電界Eでの屈折成分である。θ2は電界Eの境界
面P1での屈折角である。a、bは光軸、Bはレーザ光
軸である。光の電界Eは、図に示すx成分、y成分(図
から垂直上に延びる軸)とに分けて考える。In FIG. 5, M1Represents the reflecting mirror 22 and M representsTwoIs
The reflecting mirror 32 is shown. P1, PTwoIs the first to third refractive index 2
8, 29, 30, 3 layers
, P 1Are the first refractive index layer 28 and the second refractive index layer 2
9, the interface with PTwoIs the second refractive index layer 28 and the third refractive index layer.
This is a boundary surface with the folding layer 30. θ1 is the boundary plane P1And normal
And the angle between them. E is a reflector M1From the boundary surface P1Enter
The electric field of the emitted light, E 'is the reflection component at the boundary of the electric field E,
E ″ is a refraction component in the electric field E. θ2 is a boundary of the electric field E
Plane P1Is the refraction angle at. a and b are optical axes, B is laser light
Axis. The electric field E of light is represented by an x component and a y component shown in FIG.
Axis extending vertically upward from the
【0032】図5で、反射鏡M1から境界面P1に入射す
る電界Eは、E=(Ex,Ey)とし、境界面P1での
反射成分E’はE’=(Ex’,Ey’)とする。また
境界面P1での屈折成分E”はE”=(Ex”,E
y”)とする。この場合E’、E”はEを用いて、次の
ように表わすことができる。[0032] In FIG. 5, the electric field E that is incident from the reflection mirror M 1 to the boundary surface P 1 is, E = (Ex, Ey) and the reflection component E at the boundary surface P 1 'is E' = (Ex ', Ey '). The refraction component E ″ at the boundary plane P 1 is E ″ = (Ex ″, E
y ″). In this case, E ′ and E ″ can be expressed as follows using E.
【0033】[0033]
【数1】 (Equation 1)
【0034】ここで、θ1=tan-1(n2/n1)とする
と、Ex’=0となるのに対して、Ey’≠0である。
また、屈折した成分は、境界面P1の後に、境界面P2に
達するが、ここでも同様にx成分の反射は0で、y成分
の反射は0ではない。Here, if θ 1 = tan −1 (n 2 / n 1 ), Ex ′ = 0, whereas Ey ′ ≠ 0.
The refractive ingredients, after the boundary plane P 1, but reach the boundary surface P 2, even the reflection of similarly x component where 0, reflecting the y component is not zero.
【0035】また、光は境界面P2の後、反射鏡M2で反
射されて再び境界面P2にもどるが上に述べたのと同様
に、x成分の反射は0で、y成分の反射は0ではない。Further, after the light of the boundary surface P 2, just as it returns to the interface P 2 again by being reflected by the reflecting mirror M 2 described above, the reflection of the x component is 0, the y component The reflection is not zero.
【0036】従って、本発明の構成では、x方向に偏光
している光は損失を受けないのに対して、y方向に偏光
している光は、2つの境界面P1、P2で反射による損失
を受ける。このため、本発明の構成ではレーザ光軸と境
界面の法線とで決まる平面に存在する偏光が最も発振し
やすい。Therefore, in the configuration of the present invention, light polarized in the x direction does not suffer loss, whereas light polarized in the y direction is reflected at the two boundary surfaces P 1 and P 2 . Suffer loss due to Therefore, in the configuration of the present invention, polarized light existing on a plane determined by the laser optical axis and the normal to the boundary surface is most likely to oscillate.
【0037】ここで、屈折率n1、n2、n1の3層の屈
折率層28、29、30を連続して形成することにより
光軸aとbは平行になる。従って、平行な反射鏡M1と
M2に対して、光軸aとbはそれぞれ垂直になるので、
反射率の低下は無い。Here, the optical axes a and b become parallel by continuously forming the three refractive index layers 28, 29 and 30 having the refractive indices n 1 , n 2 and n 1 . Accordingly, the optical axes a and b are perpendicular to the parallel reflecting mirrors M 1 and M 2 , respectively.
There is no decrease in reflectance.
【0038】図4に示す実施例においては、活性層24
で発生した光は、反射鏡22と32で反射され、レーザ
発振するが、本実施例では、損失付加層Aにより〔0−
11〕方向の偏光成分が損失を受ける。従って、本実施
例では〔011〕方向の偏光が最も発振しやすい。In the embodiment shown in FIG.
Is reflected by the reflection mirrors 22 and 32 and oscillates in a laser. In this embodiment, the light generated by [0−
11] The polarization component in the direction receives a loss. Therefore, in this embodiment, the polarized light in the [011] direction is most likely to oscillate.
【0039】本実施例では損失付加層Aとして、p型G
a0.5Al0.5As層からなる屈折層28(屈折率n
13.26)、p型Ga0.9Al0.1As層からなる屈折
層29(屈折率n23.52)、p型Ga0.5Al0.5A
s層からなる屈折層30(屈折率n13.26)を用い
ている。この時、図4のθ1は47.2゜とする。In this embodiment, a p-type G
a 0.5 Al 0.5 As layer (refractive index n)
1 3.26), refractive layer 29 (refractive index n 2 3.52 of p-type Ga 0.9 Al 0.1 As layer), a p-type Ga 0.5 Al 0.5 A
A refraction layer 30 (refractive index n 1 3.26) composed of an s layer is used. At this time, θ 1 in FIG. 4 is 47.2 °.
【0040】本実施例では[0−11]方向に損失を設
け、[011]方向の偏光を発振しやすくしているが、レ
ーザ光軸Bを法線とする平面(c)内に存在するもので
あれば、どの方向に損失を設けてもよい。この場合、そ
の損失を設けた方向に垂直で、平面(c)内に存在する
方向が発振しやすくなる。In this embodiment, a loss is provided in the [0-11] direction to make it easy to oscillate the polarized light in the [011] direction, but it exists in the plane (c) whose normal line is the laser optical axis B. The loss may be provided in any direction as long as it is the same. In this case, a direction perpendicular to the direction in which the loss is provided and existing in the plane (c) is likely to oscillate.
【0041】本実施例では、損失付加層Aをp型クラッ
ド層とp型コンタクト層の間に設けているが、活性領域
の電流閉じ込め構造(クラッド−活性層−クラッド)が
保たれる限り共振器内のどこに設けてもよい。また、光
出射側の反射鏡の共振器外部側に設けてもよい。In this embodiment, the loss addition layer A is provided between the p-type cladding layer and the p-type contact layer. However, as long as the current confinement structure (cladding-active layer-cladding) of the active region is maintained, resonance occurs. It may be provided anywhere in the vessel. Further, it may be provided outside the resonator of the reflecting mirror on the light emitting side.
【0042】第1の発明と同様この実施例のp型、n型
を反転しても良い。第2の発明の実施例では、GaAl
As系を示しているが他の材料系でも有効である。As in the first invention, the p-type and the n-type of this embodiment may be inverted. In the embodiment of the second invention, GaAl
Although an As system is shown, other material systems are also effective.
【0043】また、この実施例では(100)結晶面上
の面発光型半導体レーザについて述べているが、本発明
はこれに限るものではない。In this embodiment, a surface emitting semiconductor laser on a (100) crystal plane is described, but the present invention is not limited to this.
【0044】[0044]
【発明の効果】第1の発明によれば、面発光レーザの偏
波方向を〔001〕または〔010〕のどちらかに特定
することができる。According to the first aspect, the polarization direction of the surface emitting laser can be specified to either [001] or [010].
【0045】又、第2の発明によれば、面発光レーザの
偏波方向を素子によらず、レーザ光軸を法線とする平面
内の任意の方向に一定にすることができる。Further, according to the second aspect, the polarization direction of the surface emitting laser can be made constant in an arbitrary direction within a plane whose normal line is the laser optical axis, regardless of the element.
【図1】本発明の第1の発明の一実施例を示す断面図で
ある。FIG. 1 is a sectional view showing an embodiment of the first invention of the present invention.
【図2】埋め込み構造の活性層をウエハ表面から見た模
式図である。FIG. 2 is a schematic view of an active layer having a buried structure as viewed from a wafer surface.
【図3】偏光ビームスプリッタを用いて、成分を夫々取
り出した時のI−L特性図であり、(a)は〔010〕
方向の成分、(b)〔001〕方向の成分をそれぞれ示
す。FIG. 3 is an IL characteristic diagram when each component is extracted using a polarizing beam splitter, and (a) is [010].
(B) [001] direction component.
【図4】本発明の第2の発明の実施例の一例を示す構造
図である。FIG. 4 is a structural diagram showing an example of an embodiment of the second invention of the present invention.
【図5】本発明の第2の発明の作用を説明する模式図で
ある。FIG. 5 is a schematic diagram illustrating the operation of the second invention of the present invention.
1 n型GaAs(100)基板 2 反射鏡 3 n型クラッド層 4 活性層 5 p型クラッド層 6 p型電流ブロック層 7 n型電流ブロック層 A 損失付加層 8 高屈折率層 9 低屈折率層 10 p型コンタクト層 11 光出射側反射鏡 12 p側電極 13 n側電極 21 GaAs基板 22 反射鏡 23 n型クラッド層 24 GaAs活性層 25 p型クラッド層 26 p型電流ブロック層 27 n型電流ブロック層 28 第1の屈折率層 29 第2の屈折率層 30 第3の屈折率層 31 p型コンタクト層 32 光出射側反射鏡 33 p電極 34 n電極 REFERENCE SIGNS LIST 1 n-type GaAs (100) substrate 2 reflector 3 n-type cladding layer 4 active layer 5 p-type cladding layer 6 p-type current blocking layer 7 n-type current blocking layer A loss adding layer 8 high refractive index layer 9 low refractive index layer REFERENCE SIGNS LIST 10 p-type contact layer 11 light-emitting side reflector 12 p-side electrode 13 n-side electrode 21 GaAs substrate 22 reflector 23 n-type clad layer 24 GaAs active layer 25 p-type clad layer 26 p-type current block layer 27 n-type current block Layer 28 First refractive index layer 29 Second refractive index layer 30 Third refractive index layer 31 P-type contact layer 32 Light-emitting-side reflecting mirror 33 P electrode 34 N electrode
───────────────────────────────────────────────────── フロントページの続き (72)発明者 三宅 輝明 守口市京阪本通2丁目18番地 三洋電機 株式会社内 (58)調査した分野(Int.Cl.6,DB名) H01S 3/18 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Teruaki Miyake 2-18 Keihanhondori, Moriguchi City Sanyo Electric Co., Ltd. (58) Field surveyed (Int. Cl. 6 , DB name) H01S 3/18
Claims (2)
上に、埋め込み活性層が形成された面発光型半導体レー
ザ装置において、結晶方位の〔010〕方向または〔0
01〕方向の偏光成分を遮る損失付加層を設けることを
特徴とする面発光型半導体レーザ装置。1. A surface emitting semiconductor laser device in which a buried active layer is formed on a [100] crystal plane of a GaAs semiconductor substrate, wherein the crystal orientation is [010] or [0].
[01] A surface-emitting type semiconductor laser device comprising a loss-adding layer that blocks polarization components in the [01] direction.
側の反射鏡の共振器外部側に、レーザ光を吸収しない屈
折率がn1の層、屈折率がn2の層、屈折率がn1の層を
連続して設け、かつその3層で構成される2つの境界面
は平行平面に形成するとともに、その境界面の法線とレ
ーザ光軸となす角度θ1がθ1=tan-1(n2/n1)を
満足することを特徴とする面発光型半導体レーザ装置。 2. A layer having a refractive index of n 1, a layer having a refractive index of n 2 which does not absorb laser light, and a layer having a refractive index of n 2 are provided inside the resonator including the active region or outside the resonator of the reflector on the light emitting side. n 1 layers are continuously provided, and two boundary surfaces formed of the three layers are formed as parallel planes, and an angle θ 1 between a normal line of the boundary surface and the laser optical axis is θ 1 = tan. -1 (n 2 / n 1) the surface-emitting type semiconductor laser device, characterized by satisfying the.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3180393A JP2975725B2 (en) | 1991-06-25 | 1991-06-25 | Surface-emitting type semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3180393A JP2975725B2 (en) | 1991-06-25 | 1991-06-25 | Surface-emitting type semiconductor laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH053369A JPH053369A (en) | 1993-01-08 |
JP2975725B2 true JP2975725B2 (en) | 1999-11-10 |
Family
ID=16082455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3180393A Expired - Fee Related JP2975725B2 (en) | 1991-06-25 | 1991-06-25 | Surface-emitting type semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2975725B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06326409A (en) * | 1993-05-13 | 1994-11-25 | Nec Corp | Surface emission element |
US5390209A (en) * | 1994-01-05 | 1995-02-14 | At&T Corp. | Article comprising a semiconductor laser that is non-degenerate with regard to polarization |
US5778018A (en) * | 1994-10-13 | 1998-07-07 | Nec Corporation | VCSELs (vertical-cavity surface emitting lasers) and VCSEL-based devices |
JP2007227861A (en) * | 2006-02-27 | 2007-09-06 | Sony Corp | Semiconductor light-emitting device |
-
1991
- 1991-06-25 JP JP3180393A patent/JP2975725B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH053369A (en) | 1993-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5778018A (en) | VCSELs (vertical-cavity surface emitting lasers) and VCSEL-based devices | |
US4821277A (en) | Super-luminescent diode | |
US20050084218A1 (en) | Optical module, and optical transmission device | |
US6885688B2 (en) | Vertical cavity surface emitting laser that uses intracavity degenerate four-wave mixing to produce phase-conjugated and distortion free collimated laser light | |
US4870649A (en) | Tranverse mode control in solid state lasers | |
JPS63205984A (en) | Surface emitting type semiconductor laser | |
JPH0497206A (en) | Semiconductor optical element | |
JP2695440B2 (en) | Semiconductor laser device | |
JP2975725B2 (en) | Surface-emitting type semiconductor laser device | |
JP4106210B2 (en) | Optical semiconductor device | |
JPH05167197A (en) | Optical semiconductor device | |
US4853936A (en) | Index guided semiconductor laser device | |
US4065730A (en) | Laser optical coupler | |
JP2000349392A (en) | Surface emitting laser element and its manufacture | |
JPS5861692A (en) | Semiconductor laser device | |
JP2586671B2 (en) | Semiconductor multilayer film | |
JPH0319292A (en) | Semiconductor laser | |
CN114667652A (en) | Semiconductor laser device | |
JPH03195076A (en) | External resonator type variable wavelength semiconductor laser | |
JP2006086184A (en) | Laser diode | |
JPH05327120A (en) | Surface emitting type semiconductor laser device | |
JPS6164182A (en) | Optical feedback type semiconductor laser device | |
JPH0750814B2 (en) | Multi-point emission type semiconductor laser device | |
JP2665024B2 (en) | Semiconductor laser | |
JP2000081546A (en) | Optical module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080903 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |